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The energy spectrum of a particle in the field of a disordered system of scattering centers is investi­
gated. A classification of such spectra based on the "intensity" of a single scattering center is pre­
sented and the structure of the spectrum in some limiting cases is elucidated. It is shown that for low 
"intensity" centers the energy levels located at the left of the renormalized spectrum boundary (de­
fined by the mean potential acting on the particle) outside its narrow smearing region are of a fluctuation 
nature and due to macroscopic fluctuations of the scatterer density. A complete and consistent theory of 
such fluctuation levels is developed which is based on a statistical description of the scatterer system. 
The spectral density v(E), the form of the wave functions for the fluctuation levels E, and the shape of 
the density fluctuations at which the levels originate, are found. It is shown that for sufficiently low 
scatterer concentrations, c, the spectral density v(E, c) has a singularity line located near the renor­
malized spectrum boundary in the (E, c) plane. This line separates states created by weak "long-wave" 
concentration fluctuations from states corresponding to high-concentration local fluctuations. 

1. INTRODUCTION 

THE problem of the structure of the energy spectrum 
and of the quantum states of a disordered system has 
been attracting more and more attention. The lack of 
simple systematics for the states in such systems and 
of a general method for their investigation makes it 
very important to be able to obtain a qualitative and all 
the more a quantitative solution of this problem within 
the framework of any sufficiently realistic model. In an 
earlier paper['J we discussed different physical situa­
tions which make it possible to reduce the problem of 
the spectrum of elementary excitations in a disordered 
system to the model of the wave equation of a particle 
in a field of random potentials. Principal attention was 
paid in that article to the case of low concentration of 
the scattering centers, and also to the structure of the 
spectrum in the vicinity of the singular points of the 
spectral density, where a re-arrangement takes place 
in the systematics of the quantum states. In the present 
paper we shall analyze another important class of cases 
which admit of an exact asymptotic solution of the prob­
lem in a broad region of the spectrum. 

In accordance with the foregoing, we start from the 
equation (li 2/2m = 1) 

~'ljJ+(E-U)'iJ=O, U= ~v;, v;= v(x-x;) (1.1) 

with boundary condition lf! In = 0 on the boundary n of 
the region occupied by the system. Here v(x- Xj) is 
the field of an individual scattering center located at the 
point Xj; (J I vi d3x <co), The points Xj are assumed to 
be random, and the probability of the configurations 
(x,, ... , Xj, ... ) is specified by the distribution function 
p(r) dr in configuration space r = ( ... , Xj, ... ). The 
density of the scattering centers ("impurities") is 
n = N/V, where V is the volume of the system; it is 
assumed that the average density n is constant in all 
the limiting transitions V- co, By spectral density 
v(E)dE is meant the number of levels, normalized to 
unit volume, in the energy interval dE: 
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. dNv(E) 
v(E)dE=hw--. (1.2) 

v~ V 
The sought spectral density v(E) is a macroscopic 

("self -averaging") characteristic of the system and 
should be expressed in terms of the scattering potential 
v(x) and of the distribution function of the scattering 
center p(r). Of course, no effective solution exists for 
this problem in such a general formulation, but in a 
number of important limiting cases it is possible to 
carry through to conclusion not only a qualitative inves­
tigation, but also a quantitative solution. 

For a classification of these cases, we start with 
certain estimates connected with the characteristic of 
the scattering potential v(x). We assume that v(x) cor­
responds to a potential well (v < 0) or a potential bar­
rier (v > 0) localized in some small region of the vol­
ume ~ a3 (a-interaction radius), the potential in this 
region being of the order of I vo I = k~. One of the most 
important characteristics of the potential v(x) is the 
dimensionless quantity J = (ak0) 3• In the case of attrac­
tion forces (v < 0) the discrete level appears in the po­
tential well at J > Jcr ~ 1. When (ako)3 » 1 this quan­
tity coincides, apart from a factor ~ 1, with the number 
of levels in an individual potential well. Thus, when 
J » 1 each well is "classical." To the contrary, when 
J = (ako)3 « 1, the individual well is too small for the 
appearance of a local level, and only an accumulation 
of a sufficiently large number of scattering centers en­
sures its occurrence.'> 

'lin the one-dimensional and two-dimensional cases, one level in the 
well exists even when ak0 < I, but it is "pressed" against the very 
boundary of the continuous spectrum; in the one-dimensional case 
lEo l/k02 - (ak0)2; in the two-dimensional case In 1Enl/ko2 - -l/(ako)2 • 

To obtain levels comparable with the depth of the well IE I - .ko2 it 1s nec­
essary, as before, to accumulate a large number of centers. 

Attention should be called to the different roles of the 1>-function 
potential from the point of view of the criterion of its "intensity" J in 
the one-dimensional and three-dimensional cases. In the one-dimen­
sional case the potential v(x) = Al>(x) corresponds to J = 0, and in the 
three-dimensional case the potential v(x) = Al>(x) corresponds to J -> co 

(an infinite number of levels in the well v(x) = - l>(x)). 
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Inasmuch as the kinetic energy Eo of a particle lo­
calized in the volume a3 is 1/a2, the condition J « 1 
also has the meaning of lvol «Eo. 

The character of the solution of the problem of the 
spectral density v(E) depends essentially on the value 
of the parameter J = (ak0) 3 • The case J » 1, as already 
mentioned, corresponds in the limit to a purely classi­
cal problem with Hamiltonian 

H=k2+U(x), k2=p'/2m, U(x)=]v(x-x;). 

