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Various approximations encountered in the calculations of the mean wave field strength in a 
medium with random inhomogeneities are considered by a general method of expansion into 
correlation groups. Higher correlations of the random characteristics of the medium, or 
correlations of the positions of random scatterers, are taken into account. The conditions 
of applicability of the approximations employed are found. 

1. INTRODUCTION 

THERE are many problems connected with the 
propagation of waves in media having random in­
homogeneities. These include: the behavior of an 
electron in a disordered condensed body; particu­
larly in a crystal with random impurities[t-4]; 
acoustic[5-GJ and electromagnetic waves[7-sJ in a 
medium with a fluctuating refractive index; ioniza­
tion losses in an inhomogeneous medium [1oJ; effec­
tive dielectric constant of randomly inhomogeneous 
dielectrics[11 •12J and in general the dielectric con­
stant of a continuous medium[13 ]; elastic properties 
of polycrystals[14J; molecular diffusion in a turbu­
lent medium [SJ, etc. Also related is the theory of 
multiple scattering of waves[15 J with its numerous 
applications. 

We confine ourselves henceforth to the case of a 
scalar wave field, using for this purpose the Schro­
dinger equation for the Green's function G: 

(dx +E- V(x) )G(x, y) = 6(x- y), (1) 

describing a particle having an energy E and a 
mass m (n 2/2m = 1), placed in a random external 
field V(x). Such a description can be applied di­
rectly (disregarding spin) to an electron in a crys­
tal with random impurities under conditions where 
the single-band approximation is valid[2-4J. Not 
being interested here in boundary effects, we shall 
regard the field V(x) as statistically homogeneous 
and isotropic. 

In most investigations, one of two possible very 
simple assumptions is made regarding the random 
field V(x): it is either regarded as normally distri­
buted[a-aJ, or it is assumed that the potential V is 
produced by independent scattering centers[2•15 J. 
Under these assumptions it is possible, by using 
the diagram-summation method developed in quan­
tum electrodynamics, to obtain an approximate 
solution of the problem and to estimate the region 

of its applicability. It is of interest to ascertain 
what changes are introduced in the available re­
sults by allowance for the deviation of the distribu­
tion of the field V(x) from the Gaussian law, or by 
allowance for the correlations between the positions 
of the scatterers. The attempts hitherto attempted 
to take into account, within the framework of the 
diagram technique, the higher correlations of the 
field v[18•17] are more tentative than systematic. 
In this paper we consider this question in the limit­
ing cases of large and small wavelengths. 

The approximations constructed assuming a 
normal distribution of the potential V or of the 
potential of the independent scatterers can be 
generalized, and it is possible to get rid of the 
already mentioned assumption both in the formal 
expressions and in the conditions for their appli­
cability. 

2. PERTURBATION THEORY FOR THE AVERAGE 
GREEN'S FUNCTIONS AND GROUP EXPAN­
SIONS 

Physical interest attaches not to the functional 
dependence of the solution G(V) of Eq. (1) on the 
field V(x) in itself, which naturally cannot be ob­
tained in general form, but to the first and second 
moments of the Green's function: 

;§ (x,x') = (G(x,x')), 
W'(x,x'; y, y') = (W(x, x'; y, y')). 

(2) 

The brackets ( ... ) denote here averaging over the 
ensemble of random potentials V(x), W(x, x'; y, y') 
= G(x, x') G(y, y') = G ® U-direct product of the 
operators G and G, and the bar over G(y, y') indi­
cates complex conjugation. A statistical approach 
of this kind is at present universally accepted. 

The usual procedure consists in the follow­
ing[4•5• 7 • 18]. We construct by iteration a retarded 
solution of Eq. (1) in the form of a (Born) perturba­
tion-theory series: 
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G = Go+ Go VGo + Go VG0 VGo + ... 
We use here symbolic operator notation, and 

1 eiholf-YI 
Go(x-y)= ---,----

4n jx-yj 

(3) 

( 4) 

is the Green's function of equation (1) for V = 0 and 
ko = ft + iO. We further average the series (3) or 
its product by the complex-conjugate series and 
obtain an expression for f§ and W_ in terms of the 
moments (V(x1) ... V(x8)) of the random field V(x). 
For what follows, it is convenient to express these 
moments in terms of the correlation functions 
k 8 (Xt, ... , x 8) using the group-expansion formu-
las [16, 18 J 

(V(xt)• .. V(x.)> = ~ ~ k.,(ft) ... ks" (fv). (S) 
v dlv 

The summation in ( 4) is over all the breakdowns 
of the points X1, ... , Xg into groups r 1, ... , r v· We 
assume that the values of the field V at the points 
x and y become independent .if lx- yj ~ l (Z-charac­
teristic correlation scale). In this case 
k 8 (x1, ... , x 8 ) - 0 when lxi- x01 ~ l. This property 
facilitates the analysis of the approximations as a 
function of G, to the construction of which we shall 
proceed later. 