This means that if the summary random potential U 
= ~j Vj has a probability density p(U) which does not 
depend on x, 

d r ~ p(U)=- J p(f)df, U(f)= .~v(x;), 
dUu(r)<U 

then the spectral density v(E) is determined by the 
rather obvious formula 2 ' 

(1.3) 

4n2v(E)= fyE-Up(U)dU= f"J"xp(E-x)dx. (1.4) 
E 

The opposite case J « 1 in the limit as J - 0 corre­
sponds to a replacement of the random potential U(x) 
by its mean value U, that is, simply to a renormaliza­
tion of the limit of the spectrum 

4n2v(E) = yE -lJ = l"E- cvo, 

- N)v(x)d3x r I I k2 
U::::::::: -- V-- = CVo, j v(x) d3x = Voa3, C = na3, Vo = o. 

The dimensionless density c (the number of neu­
trons in the volume a3 ) can be called the concentration. 
The limit as J- 0 corresponds to the case a3~ - O, 
na3 = c * 0 (or cv0 = U * 0). 

Allowance for a small but nonvanishing value 
J = (ako)3 « 1 l~ads to a smearing of the boundary of the 
spectrum E = U. In the region of this smearing, there 
occurs a re-arrangement of the systematics and of the 
character of the quantum states: on the right of the 
smeared boundary Ec = cv0 the wave function can be 
chosen, over sections that are not too large, in the form 
of weakly damped plane waves. The magnitude of this 
damping and the small change in the spectral density in 
this spectral region can be determined without difficulty 
from perturbation theory and are well known. To the 
contrary, on the left of this boundary there are located 
localized "fluctuation" states which result from fluctu­
ations of the density of the scattering centers. When the 
quantity J « 1 is small, such fluctuations should encom­
pass a large number ( ~ 1/J » 1) centers and can be re­
garded as macroscopic. It is precisely this region of 
the spectrum which is the subject of our study. 

The intermediate case J ~ 1 is the most complicated 
one. Here individual potentials Vj can have one or sev­
eral levels (true or resonant) and the scattering ampli­
tude has in general a resonant character. However, 
even if the individual potential v(x) does not possess 
such a level, the level can occur for two (or more) cen­
ters located close to each other and spaced ~ ~ a(v(x) 
+ v(x- ~)) apart. The position of the resultant level is 

2)The natural scale for the energy is in this case the quantity lv0 1. 
Near the true boundary of the spectrum Eg, the quasiclassical descrip­
tion begins at (E- Eg)/lv0 1 ~ l/J2/3. 

determined here by the details of the potential v(x), 
and the probability that two centers will come to within 

~ ~a of each other depends essentially on the correla­
tions between them and the interaction radius a. There­
fore it is impossible to obtain any general quantitative 
formulas when J ~ 1. An exception is the case of small 
concentrations c, where the perturbation U = ~j Vj is 
small "in the mean" and qualitatively again leads to a 
displacement and smearing of the initial boundary of the 
spectrum (Ec ~c). However, even in this case it is pos­
sible to investigate the structure of the spectrum on the 
left side of the renormalized boundary and to obtain 
asymptotic formulas only near the singular points of 
the spectral density near (E, c);l11 such singular points, 
besides the renormalized boundary Ec itself, are the 
true boundary of the spectrum at c * 0 and the positions 
of the discrete levels as c- 0. 

The true boundary of the spectrum does not depend 
on the concentration c and is located, generally speak­
ing, at a finite distance from the "renormalized" 
boundary Ec. As shown in lll, for J ~ 1 and arbitrary 
c, macroscopic fluctuations are responsible only for 
levels located near the true boundary of the spectrum. 
To the contrary, when J ~ 1 all the levels on the left of 
a narrow strip in the vicinity of the renormalized 
boundary Ec have a "fluctuation" origin, which makes 
it possible to apply fully the idea of macroscopic de­
scription of such levels,3 ' which was formulated in [ll, 

and to develop a sufficiently simple method for their 
study. We now proceed to describe this method. 4 ' 

Unless specially stipulated, the quantity J = (ako)3 

will serve as the main small parameter, and in all the 
final expressions we shall be interested only in the 
principal nonvanishing terms with respect to this pa­
rameter. It is precisely in this sense that we shall un­
derstand the negligible smallness of the corresponding 
quantities where necessary. Nonetheless, most results 
will turn out to be qualitatively valid up to J ~ 1. 

2. DERIVATION OF GENERAL FORMULA FOR THE 
DENSITY OF THE FLUCTUATION LEVELS 

Let us consider a level E located sufficiently far to 
the left of the renormalized boundary Ec = cv0 ; we 
shall see later that the term "sufficiently far" denotes 
that IE - Ec 1/Ec » (ako)2• In this case, as was already 
stated, the realization of such a level calls for a macro­
scopic fluctuation of the density of the scattering cen­
ters. By virtue of the low probability of such a fluctua­
tion, we can always subdivide the entire system into 
parts of volume V which, on the one hand, are suffi­
ciently large so that the effect of the boundaries is neg­
ligibly small, and on the other hand are sufficiently 
small so that the probability Wv(E) that there will oc­
cur in this volume a fluctuation that leads to the appear­
ance of levels to the left of the point E is also small. 
It is obvious that such a probability of the fluctuations 
in the volume V, which makes the level E not the first 

3JSee (1], pp. 626- 628 and 646- 648 [translation pp. 554- 555 
and 564- 565]. 