We have thus .Cf} and W in the form of series in 
the correlation functions k 8 . The terms of these 
series can be represented by diagrams[tsJ of the 
type of Fig. 1, on which the segments of the lower 
and ~per horizontal lines denote the functions Go 
and G0, respectively, and points that enter in the 
same correlation function k8 are unified into 
groups. 

The series that result can be regarded as series 
in powers of a certain parameter 'Y, numerically 
equal to unity, if we ascribe to each function k8 a 
factory. Then the power of y will indicate the 
number of correlation groups in the given term of 
the expansion. 

The sum of the irreducible diagrams 1> of the 
series for f9 and W1without the extreme lines forms 
the so called mass operator M and intensity opera­
tor K[1sJ, which determines f§ and Win terms of 
the Dyson equations 

Yi =Go+ GoMf§, (6) 

and of the Bethe-Salpeter equations 

91!= ;g ® !9 +(:9 ® T§)KW (7) 

1) A diagram is called irreducible if, after discarding the 
extreme segments of the propagation lines, it cannot be cut up 
into two parts without cutting at the same time the lines rep­
resenting the functions k8 • In Fig. 1 the diagrams a and c are 
reducible, while b and d are irreducible. 

a 

c d 

FIG. 1. 

(the names are borrowed from quantum electro­
dynamics). Analogous constructions were made 
in[5•7•8J for the normal potential V(x), when k3 = k4 

= •.. = 0. 
If the potential V(x) is produced by individual 

scatterers located at random points Xi and having a 
self-field Ui(x) = U(x- xj), then 

V(x) =] U;(x). (8) 

i 

In this case, besides the general description with 
the aid of the correlation functions k8 , there is 
also another possible and more adequate descrip­
tion with the aid of the functions g8 (x1, ... , x 8 ) [17, 18], 
which characterize the correlation of the position 
of the scatterers. 

Let us expand the Green's function Gin a series 
in the scattering multiplicity[19, 15 J 

G =Go+ Go[] T;, + ~ .~ T;,G0T;, 
it it i2=Fit 

+ ~ ~ ~ T;,GoT;,GoT;, + ... ]Go. 
it i2=Fi1 ia=l=i2 

(9) 

In th:s formula T i is the operator of scattering by 
the i-th isolated scatterer, which is determined by 
the equation 

T= V+ VGoT (10) 

with V = Ui. The averaging necessary for the cal­
culation of f9 and W' reduces now to the calculation 
of the mean values of expressions of the form 

I 

~ <D(x1 , ••• ,x,), 

which are equal to 

(~' ~(xt, ... ,x,) /=) d3x1 •• ~) d3x.f.(x1 , ••• , 

ll,. .. ,t, 

x,) <D, (x1 , ••• , x.)'. (11) 

where none of the points in the sum ~' coincide, 
and the function <I> is symmetrical. We denote by 
f8 (x1, ... , x 8 ) the distribution function of the centers 
of the scatterers, which is connected with the 
probability dw of observing one scatterer in each 
of the volume elements d3x1 .... , d3x8 , by means of 
the relations [ 18 J 
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dw = [f(x1 , ••• ,x,)+ O(d3x)]d3x1 ••• dax,. 

The functions fs are expressed in terms of gs in 
the same manner as the moment functions are ex­
pressed in terms of the correlation functions. 
Namelyf17 • 18 ], 

f,(xt, ... ,x,)= ,~ ~g,,(ft) ... g,"(fv). (12) 
v dlv 

Once the operators;§, WJ, M, and K for a med­
ium made up of random scatterers have been ex­
pressed as series in the correlation function gs,2> , 
it becomes possible to introduce into this expansion 
the parameter y, which is assigned as a factor to 
each of the functions g1• The power of any term of 
the expansion will then be equal to the number of 
the correlation groups of these scatterers. We have 
already used such a device above, introducing a 
parameter (which we also denoted y) into the ex­
pansion in the correlation functions of the potential 
ks· Consequently, in the case (8) we have two ex­
pansions in powers of y: one of them has been ob­
tained with the aid of ks and the other with the aid 
of gs. We shall show that these expansions coin­
cide. To this end, we turn to the formulas relating 
ks with gs. These formulas can be found in[tBJ. It 
follows from them that the ks are linear in the gs. 
Consequently, in the case of (8) both methods of 
introducing the parameter y are equivalent. 

Thus, we have formal expansions of ;f) W M 
and K in terms of the number of correlat~on 'gr;ups, 
that is, in powers of y and in case (8) we have two 
variants of the expansion, one of which uses the 
correlation functions of the potential and the other 
the correlation functions of the scatterer distribu­
tion. We shall obtain further approximations of the 
Green's function 'W, based on the first term of the 
group expansion of the mass operator M1• We shall 
not consider here the average double Green's func­
tion. We note also that the approximation of "lf! in 
which the first term of the group expansion of the 
intensity operator K1 is used turns out to be useful 
in the derivation of a radiation-transport equation 
in which account is taken of the scatterer correla­
tion. 