4JA somewhat different method of investigating the fluctuation 
levels was developed in the just-published paper of Langer and Zitt­
artz [2 ]. 
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but, say, the second or third, is incomparably smaller 
than the probability of that "smallest" fluctuation which 
is sufficient for the appearance of the level E. There­
fore in this case the sought-for level density v(E) is 
asymptotically equal to the probability density p0 (E) of 
a fluctuation ensuring the appearance of the first level 
at the point E. 

The position of the ground level .>to of a particle in 
the field U = !:j Vj is determined by the configuration of 
the scattering centers, that is, is a function of the point 
r = ( ••• , Xj, ••• ) in configuration space: .\0 = .\0(r). We 
thus have 

v(E)=po(E)= Sp(f)ll(l.o(f)-E)df. (2.1) 

On the other hand, in a field corresponding to the 
fluctuation of the density, the wave function l/J0 = l/J0E(x), 
which is a function of the ground state, varies smoothly 
over distances R ~ 1/ ..J IE - Ec I subtending a large 
number of excess scattering centers. 

Therefore the position of the level .\0 is not very 
sensitive to microscopic displacements of the individual 
centers, and should depend with sufficient accuracy only 
on the "macroscopic" density of the centers (or, which 
is the same, on the "concentration" c(x) = a3n(x)). If c0 

is the average concentration of the system, then the 
macroscopic fluctuation is described by the function 
Hx) = c(x)- c0 , the radius of the decrease of which is 
determined by the dimensions of the fluctuation. Thus, 
.>to is a functional of Hx) 

l.o = l.o {s} ( = l.o {s, co}). (2.2) 

As can be readily verified, we can write, with the 
same degree of accuracy, the wave equation (1.1) for 
the function lj;0 in the form 

~'Po+ (E- covo- voSs) 'Po= 0. 

e~=~8(x-y)~(y)d"y, 8(x)=v(x)/~ v(x)d3x. (2.3) 

The form of (2.3) serves as an interpretation of the 
dependence .\0 = .>to { ~} and the condition for the admis­
sible functions ~(x) takes the form 

A<>{s} =E. 

Equation (2.3) is obtained from (1.1) by replacing the 
random potential U(x) at each of the macroscopically 
small sections of volume fl. 3 x (where lj;(x) changes little. 
but c (x) fl. 3 x/ a 3 » 1), by its "local" mean value U (x) 

U(x)= S c(x') v(x-~)d"Jx'. 
a 

The condition J « 1 ensures the correctness of such 
a substitution and a transition to (2.3). By virtue of the 
very same condition, the appearance of the level re­
quires a fluctuation of the ''radius'' R » a, provided 
only the potentials Vj cannot overlap strongly, that is, 
the maximum concentration of the scattering centers 
(the maximum number of such centers in the interac­
tion sphere a3) cannot reach a value ~ (ako)-2 » 1. The 
dimensions of the fluctuation are certainly large for a 
small overlap of the potentials, when the concentration 
has a maximum ~ 1. In this case (2.3) takes the simpler 
form 

~"¢ + (E- CoVo- svo)1Jl = 0. (2.4) 

We shall henceforth pay principal attention to this 
case. 

In accordance with the foregoing, it is convenient to 
change over in (2.1) from integration over the configu­
ration space dr to integration over the space of the 
functions ~(x). The corresponding Jacobian of the tran­
sition, with allowance for the "weight factor" p(r) can 
be written in the form A exp[a(~, c0)], where a has the 
meaning of the entropy as a functional of ~. Thus, 

~ eo!i,colll(l.o{S}- E)Ds 
v(E)=po(E)=-"----' -. (2.5) 

~ eolo,c,lD!g 

The presence of a normalization factor in the de­
nominator of (2.5) makes it possible to write out a{~, c0 } 

accurate to an additive term. Let a(c)/a3 be the density 
of the entropy of a system with a distribution function 
p(r) and a homogeneous concentration c. Taking into 
account the additivity of the entropy5> as well as the 
conservation of the total number of centers in the entire 
system, we have for an arbitrary macroscopic fluctua­
tion of the concentration ~(x) in a system with "equi­
librium" concentration c0 

S{s} = a{s, co} - a{O, co}=___!__ i [a(co + s)- a(co)- sa' (co)] d3x. (2.6) a3 J 

The quantity a(c) is determined by the distribution 
function p(r) and is specified by the concrete physical 
situation. Thus, for example, if there is no correlation 
at all between the centers (p(r) = canst), then a(c) cor­
responds to the entropy of an ideal gas and takes the 
form 

a(c) = -cln(c/e), (2.7) 

If the scattering centers are impurity atoms in the 
crystal and form a "lattice gas" such that in each cell 
or volume a3 there can be located not more than one 
impurity atom, then6 > 

a(c)=c8r ~~n~+(1-~·)In(t-_:_)J, 
l Cg Cg Cg Cg 

b3 
Cg=-;o· 

a(c) =-cine -(1- c)ln(1- c). (2.8) 

Correlations of another type in the arrangement of 
the scattering centers reduce likewise, in final analy­
sis, to a definite form of the a(c) dependence, which 
can be regarded as specified (or should be calculated 
independently). 

Writing v(E) in the form v(E) = eF<E>, we have in 
accord with (2.5) and (2.6) 

F(E) =In v(E) =In~ esl<>ll[~o{s}:=-EJDs. 
) e8Ds 

(2.9) 

Taking into account the macroscopic character of 
S {~}(with respect to the parameter 1/J), we can easily 
obtain the principal term in F(E). The main contribu­
tion to the functional integrals (2.9) is made by the inte­
gration in the vicinity of the extremal points of S in 

5>Strictly speaking, formula (2.6) holds only for sufficiently smooth 
functions ~(x) (which vary over distances that are large compared with 
the radius of the correlation of the scattering centers); however, in view 
of the smoothing influence of the functional Ao ~ we can confine our­
selves only to such functions. 

6>If the volume of the crystal cell b3 does not coincide with the 
volume of the interaction a3, then 
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function space. Therefore the first term in (2.9) is de­
termined by the maximum value of S on the hypersur­
face ~{~} = E in function space, and the second by the 
absolute maximum of the same expression. 

Fo(E) =max S {S} l•.m=E- max S {!;}. 

The second term obviously vanishes and therefore 

Fo(E) = maxS{!;} l••l<l=E = S{~}, (2.10) 

where [ is the sought-for extremal. 
The conditional extremum (2.10) is determined from 

the vanishing of the variation of the functional S + {3A0: 

6{S {6} + P"-o <m = (2.11) 

(f3 is an undetermined multiplier). 
The variation oS is, in accord with (2.6), 

present this dependence for the already discussed cases 
(2. 7) and (2.8): 

1) o = - cln ~, ± z2 = ln co + S, 
e co 

- { co ( e'' - 1), Vo < 0 !;= . 
co(e-•'-1), Vo > 0 

(2.18) 

2) o= -clnc-(1-c)ln(1-c), 

r 1- C Co J _ 
±z2 =lnl-- -1-- , co+·s=-,--, 

c -co eV±' + 1 
(2.19) 

e-v ='co/ (1- co). 

The functions z (x) and [(x) obtained from (2.17) 
yield, respectively, the wavefunction corresponding to 
the fluctuation level f: and the distribution of the con­
centration in the region of the fluctuation responsible 
for this level. 

After obtaining these functions, we get for the sought 
(2.12) spectral density, in accord with (2.10), the expression 1 l' 6S{£} = --.1 [o'(c0 + 6)- o'(co)]6!;d"x. a'. 

To determine the variation OA0 of the first eigen­
value A0 = ~ { ~ } of the equation 

A'i'o + (A.o- covo- vo6(x)}'l'o = 0 (2.13) 

it is sufficient to note that the variation o ~ leads to the 
appearance of a perturbing potential oU = v0 o~ in (2.13). 
Therefore, if 1/J0 is the eigenfunction of the ground state 
(2.13), then the variation liA0 will be 

6/..o _ (1\lo,66·'1lo) 
- Vo ll1\loll 2 

(/,g)= StKd'x, 11/11 2= (/,f)= ) fd'x. 
(2.14) 

Thus, from (2.11), (2.12), and (2.14) we have for the 
extremal function [ 

( o' (co+~)- o' (co)+ pvoa• 11!:~l 2 , 66) = 0, 

or 

- ¢2 
o'(co + s)- o'(co) =- PPoa3 11'1':112. (2.15) 

On the other hand, 1/Jo itself satisfies (2.13); finally, 
the undetermined multiplier f3 is determined by the con­
dition ~{~}=E. 

The parameter f3 can be immediately excluded by 
introducing in lieu of 1fJ0 (x) the quantity proportional to 
it: 

(2.16) 

and including the condition A0 = E in (2.13). 
If furthermore we go over in (2.13) to the dimension­

less coordinates x' = x .JTV;;I = J.yc (we shall henceforth 
omit the prime of x'), then we obtain finally a nonlinear 
differential equation for z (or [}: 

Az+[e-JWz=O, 

o' (co+ fl- o'(co) == z2 sgn vo, 
E- VoCo 

e=~ (2.17) 

with the natural boundary condition 

zlx~~ = Ilx~ = o. 
As follows from (2.17), the concrete connection be­

tween f and z is determined by the entropy a(c). We 

lnv(E)= S{[} = _1_g( E- covo \, 
(ako) 3 JvoJ } 

g(e)= ~ {o(co+fJ-o(co)-lo'(c0)]d3x, l=[(x,e). 
(2.20) 

If the potentials Vj cannot overlap greatly, that is, 
the maximum admissible concentration of the centers 
Cmax ~ 1, then the maximum possible value If: I ~ 1. In 
particular, for the "lattice gas" (2.8) we have 

co<6<1-co, JeJ< {1-co, 
Co 

vo<O 
vo>O 

Inasmuch as (2.17) contains only the parameters c0 

and f:, we have g(f:) ~ 1 when f: ~ c0 ~ 1, and conse­
quently 

1 1 
lnv(E) ~ -- ~ -. 