To conclude this section, we present expressions 
for Mt and K1. In the general case these will be 
series inks, represented by the diagrams of Figs. 
2 and 3. The mean value (V) = k1 is best excluded 
by lumping it in the energy and thus replacing E by 
E - ( V) (in particular, in the function G0 [Eq. ( 3)] 
kij is now equal to E - ( V )) . We shall therefore not 
assume henceforth that k 1 = 0. In the case (8), in 

2)For independent scatterers this was done in [15]. 

FIG. 2. 

FIG. 3. 

addition, we can express M1 and K1 in the form of 
series in the functions gs, which recall the group 
integrals introduced by Mayer in statistical phys­
ics[2oJ 

These expressions can be obtained by carrying 
out the group expansion not only in the distribution 
function fs but also during an earlier stagr directly 
in the operators G({xi}) and G({xi}) ® G( Xi}) 
which are to be averaged and which depend on the 
positions of the scatterers. We use to this purpose 
a procedure proposed in[t!J (see also[21 J), and 
represent G({ xi}) (the procedure is similar for 
G ® G) in the form 

00 

(13) 
V=f subgrv 

where denotes summation over all possible 
subgr v 

subgroups of v points from among the points {xi} . 
After writing down formulas (13) for the cases when 
the system of scatterers contains 1, 2, 3, ... , cen­
ters, we can obtain their inversion 

Gvgr(xt; ... ,xv)= G(xf, ... ,xv)- ~ G(xi,, •.. ,x,"_1) 

subgr(v-1) 

+ ·~ G(x(., ... ,x,v-2)- ... +(-1)"Go. (14) 
subgr(v-2) 

The averaging of (13) and of the corresponding 
representation for W with the aid of (11) leads to 
the formulas 

00 1 
;I)= ~~ j d3x1 • .. ) d3x,G,gr(x1 , ... ,x,)f,(x1 , ... ,x,), 

s=O 

00 1 
6JJJ' = ~- j d3Xt ••• j d3x, W$gr(X1, ... , x,)j,(Xt, ... , X1). 

sf •=0 
It remains to substitute here expression ( 12) for 
the distribution functions fs in terms of the corre­
lation gs, and to calculate the operators M and K in 
the approximation linear in gs. To this end it is 
convenient to use expressions (6) and (7) in the 
form 

M = Go~t- ;1)-1, 

K = ( ;g ® §)-1 ~ "lf!-1, 
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The calculations yield finally 

M1 = ~ ~ I d3x1 ••• ~ d3x 8 g, (xt,, .. , x8 ) T8gr (x1, ... , x,), 
s!J 

•=1 

(15) 
X [T,(xt, ... ,x8 )® T,(x1, ... x,)]gr. 

Here T 8 (x1, ... , x 8) is the operator for scattering 
by the complex of s scatterers situated at the 
points x 1, ... , x 8 , and is defined by (10) with 

s 
V = L: Ui. The symbol gr denotes the results of 

i= 1 
using the subtraction procedure provided for by 
formula (14), which results in exclusion of the ef­
fects of scattering by all subgroups containing only 
a part of the scatterers. If different scatterers are 
independent, then g2 = g3 = ... = 0, g1 = n (scatterer 
concentration), and formulas ( 15) go over into the 
approximation used in [t5] and earlier in [22 ] for the 
model of pointlike scatterers. 

3. AVERAGE GREEN'S FUNCTION IN THE CASE 
OF SMALL-SCALE INHOMOGENEITIES 

We denote by ;9(M) the average Green's function 
defined by the operator M through expression ( 6). 
We wish to ascertain here under what conditions 
:9(M1) will differ little from :9( M). To this end we 
go over to a Fourier representation in which the 
operator :9 is diagonal by virtue of the assumed 
statistical homogeneity. Solving Dyson's equation 
(6), we get 

1 
;§ (piM1) = ko2- pz- M1(P) 

= ~ e-ip(x-x');§ (x-x'IM1)d3x, 

;§ I 1 - ;§ ( IM) (p M) = ko2 - p2 - M (P) - p 1 

X [ 1 _ M(p)-M1(P) J-l 
. k02 -p2 -Mt(P) . 

(16) 

It is therefore clear that replacement of M(p) by 
M1(p) leads to an approximation of the Green's func­
tion ;§which is uniformly exact for all p, if 3> 

max I M(p)-Mt(p) -I ~1. (17) 
p ko2 -p2 -Mt(P) 

We now assume that M1(p) is a sufficiently small 
and smooth function of p, namely 

3 )This condition is obtained also if one stipulates that the 
operators :9(M) and :9(M,) differ little in their norm. 

I Mt(~) I ~1, 
P p=ho 

(18) 

I dM!(p) 1 ~ 1. 
dp2 I p::h, 

(19) 

Conditions (18) and (19), together with the as­
sumption that the numerator of ( 17) varies suffici­
ently slowly with p, an assumption to which we shall 
return later, enables us to estimate the maximum 
in ( 17) and to transform this condition into 

I M(p)-M1(P) I ~1. 
Im M1 (p} I p=l<o 

(20) 

Of course, we cannot calculate M(p) - M1(p), 
since this difference is the sum of an infinite num­
ber of diagrams M(p) , which are not accounted for 
in M1(p). It remains for us to follow the procedure 
of selecting those terms of the series for M- M1, 

which are asymptotically principal with respect to 
some parameter. This can be done in the limiting 
case of long waves, when 

kol~1. (21) 

The difference M - M1 is represented by the 
sum of all possible diagrams containing not less 
than two correlation functions k 8 . Let us compare 
all such diagrams with a given set of function 
k 8 , ... , k 8 with one another. An analysis, which is 
cobveniently carried out in the coordinate repre­
sentation because of the localization of the func­
tions k 8 (x1, ... , x 8 ), shows that the principal among 
these topologically different diagrams are those 
having the form of a loop. These are obtained if one 
or several single-group insertions are made in one 
of the internal lines of the single-group diagrams 
for M1• An example of such a diagram, containing 
four groups, is shown in Fig. 4a. In the integrals 
corresponding to these diagrams, the integrands 
increase most slowly if the different groups of 
points unified by the correlation functions k8 are 
made mutually remote. Other diagrams (for exam­
ple, Fig. 4b) lead to integrals that converge more 
rapidly, as a result of which they acquire, com­
pared with the single-loop diagrams, additional 
small factors (k0 l)m, m > 0 or (k0Z)mln(1/k0 l). 

Retaining only those diagrams of the operator 
M- M1 which are principal in the limit k0Z « 1, we 
now sum these diagrams. As a result of the sum­
mation of the diagrams over all possible single­
group insertions into a given internal line, this line 
is replaced by 

G0M1Go + GoMtGoMtGo + ... = ;§ (M1)- Go. (22) 

Since the function (22) enters into the integrals for 
M - M1 together with k8 (x1, ... , x8 ), it is sufficient 
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a b 

FIG. 4. 

to know this function at values of the argument 
:S Z. Calculating for x -- 0 the integral 

1 
~ (xjM1)- Go(x) = --

(2n)3 

X ~ d3p eipx . Mf(p) 
(ko2- p2- Mi(p)][ko2- p2 + iO] 

in first order in the small parameter (M1/p2)p=k , 
wegcl: 0 

[.r9 (x/MI)- Go(x)]x-+a~ iMi(p) I . 
8nko p=ho 

We consequently arrive at the conclusion that the 
difference M- M1, which is asymptotically exact 
when k0Z - 0, is represented by a sum of single­
group diagrams of the mass operator, in each of 
which one of the propagation functions ( 4) has been 
replaced by iM1(p) /87rkolp=ko in all possible man­
ners. 

We return to the denominator of the condition 
(20), that is, to ImM1(p). Let us consider the dia­
gram M1 containing the function ks. In the corre­
sponding integral we can write, as a result of the 
condition k0/xj - xj + 1/ « 1, 

Im[Go(x!- x2) ... Go(X8C.:.1- x.)exp {ip(x1- x,)}] 

~(-4~) 
X •-I ko/Xf- X2l + ... + ko/Xs-1- x.j + p(xi- x,) 

jx1 -x2j ... /Xa-t-Xs/ 

The term p(x1 - Xs) vanishes after integration 
over the angles, and we arrive at the conclusion 
that the quantity ImM1(p), which is asymptotically 
exact when k0Z -- 0, is represented by a sum of 
single-group diagrams of the mass operator, in 
each of which one of the propagation functions ( 4) 
has been replaced by -k0/47r in all possible man­
ners. 

Comparison with the analogous representation 
of M- M1 leads to the conclusion that when pZ « 1 
we have 

M(p)-M!(P) iMI(P) 
ImMt(P) ~- 2ko2 • 

(23) 

Thus, (20) reduces to the condition (8), which was 
already assumed by us. The inequality (19) also 
follows from (18) and (21), inasmuch as when 

pZ « 1, we have dM1/dp2 ~ Z2M1, owing to the local­
ization of M1(x- x') in a region with dimensions 
~ l. Finally, in the approximation (23), the smooth 
dependence of the numerator (17) on p adds nothing 
to the conditions (18) and (19). 

The final conclusion is consequently that for 
small-scale inhomogeneities (that is, in the limit 
when k0 l « 1), the condition for the applicability 
of the group approximation of M1 of the mass opera­
tor is the inequality (18). 