(ako) 3 J 

As will be shown in Sec. 4, at sufficiently small f: it 
turns out, for the extremal fluctuation, that f « c0 • In 
this case, the functional S{d in (2.6) takes on near the 
extremal the form 

S {6} = o" (Co) s s2d3X. 
2(ak0) 3 

Equations (2.17) are suitably simplified 

~~~(co)= ±z2, 
Az + ez- z3/o"(co) = 0. 

Finally, (2.20) yields 

g(e)=--f-5 z4d3x. 
2o"(co) 

(2.21) 

(2.22) 

(2.24) 

Taking into account the natural spherical symmetry 
of the extremal fluctuation and choosing its center at 
the origin, we can put z = z(r). Then assuming 

z2 =eo"(co)cp2 (ar), e=-a2 (eo"(co)>O), (2.25) 

we obtain for cp an equation without parameters 

which can be solved numerically. From (2.24) and 
(2.25) we have 

ao"(co) r 
g(e)= g(-a2)= --2- J cp•(p)4:n:p2dp. 

0 

(2.26) 

(2.27) 
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From this we get, for sufficiently small c., 
a"(co) -

ln v(E) = 2 (ako)' l' I e I'Jl,, 

00 

"'' = 4n ~ 'Jl'(p)p2dp. 
0 

(2.28) 

The case c. ;:::, 1 will be considered in the following 
sections. 

In the opposite limiting case, if the potentials can 
strongly overlap, and if the extremal fluctuations [ 
are realized in a volume ~a 3 ( [ » 1), the form of the 
general equations (2.17) becomes somewhat complicated. 
Indeed, it is necessary to take (2.3) in lieu of the initial. 
equation (2.4) or (2.13). Upon varying 6.\.0 {~} we obtain 

(2.29) 

and the equation for the extremal of [ assumes in lieu 
of (2.15) the form 

(2.30) 

After going over to the function z in accord with (2.16), 
and changing over to the variable x' = kox in analogy 
with (2.17), we obtain jointly with (2.3) (if v0 < 0) 

L\z + (e- ef)z = 0, a' (co+~)- a' (co)= -ez'. (2.31) 

3. FLUCTUATION LEVELS IN THE ONE­
DIMENSIONAL CASE 

In the one-dimensional case it is easy to obtain close 
formulas for all the quantities of interest to us: the 
wave functions corresponding to the fluctuation levels, 
the forms of the corresponding concentration fluctua­
tions, and the spectral density. 

The initial equation (2.17) for z takes the form 

d'z/dx2 -(a2 -1)z=0, e=-a' (vo<O). (3.1} 

Recognizing that the fluctuation is symmetrical and 
choosing its center at the origin, we obtain the bound­
ary conditions 

zlx->oo = 0. z'lr=oo = 0. (3.2) 

The first of these conditions can be written in the 
form 

z'i~=o. (3.3) 

The first integral of (3.1) under condition (3.3) takes 
the form 

z'' = 2 ~ (a'- ~)zdz, z' =a' (co+§")- a' (co), (3.4) 

whence 

z '] 'I dx=[ 2~ (a2 -~)zdz -,dz, 
0 . 

2zdz =a" (co+ 1Jd£. (3. 5) 

The wave function z(x) is determined by the equa­
tion 

x=~fd (a'-~)zdz]-'f,az. (3.6) 
o L o 

The form of the concentration fluctuation is given by 
the equation 

. - - . 
X=} a"(co+S)d£{} a"(co+~)[a2 -~]d~r/', (3.7) 

o 2z(£) o 

and finally, for the logarithm of the spectral density 
we have 

In v(E) = g(e) / ako, e = ( E - covo) / I Vo I , 

g(e)= 2 r [ a(co+§)- a( co)- ~a'(co)] dx 
0 

= 2 r [a(co + [)- a(co)- ~a'(coll[ 2} (a2 -1)zdz rf, dz. 
0 0 

Here z0 is the first positive root of the equation 

r[a'-[(z)]zdz=O. 
0 

(3.8) 

We write out the obtained formulas in explicit form 
for the simplest case of an "ideal gas" of scattering 
centers. Here 

l=co(e''-1), 

a(co +[)-a (c0)- [a' (co)= c In~- (c- co) 
e 

= co[e''(z2 -1)+ 1]. 

Therefore, according to (3.6) and (3.8), we obtain for 
the wave function z(x) 

z dz 

x =' ~ z (a'- c0 (e''- 1- z')/z'l'1' 
0 

and for the spectral density 

co''r (e''(z2 -1)+ 1]dz 
Inv(E)= a; {Ez2 - Covo(e''-1]}'/, . 

(3.9) 

(3 .10) 

In the one-dimensional case, in the absence of corre­
lation and when v(x) = Ao(x), there exists an exact solu­
tion of the problemE3 l of the spectral density v(E). 
This solution, however, does not yield any information 
on the character of the wave functions and, most im­
portantly, it cannot be generalized to the case of a large 
number of dimensions. The obtained expression (3.10) 
for the argument of the exponent ln v (E) coincides with 
this exact solution and we shall therefore not stop to 
investigate it. 

4. FLUCTUATION LEVELS IN THE THREE­
DIMENSIONAL CASE 

It is natural to assume that the extremal fluctuation 
is spherically symmetrical. Then the initial equation 
(2.17) takes the form 

1 Q I QZ) ' - - -
---;;-- r'- -(a'-IWz=O, s=s(z), zl,._,.oo=O, a'"=lel, 
r· ar ar 

or, putting z = x/r, 
(4.1) 

x"(r}-(a'-111Jx=O, 1=1(x/r), x(O)=x(oo)=O. (4.2) 

Equation (4.2) cannot be integrated in quadratures and 
can be solved only approximately. Since the function 
[(z) is as a rule monotonic, a convenient method for its 