4. AVERAGE GREEN'S FUNCTION IN THE CASE 
OF LARGE-SCALE INHOMOGENEITIES 

In the analysis of the short-wave asymptotic 
value of the average Green's function it is expedient 
to use the method of approximate summation of the 
perturbation-theory series which was employed in 
the case of the normal potential V(x) [4•9]. To this 
end we go over in the Green's function to the 
t-representation, performing a Fourier trans­
formation with respect to the energy: 

"" 
G (x, x', E)= ~ dt ei(E+iOXt-t') G (x, x', t- t'). ( 24) 

-oa 

Actually, for the retarded Green's function we have 
G(x, x', t - t') = 0 when t < t'. We shall need in 
what follows the Green's function G(x, p) in the 
mixed coordinate-momentum representation, when 
the Fourier transformation is carried out in terms 
of the coordinate difference 

G ( x, p) = ~ d3x' e-iP(x-x') G ( x, x') . 

The potential V(x) and the function G0 will also be 
taken in the p-representation: 

V(x) = ~ dJq eiqx V(x), 

Go(p, t) = - ie-itp', t > 0. (25) 

The momenta qj from the Fourier transformations 
of the potential V(xj) will henceforth be called vir­
tual. 

Having agreed on the notation, we proceed to 
calculate the average Green's function. We use the 
expression obtained in[4] 4> 

j 

G(x, p, t) = -i exp [ -itp2 - iS dt' V (x- 2pt') J 
t t• 0 

X { 1 + ~ dt' Sdt" VW(x- 2pt + 2pt") 
0 0 

t t• 

-i ~ dt' [ ~ dt" VV(x- 2pt + 2pt") r + ... } , 
0 0 

(26) 

4 )The signs differ from those in [•] because of Eqs. (1) and 
(24). 



WAVE PROPAGATION IN A RANDOM MEDIUM. 273 

which leads to the approximation of the equivalent 
screen method (e.s.m.) for the wave function and 
which presupposes satisfaction of the inequality 
p l » 1. We note with respect to this requirement 
that, in general, the averaging of expression (26) 
can lead to a change in the conditions of its appli­
cability. In particular, it is necessary to require a 
smooth dependence on the coordinates not for the 
inhomogeneous potential V(x), but for its correla­
tion functions ks, which is not at all the same. For 
example, smoothly varying ks can describe a poten­
tial produced by sharply bounded scatterers, say 
spheres. 

To average the principal term of formula (26), 
we use the expression for the characteristic func­
tional of a random field V(x) in terms of the corre­
lation functions ks [tsJ): 

$'[a(y)]= ( exp[i ~lflya(y)V(y) ]) 

=exp[~ :~ ~d3yt .. ~d3y,k,(y1 , ... ,y.)a(yt) ... a(y,)]. 
8=1 

The correction terms ( 26) are averaged with the aid 
of the relation 

(v(x1) ... V(xv).exp [i )d3ya(y)V(y) ]) 

= (-i)" 6"$' [a(y)] 
· f:Ja(xt) ... f:Ja(xv) 

As a result of the calculations we arrive at the fol­
lowing expression (the dependence on x vanishes as 
a result of the statistical homogeneity) : 

(G(x,p1 t)> = :§ pr (p1 t)[1+Pt(P1 t)+P2(P1 t)], (27) 

where 

;!} pr (PIt)= - i exp I -itp2 

""(-i)•t t J 
+ ~-8-1 - ~ dt, • • • s dtt ks (2pt. >, , , I 2pt1). I 

s=! 0 0 

(28) 

oo ( ') I t • a 
P1(p 1 t)= i~ ~·~ dt, ... ~ dt1 ~ ~[t-max(tm1 tn)] 

a=! sf 0 0 m=i n=l 

X (Vm1 Vn)k,(2pts. ... ,2ptt) 1 

and 

" 
X ~ ~[t-max(tn1 't'v)](Vnka(2pt,, ... ,2ptt) 

n=i v=l 

XV vka (2P't'a, ... , 2P't't)) · 

(29) 

(30) 

For a normally distributed potential V(x) we have 
k3 = k4 = ... 0, and formulas ( 27)- ( 30) go over into 
the corresponding formulas of[4•9]. 

Let us proceed to ascertain the conditions under 
which it is possible to confine oneself in (27) to the 
principal term ;!]pr(P, t). This can be done, as in[4J 
by stipulating that the correction be small, 
IP1(p, t) + P 2(p, t) I « 1, in the entire time domain 
in which the function :§pr(P, t) is not yet negligibly 
small compared with unity. If ;§pr(P, t) attenuates 
within times that are short compared with the time 
required for the wave to cover the correlation 
scale(~ Z/p), then, as shown by analysis, without 
assuming the potential normal, it is no longer pos­
sible to expect that the attenuation of ;!} with time 
is described by the Gaussian law exp [- (V2 )t2/2l. 
From this point of view, the formulas obtained for 
the spectrum of the electron in the presence of 
random impurities[2""4J from the function 
;§ ~ exp [-(V2 )t2/2l. can be applicable only for 
sufficiently large impurity concentrations n, satis­
fying the condition nZ 3 » 1 (Z is the effective radius 
of the impurity-center potential). In this case the 
potential V(x) turns out to be Gaussian because it 
is made up of a set of independent impurity poten­
tials. (Compare with the condition na5 » 1[2J, and 
also with analogous reasoning in the case of the 
problem of multiple Coulomb scattering[24 J). 

We shall henceforth be interested in a different 
case, when the attenuation time of ;§pr(P, t) is 
large compared with Z/p. We wish to obtain in this 
case the conditions for the applicability from a 
somewhat different point of view, which is analog­
ous to that assumed in the preceding section. 
Namely, we stipulate that the function :9pr(P, E) 
give a uniform approximation of the exact function 
;§(p, E) for all energies E: 

I ;§ (pi E)- :§ pr (PI E) I ~Pl. ( 31) 
max :§ ( E) ~ 

E p, 

The functions :§(p, E) and ;§pr(P, E) are expressed 
by the Fourier integral (24). In the case of weak 
attenuation of ;§(p, t) the main contribution to the 
integral is made by the region t > l /p. In this reg­
ion :!lpr(p, t), P 1(p, t), and P 2(p, t) have the following 
asymptotic form: 

:9 .pr = - i exp [-itp2 - i (V) t- i(A0t + Bo)]1 

Pt =- i(Att + Bt), Pz =- i(Azt + Bz)~ 
(32) 

5 )If we regard ;§(p ,t - t') as a linear operator in the space 
of functions of the time, then this means that the norms of .'Ypr 

and '!} differ little ["]. 
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where 

~ (-i)· s"" oos Ao = L..J . dts... dt2 k8 (2pt8 , ••• , 2pt2, 0), 
s=2 (s- 1) I o 

00 (-i)• 00 00 • • 

At=L; (s- 1) 1 Sat •... S dt2.L; L;max(tm,tn)(Vm·Vn)k., 
s=2 0 0 m=2 n=2 

00. (-i)• 00 00 • 2 

A2 =- [.~ (s _ 1) I~ dt8 ••• ~ dt2m~2 tm Vmk8 ] 

-~(dAo\2 (33) 
-4 dp ;· 

We shall not present here any formulas for Bi, for 
they can be neglected under the conditions formu­
lated below. 

As shown by simple analysis, the inequality (31) 
can be satisfied by stipulating fulfillment of the 
conditions: 

pl~i, 

IImAol ,.....-, IAol<pfl, 

I dAo/dp 12 <lAo I· 

(34) 

(35) 

(36) 

An examination of the examples allows us to as­
sume that conditions (34)-(36), can apparently be 
made more precise by a more thorough analysis. 
Thus, in the case of independent scattering centers, 
they take the form 

IAol<pfl, IAo/ImAoi<Pl. 

The same conditions remain in force also in the 
case of a normal potential V(x). 

Under the assumptions (34)-(36) we can, without 
violating (31), extend the asymptotic first formula 
(32) to include all values oft, assuming by the same 
token 

1 
;§{p,E)= (37) 

E- (V)- p2 -Ao(P) 

In concluding this section we present the expres­
sion into which the first formula of (33) goes over 
in the case of scattering by correlated scattering 
centers: 

00 1 
Ao(P)= ~ Sd3xl··· s d3x.g.(xl···x,)U(xt) 

s=l (s -1) I 

x(1 + ~(xt) )·~(x2)· .. ~(x.), 
00 

ll<x>=expU-iS atU(2pt+x> ]-1. 
0. 

To derive this expression it is necessary to aver­
age the Green's function G(x, p, t) with the e.s.m. 
(26), using a generating functional [ta J for the sys­
tem of random scatterers, and then calculate the 

asymptotic form of the argument of the exponential 
in ~pr(P, t). 

5. CONNECTION BETWEEN THE e.s.m. AND THE 
ONE-GROUP APPROXIMATION IN THE MASS 
OPERATOR 

The Green's function (37) recalls the expression 
(16) for 31· in terms of the mass operator. We shall 
now show that these are not only outwardly similar. 
To this end, we calculate the operator M1 in the 
e.s.m. approximation. We shall use the equality 
M1 = (T )1, which can be verified, for example, by 
expanding in a power series in the potential. Here 
(T )1 is the one-group term of the expansion of (T) 
in the correlation functions. The operator T is 
defined by (10) and is connected with G by the re­
lation 

T = Go-1(G- Go)Go-1• 

Substituting here the initial approximation of the 
e.s.m. (26) for the Green's function G, and going 
over to the momentum representation, we get 