solution is, say, the subdivision of the region of varia­
tion of [(z) into several intervals and replacing [(z) in 
each of these intervals by a constant value ~k· Here, 
naturally, the first value ~0 determines the maximum 
depth of the potential well, and the last value ~n = 0. 
The values of ~k and the points rk corresponding to 
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the jumps t:. ~k = ~k+ 1 - ~k should be determined by 
solving the corresponding variational problem. 

Qualitatively good results are obtained already for 
n = 1 and n = 2; an approximation of the exact solution 
can be obtained not only by increasing n, but also by 
an iteration method, in which each succeeding approxi­
mation Xk + 1 (r) is obtained from the preceding one 
Xk(r) (r = rk(x)) 

x" (r)- l a•-1(-X-)] X= 0, X= X•+t· (4.3) 
L r,(x) 

Since it is not our aim in the present article to de­
velop such approximate methods, we present only the 
simplest calculation with n = 1. This case corresponds 
in (4.2) to a potential well of constant depth I ~ 0 I and of 
radius R 

l~l={l~l=f-12, r<R, 
0, r>R 

(4.4) 

where the self-consistent quantities ~0 and R are to 
be determined from the extremal conditions. 

Joining together the solution x =A sin Kr, r < R 
and x =Be-ar, r > R, K2 + a 2 = 11-2 = I ~0 1, we obtain the 
first condition relating R, ~0 , and £ (or R, 11-, and a): 

tg(n- xR) = x/a, n/2 < xR < n. 

Putting 

a I e I'" --;;:= ~ =cos {I, 

we get 

tg(n- 1-1R sin {I)= tg{i, 0 < n- ~sin {I< n/2, 

whence 

(4.5) 

for a/11- « 1 we get~- rr/2 and R -"IT/2!1-; for K/IJ. 
« 1 we get ~ - 0 and R - rr / K. 

The fluctuation of the entropy S as a function of ~0 
and R is of the form 

1 4n 
S= ---R3s(c co) 

( k ) 3 3 , , 
a o (4 6) 

s(c, c0) = cr(c)- cr(co)- (c- co)cr'(co), c- co= so= ±f-12. · 

For the limiting concentrations c = 0 and c = cg we 
get 

cr(O) = cr(cg) = 0, 

and for sufficiently small c we get a(c) = -c ln c. 
Finally, for small c - c0 = ~0 « c0 we have 

~2 " J..t" If s=-zcr (co}=--zcr (co), 

whence, according to (4.5) and (4.7) 

(4.7) 

4 n (n-{1)3 4 n (n-{1)' ( ) S=---!-1 -- cr"(c0)=---acr"(c0) ., 4.8 3 (ak0) 3 sin-fr 3 (ako) 3 cos{isin3 {i 

To obtain in v(E) = max S it is necessary to obtain 
the extremum of S as a function of R and ~0, subject 
to condition (4.5) and for fixed c = -a 2• We present the 
results of these calculations in some of the simplest 
cases. 

1. v0 > 0. In this case the true boundary of the spec­
trum coincides with the initial boundary E = 0. Then 

for the levels close to this boundary, E « c0v0 (c + c0 

« c0 ), we get from (4.6) and (4.4) 

R ::=::~ n(e + co)-'1• = nivo/E, 
(ako) 3 ln v(E) = 4/a n'"(vo/ E) 'l•[coa' (co)- cr (co)] ( 4. 9) 

= 4/an'l,le + col-'l•[cocr'(co)- cr(co)]. 

This formula coincides with that obtained earlier in [1 J 

and is asymptotically correct, since the exact form of 
the potential well [(z(r)) is rectangular when E-Eg. 

For levels close to the renormalized boundary (I c I 
« c0 ) we have in accordance with (4.5) and (4.8), mini­
mizing S with respect to ~ with a = -IT£T fixed, 

R -lei-'"· ls·l-lei, (4.10) 
(ako)'lnv(E)=ycr"(co)lel'h, y-1. 

Since we get lc I « c0 when I ~ 0 I~ lc I« c0 , the ex­
act solution of ( 4.1) simplifies greatly and, as was 
shown above, leads to (2.23), (2.26), and (2.28). 

Thus, the exact value of the numerical constant y in 
(4.10)is 

(4.11) 

2. v0 < 0. In this case the position of the true bound­
ary of the spectrum is determined by the permissible 
overlap of the potentials Vj· 

If there is no correlation (ideal gas of scattering 
centers) and arbitrary overlap is permissible, then the 
true boundary is located at - oo. 

Then, as can be readily verified, there is no solution 
of the extremal problem formulated above, within the 
framework of equation (4.1). Indeed, putting ~ 0 » 1, and 
consequently c0 , I£ I « c (c = c0 + ~0 ~ ~0) we obtain, in 
accord with (4.5) and (4.6), 

R=~c-'1• a , 

-S= 4nR' cln_.!:_= __ n'_ln(c.::_co) (1+o(Y~\).(4.12) 
3(ako) 3 co 6(ako} 3 l'c \ c ) 

The minimum of this expression is equal to zero and is 
attained at c - oo and R - 0. This means that the level 
£ is realized not on the fluctuations of the macroscopic 
volume (R » ako), but at the maximum overlap of the 
centers, which corresponds to R ~ ako and c = ~ 0 
~ (ako)- 2 ; consequently, in accord with (4.6), 

(ako)'lnv(E) = y,akoln[co(ako) 2](1 + O(akol'Tell. (4.13) 
Yt- 1, l~l<c- (ako)-2. 

The exact solution of the problem is described in this 
case by (2.23). 

On the other hand, for levels that are sufficiently 