(T(q,p,E))= -i6(p-q) 

00 t 

X 5 dt(k02 + iO- p2)2( exp[- i 5 dt'V(2pt') J -1) . 
0 ' 0 l 

Hence 

00 t 

= i lim e2 S dt e-et (exp·{-i S dt' V(2pt') }-1). 
e.-.+o 0 0 · t 

By integrating by parts and using the well known 
Abel formula [23 J 

00 

lime) e-£1 f(t)dt = lim/(t), 
~+0 ·o t.-.oo 

we get 
. . dj(t) 

Mt(p,E) l~<o=P = ~hm-d-, 
t.-.oo t 

where 
t 

f(t) = ( exp [-iS dt' V(2pt') J- 1) 
0 I 

00 (-i)'t t 
= ~-81- ftat, ... S dttk,(2pt,, ... ,2pt1). 

s=2 0 0 

Comparing this expression with (28) and the first 
formula of ( 33), we get f(t) = - i(A0t + B0) as t - co, 

hence 

Mt(p,E) l~<o=P = Ao(p). (38a) 

We analogously calculate 

i'JM,(p,E) I =lim/ f- t df) =- iBo(p). (38b) 
i'JE l<o=P t-+«> \ dt 
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6. NEGLECT OF SPATIAL DISPERSION IN THE 
AVERAGE GREEN'S FUNCTION 

The average Green's function ~(M1) corresponds 
to a certain effective homogeneous absorbing med­
ium, for which M1(x- x') plays the role of an effec­
tive potential. In the acoustic or electromagnetic 
case, this place is occupied by the effective refrac­
tive index or the effective dielectric constant of the 
medium. M1(x- x') has a temporal dispersion (de­
pendence on k0) and a spatial dispersion (nonlocal­
ity, or, in the p-representation, a dependence on p). 
On the other hand, "absorption" (in fact, scatter­
ing) of the average field is described by ImM1• 

We wish to ascertain here under what conditions 
we can make the substitution 

Mt (p, E)-+ Mt (ko, E), (39) 

which denotes neglect of the spatial dispersion. As 
in Sees. 3-4, we start from the condition that the 
substitution (39) introduces in ~(M1) an error that 
is uniformly small for all p, that is, 

I Mt(p)-Mt(ko) I ~ 1 max ~. 
~ k02 - p2 - Mt(ko) -

(40) 

Estimating the left side of (40), we linearize the 
numerator 

dMtl Mt(P)-Mi(ko)==. d 2 (p2 -ko2). 
P p=ko 

In this approximation, the maximum can be calcu­
lated exactly. It is attained when 

jMt(ko) 12 
p2 = po2 == ko2 - -'---'--'--'--

ImMt(ko) 
and is equal to 

I dM1 M1 (p) I =I M,(po)-M,(ko) I· (41) 
dp2 ImMt(P) ·p=ll.o Mt(ko) 

It is clear therefore that if expression ( 41) is much 
smaller than unity, then the linearization of M1(p) 
- M1(k0) is valid, and by the same token the condi­
tion (40) is satisfied. If, to the contrary, this ex­
pression is;::, 1, then the maximum of (41) lies in 
a region where the linearization is not valid. In 
this case it is sufficient to estimate the numerator 
of (40) for jp2 - kg I ~ IImM1(k0) I. where IImMt(k0) I 
is the width of the sharp function lkij- p2 - M1(k0) r1• 

With this, we get from the condition ( 40) 

(42) 

Satisfaction of the inequality ( 42) can be readily 
verified in both cases considered above, k0 l « 1 
and k0Z » 1. When k0Z « 1, it coincides with the 
already verified condition (19), and when k0Z » 1, 
it follows directly from (34)-(36). 

After the foregoing simplifications, it is clear 
that in the coordinate representation 

;§ (x) =- eihdxl/4nlxl, (43) 

where 

kt = 1ko2- Mt (ko) ==. ko- Mt (ko)/2ko. 

We shall not stop here to discuss the limitations 
imposed by formula ( 43) on the permissible dis­
tances lxl. 

7. METHOD OF SMOOTH PERTURBATIONS FOR 
THE AVERAGE GREEN'S FUNCTION 

As is well known, the averaging of the Green's 
function written out in first approximation of the 
method of smooth perturbations (s.p.m.) leads, even 
in the case of a normal potential V(x), to an incor­
rect asymptotic form at large times (~(p, t)) or 
large distances (~(x, E)) [9]. The use of certain 
definite methods of summing the perturbation­
theory series directly for the averaged functions ~ 
makes it possible to obtain an expression that is 
free of the foregoing difficulty[4•91. It can be shown 
that this expression is equivalent to calculating 
ln ~ (p, t) in first order in the correlation function 
k2(x1, x 2) of the potential V(x) (we refer here to a 
normally distributed potential) , and it is therefore 
natural to connect it with the s.p.m. for the average 
Green's function. 

Using the expansion in terms of correlation 
groups, we are able to generalize the foregoing ex­
pression to the case of an arbitrarily distributed 
potential V(x). To this end, we represent ~(p, t) in 
the form of a power series in the parameter y, the 
degree of which is equal to the number of the corre­
lation groups in the given term: 

~ (p,t)=- ie-itp' ( 1 + ~ ysieitp'~s(P,t))' 
s=l 

and take logarithms 

In [i exp (itp2) i9 (p, t)J = ~ y' [ieitP':-9,- ~ 
•~L 

(44) 
X ~ ~ ie"P':-9,,. ieitp':-9,. + ... ] . 

a,;>L s.:>l; s,+so=B 

Starting from ( 44), and assuming the correlation 
radius of the potential V(x) to be finite, we can show 
that each term of the group expansion of ln !'9(p, t) 
takes on an asymptotic value that is linear in t as 
t - oo. In turn, the linear dependence of ln ~(p, t) 
on the time as t-oo is equivalent to definite analy­
tic properties of the function ~{p, E) in the upper 
half-plane of the complex variable E. Namely, it 
implies that the singularity of the function ~(p, E) 
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= (E- (V)- p2 - M(p, E))-1 which is closest to the 
real axis is the pole E = E(p), and expansion ( 44) 
of ln .'§,(p, t) reflects the expansion of the solution 
E = E(p) of the dispersion equation 

E - (V) - p2 - M (p, E) = 0 

in a series in a number of correlation groups. (We 
note that from this point of view the proper place 
of the corrections P 1(p, t) and P 2(p, t) in formula 
(27) is precisely the argument of the exponential.) 

Let us discuss in somewhat greater detail the 
one-group approximation in the expansion ( 44), 
which can be written in the form 

' .'§ (p,t)=- iexp [ -itp2- i ~ d't'(t-'t)ei~P'Mi(p,'t)J.(45) 
0 

From this we get as t- 00 , 

.'§ (p, t) = - i exp [- itp2 - itM1 (p, E) I ho=P 

+ ( 8Mt (p, E) /8E) I ho=p] 

( cf. the formulas ( 38)). Formula ( 45), as follows 
from a comparison with the approximations con~ 
sidered above for the average Green's function in 
the case of long and short waves, goes over, if con­
ditions (21) and (18) [or (34)-(36)1 into these ap­
proximations. On the other hand, formula (45) (as 
well as (27)) gives the exact value of .'§(p, t) for a 
random potential V that does not depend on x. Thus, 
it possesses a sufficiently broad region of applica­
bility. 

It is curious to trace the connection between ( 45) 
and the summation of the perturbation series (3). 
Omitting the details of the rather cumbersome 
proof, which is conveniently carried in the t-repre­
sentation and we present the result. 

Let us imagine an arbitrary diagram for the 
average Green's function .'§(p, E), for example that 
shown in Fig. 1a. To each segment of the propaga­
tion line in the p-representation there corresponds 
a factor 1/(kij- q~, in which the momentum q con­
sists of the external momentum p which enters "into 
the diagram, and of the virtual momenta qj (argu­
ments of the functions ks) in accordance with the 
rule for the momentum conservation at the nodes. 
The expression for q2 contains squares of the vir­
tual momenta qj and their pairwise products qiqj. 
We retain from aniong the latter only those prod­
ucts in which both factors pertain to one group 
(that is, are arguments of one correlation function 
ks), and leave out all the pairwise products of vir­
tual momenta with different correlation groups. The 
sum of all the diagrams transformed in this manner 
gives the function ( 45). 

8. CONCLUSION 

We wanted to show in the present paper that the 
approximations usually employed in the calculation 
of the average Green's functions are not connected 
with any of the customary assumptions, either that 
the potential V(x) has a normal distribution or that 
the scattering centers are independent. We were 
able to generalize these approximations to include 
an arbitrarily distributed random potential. It 
turned out here that the different approximations 
are based on the single-group term of the expan­
sion of the mass operator M in the number of 
correlation groups, denoted by M1• The obtained ap­
plicability conditions do not contain limitations on 
the individual terms of the series representing M1, 

and therefore admit of cases in which the effects of 
higher correlations are not small. We hope in the 
future to show, by means of very simple models, 
that such a situation is indeed possible. 

Our estimates as applied to the normal poten­
tial V lead to the applicability conditions obtained 
by Andreev[4•9], but differ, and always on the more 
stringent side, from the results of other 
authors[6•7• 15- 17 J. We note in this connection that 
the required uniform approximation of the Green's 
function ;§, from which we have always started, 
seems to us to be sufficiently justified. 

The author is grateful to Yu. N. Barabanenkov 
discussions with whom contributed to a clarification 
of a number of questions. 
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