close to the renormalized boundary (I c I « c0 ) there 
exists, as in the case v0 > 0, a solution of the extremal 
problem corresponding to fluctuations in a large volume 
and described by formula (2.28) or (4.10) 

vlel'{, 
g(e, co)= (ako) 3 lnv(E) =---, 

co 
cr"(co)= _ __!___ (4.14) 

co 

The true solution is (asymptotically with respect to 
(ako)3 ) the smaller of the two values of lln v(E) I given 
by (4.13) and (4.14). Thus, 

{ - vlel''•/co, 
(ako) 3 lnv(E)= k 1 ( k )2 - Via o n co a o , 

I el < e,(co), 

lei> e,(co), (4.15) 
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If large overlaps of the potentials Vj are not admis­
sible and there exists a maximum concentration cg 
(a(cg) = 0) corresponding to the true boundary of the 
spectrum Eg = cgv0 , then solution (4.13) cannot be re­
alized for sufficiently small (ak</. Then, in accordance 
with the general formula (2.20), g(£, c0 ) = (aka)3 ln v (E) 
does not contain aka at any energy £ up to the true 
boundary Eg. Near this boundary, in analogy with (4.9),. 
we get 

4 'I 'I g(e,co)= -311 •y- •s(cg,Co), y<s(cg,co), (4.16) 

y = (E- Eg)/ I vo I= e + Cg- co, s(cg, co)= -cr(co) -(c1 - c0)cr'(c0). 

At small concentrations c0 « 1 (a" (c0 ) = -1/c0 ) we 
can obtain for g(£, c0 ) an asymptotically exact expres­
sion in the entire region of energies £. 7> Recognizing 
that near the limiting concentration cg the entropy is 
a( c) ~ - (c - cg) ln (c - cg), and Is (cg, c0 ) I = I Cg ln c0 I 
» 1, we obtain, finding the extremum of the expression 
S = R3 (c, £) s(c, c0 ) with cg- c « cg, 

R = y-'1· (n-arc sin v~ ). c = Cg- exp{ 3cg In co(!;;gR ) } ~ Cg, 

g(e, co)=~ ny-'h( n-arc sin f c: )"cgln co, Y<l Cg!n col. 

Together with the solution (4.14) obtained earlier in 
the region of low energies I£ I « c0 , we get 

g(e,c)= -vlel'l•/c = g,, lel<c, 

4 , ( . ,;-y). g(e, c)= -ny-h :n:- arc sm V- cg Inc= gn, 
3 Cg (4.17) 

y = e+cg-c<cglnc. 

As seen from (4.17), the regions of existence of so­
lutions (I) and (II) overlap when c is sufficiently small. 
Therefore the functions gi(£, c) and gn(£, c) represent 
two different branches of a solution of the extremal 
problem. As before, the true extremum for each £ and 
c is given by the smaller of the quantities I gi I or I gnl 
and thus g = gi when I£ I < £k(c) and g = gil when I£ I 
> £k(c), where 

(4.18) 

The result shows that a line of singularities £ 
= £k(c) appears in the function g(£, c) at sufficiently small 
concentrations c (in analogy with the case of (4.15)). 
This line is located (for small c) in the vicinity of the 
renormalized boundary Ec and separates the states 
generated by the weak "long-wave" fluctuations of con­
centration from the states corresponding to the local 
fluctuations of the large concentration. A similar situ­
ation should apparently exist also when aka~ 1; in this 
case the local fluctuations of the concentration for the 
levels 1£ I< £k reduce to "collisions" of a rather 
small number of scatterers -possibly two or three, 
which in themselves generate local levels near the re­
normalized boundary (see [lJ ). 

In conclusion we return to the question of the limits 
of applicability of the obtained results. 

Replacement of the initial macroscopic equation 

7>When lin c0 I ~ I, as can be verified from (2.19), the true form of 
the potential well coincides with ( 4.4 ). 

(1.1) by the macroscopic equation (2.4) confirms the 
correctness of the results, as seen from the derivation 
of (2.5) and (2.10), and finally verifies the final formu­
la (2.30), provided the following requirements are met: 

(ako)"<1, llnv(E)I?>L 

Therefore it might seem from the exact formula (4.14) 
that the formulated macroscopic theory of fluctuation 
levels is valid for all energies £ = (E- Ec)/lv0 1 to the 
left of the renormalized boundary, satisfying the in­
equality 

I e I '1• ?>(ako) 3/ycr" (co). 

However, it is possible that the formula (4.14) is vio­
lated somewhat earlier, owing to the fact that no ac­
count is taken in it of the actually existing smearing of 
the level .\0 {~}, which is specified by the macroscopic 
density n(x) = (c0 + ~(x))/a3 and vanishes on going to the 
macroscopic equation (2.13). Microscopic displace­
ments of the centers are equivalent to addition of a field 
of random "dipoles" 

bU= .~·[v(x- x;)- v(x- x;- bx;)] 
I 

and leads to a shift and smearing of the macroscopic 
level .\0{~ }. The shifts of the levels .\0{~} reduce to an 
inessential refinement of the renormalized boundary 
Ec, but the smearing of these levels at sufficiently low 
£ = E- Ec/lv0 1 becomes appreciable and limits the 
possibility of approaching the point £ = 0 in the formu­
las for the probability p0 (E). 

For the same reason, within the framework of the 
macroscopic approximation, calculation of the factor in 
front of the exponential in v(E) far from the renormal­
ized boundary Ec (at £ ~ 1) is of no interest. Such a 
factor is the result of integration of (2. 9) over the mac­
roscopic fl~tuations in the vicinity of the point of the 
extremum ~. and the addition that it makes to F(E) 
= ln v(E) corresponds, when £ ~ 1, to a shift of the 
level £ by an amount 1>£ ~ (ako)3 ln ak0 ; such a shift 
turns out to be, generally speaking, smaller than the 
shift of this level due to macroscopic fluctuations of 
the density. 

However, the pre-exponential factor in the macro­
scopic approximation (2.5) gives apparently the correct 
value in the most interesting region near the renormal­
ized boundary. On the other hand, in the direct vicinity 
of the boundary, and all the more in the region of 
smearing of this boundary, the probability p0 (E), for 
which formulas (2.5), (2.9), etc. have been written out, 
no longer coincides with the spectral density v(E). On 
approaching Ec, the overwhelming contribution to v(E) 
is made already not by the states corresponding to the 
lower level at the given fluctuation, but by the higher 
levels. Such levels lose their fluctuation character in 
the smearing region, although they still do not corre­
spond to states of the plane-wave type, since they are 
damped at distances smaller than the wavelength. 

Nonetheless, the problem of the exact calculation of 
the probability p0 (E) in the macroscopic approximation 
with the aid of formula (2.9) is of independent interest, 
and it is therefore meaningful to obtain the pre -expo­
nential factor in this expression. The calculation of this 
factor is given in the Appendix. 
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APPENDIX 

CALCULATION OF THE PRE-EXPONENTIAL 
FACTOR 

According to (2.9), we can write 

[ 
~exp{S+ ~[f.o{£}-Eo]}li(f.o{'S}-E)D£ ] 

F(E)=Inp0 (E)=In . 

) e8D£ 
(A.1) 

In the zeroth approximation, (2.10) takes the form 

Fo(E) = S ~}. f.o {~ =E. 

Hence 

F(E)-Fo(E) 

= In[ ) exp {S {s} - S {~} + p {f.o {S} - t.o{f} ]}li (f.o{S} -t.o{f} )Ds j 
~ eBD£ 

(A.2) 
where {3, as before, is such that the extremum of the 
functional S + {31t0 satisfies the condition !t0{ [} = E. 

Near the renormalized boundary, when ~ « c0 , the 
functional S is given by the formula (2.21) 

S= -A(s,'S), A= -cr"(co)/2a3• (A.3) 

Putting in the numerator of (A.2) ~ = f + TJ and cal­
culating !t0{[ + TJ}- !t0 {[} by perturbation theory, ac­
curate to terms of second order, we have 

f.o~+'IJ}-f.o{~}=('IJ,q)+('l],Q'l]). (A.4) 

Here q(x) = v0 1/J~ (x) 111/10 11-2, and the kernel Q(x, y) of 

the operator Q is 

Q(x, y) = vo"'Po(x)'\jlo(Y)G(x, y; E), G(x, y, E)= ~· 'ljl.(x)'\jlk(Y) , A. 5) 
k E- covo- k2 

where G(x, y; E) has the meaning of the Green's func­
tion of the equation 

~ljl + (E- covo- Ivo)ljl = 0 

from which the pole term 1/J0 (x) 1/J0 (y)/(E - lt0 ) is sub­
tracted ( A0 = E). 

Thus 

F(E)-Fo(E)= In [ s exp{-A('lJ,'lJl+ fl('lJ,Q'lJ)}Ii((q,'lJ))D'lJ]. 

~ e-A(", "JD'l] 

(A.6) 
If T/o is the projection of 11 on the vector q (( TJ, q) 
= TJollqll), Q'-projection of the operator Q on the sub­
space T/o = 0 (hyperplane in functional space TJ ), and 
DTJ'-volume element in the subspace T/o = 0 (DTJ 
= d1)0 • DTJ'), then 

F(E)-Fo(E)= 

=In [ ~e-A",'Ii('l]o)d'l]o~ exp{-A('lJ','lJ')+fl('lJ',Q''lJ')}D'l]' 1 
llqll ~ e-A"o'd'l]o ~ e-A("'·"'JD'l]' 

= In l' A_ -_!_SpIn ( 1 + l_ Q') . (A. 7) 
llqlll'n 2 A 

From (2.16) follows an expression for {3: 

(A.8) 

Inasmuch, according to (2.25), 1/10 ~z ~cp(rv'Ec- E) 
the role of the coordinate r in (2.25) is assumed by the 
dimensionless quantity kor), it follows that 

'1'2 
II z 11 2 = ecr" (co) IE_ Ec I''• 

<jl2<J" (Co) 

I el '" ko3 ' 

Thus, 
~ 

R = _ cr"(co) 1 1 '/ mn = (' mn(p) ·4np'dp, 
P vo(ako)3 q>2 8 - 2

' -r J ..... 

fl i A = 2<p,J e J-'f, I voko3• 

Similarly, we get 

llqll = lvolko'~>Jel'1•l'<p,j<p,2 

and for the first term in (A. 7) 

[ A ]''• [-cr"(co)'P22 J'/o lel--'1• 
n II q 11 2 = 2n(ako) 3 <p4 ~· 

(A.9) 

(A.10) 

(A.ll) 

(A.12) 

The form of the kernel of the operator Q ensures con­
vergence of the term Sp ln (1 + {3A - 1 Q') and the rela­
tive smallness of its contribution compared with F0 (E) 
(not too close to Ec). However, a more detailed analy­
sis of this kernel is beyond the scope of the present ar­
ticle. 
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