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Transport phenomena associated with toroidal particle drift in a collisionless plasma are 
investigated. The presence of so-called "trapped" particles leads to a sharp rise in the 
transport coefficients, the magnification factor being approximately (R/r) 312 where R 
and r are respectively the major and minor radii of the torus. 

1. INTRODUCTION 

REcENT experiments with a thermally ionized 
cesium plasma in a toroidal magnetic system have 
shown that there is a range of parameters for 
which the lifetime of the plasma (completely iso
lated from the walls) is determined by classical 
transport processes due to Coulomb collisions.[tl 
In toroidal systems the displacement of the plasma 
as a consequence of drift motion in the toroidal 
magnetic field can lead to an appreciable increase 
in the transport coefficients as compared with the 
usual case of plasma diffusion across a magnetic 
field. This effect was first noted by Budker .[2] 

Pfirsch and SchlUter [3] have carried out a quanti
tative analysis for the ambipolar diffusion case 
(cf. also [4-Gl where the results of Pfirsch and 
SchlUter have been reproduced by other methods). 
Shafranov has determined the thermal conductivity 
coefficientJ7l 

The work cited above has verified and refined 
the proposition stated in [2) and the numerical 
value of the ambipolar diffusion coefficient has 
been found to agree with the experimental value.E1l 

It is 'Shown in the present paper that in a low
density plasma in a toroidal system the transport 
effects due to binary collisions can be enhanced 
by a large factor (the factor is of order ( R/ r) 312 ) 

over what would be expected from a direct extra-

FIG. 1. General diagram of the torus. 

polation of the results of the work in LS-i J to the 
case of low-density plasmas. As will be shown 
below, this effect is due to an effective increase 
in the frequency of Coulomb collisions due to the 
presence of trapped particles. 

2. TOROIDAL DRIFT OF INDIVIDUAL PARTICLES 

We shall consider the simplest possible model 
of a toroidal magnetic field (cf. Fig. 1). 

Here, the plane ( r, J.) contains the toroidal 
axis AB while the distance along the perimeter 
is given by means of the angular coordinate t. 
The primary magnetic field is the field produced 
by a straight current flowing along the axis AB 

H ~ Ho(1- ~cost} )ec, 

The supplementary field 

r 
e=R~1. 

ir 
AH=--Hoe(}, 

2ttR 
ir 

9=-~1 
2ttR 

(1) 

(2) 

provides the rotational transform. The magnitude 
of the rotational transform i ( r) is a function of 
the coordinate r only. The change in the absolute 
magnitude of the primary magnetic field H due to 
the additional field can be neglected if ®2 « E, as 
is assumed here. For the configuration we have 
chosen the magnetic surfaces are specified by the 
equation r = const. 

The pressure of the plasma confined in the 
field is assumed to be small: 

~ == 4nn(Ti + Te)f/J2< 1, 

so that the perturbation of the magnetic field due 
to the plasma can be neglected. In addition, the 
Larmor radius of the particles is assumed to be 
so small that the distortion of the particle distri
bution function arising from the toroidal drift is 
also small and thus does not lead to the produc-
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tion of significant electric fields along the mag
netic surface. This assumption is valid if[B] 

rei dn 
-ena,<1, (3) 

where rei is the ion Larmor radius and n ( r) is 
the particle density in the plasma. 

The drift approximation is used to describe the 
motion of the particles. Because of the toroidal 
symmetry of the system we need only consider the 
projection of the particle trajectories on the 
( r, J) plane. The equations for the guiding center 
of a particle with charge e and mass m in a 
radial electric field specified by potential <I> ( r) 
and a magnetic field given by (1) assume the 
familiar form: 

dr tJ>Ho/m + v 112 • mv1.2 
dt =- fficR smtt, 11 = 2Hr;,' (4) 

dt} tJ,Ho/m + v112 c d<D 
r-=- costt+---evu, 

dt fficR Hr. dr 
(5) 

where v 1 and VJJ are the velocity components 
perpendicular and parallel to the magnetic field 
and we = eH0/mc is the cyclotron frequency. On 
the right side of (5), in addition to the diamag
netic, centrifugal, and electric drifts, we must 
also take account of the rotation of the particles 
around the primary magnetic field Ht due to the 
rotational transform. Using the conservation of 
particle energy E and the conservation of the 
adiabatic invariant 11. = mvi/2Ht we can find the 
longitudinal velocity of a particle vii with given 
E and JJ.: 

{ 2 }'71 vu=cr m[E-e<D(r)-tJ,Hr;,(r,tt)J . 

Substituting this expression in (4) and (5) we 
can find another constant of the motion: 

r 

1 = ffic ~ ear + vu ( 1 + e cos t}) . 
0 

(6) 

(7) 

In fields of more complicated geometry this 
quantity plar the role of a. longitudinal adiabatic 
invariant. [a 

In the limit given by (3) the deviation of parti
cles from the magnetic surface is very small and 
the quantity J can be expanded in terms of this 
deviation. We take the origin of coordinates to be 
the point ( r 0, 0) and expand J ( r, J) to terms of 
second order inclusively in the radial deviation 
of the particles, thereby obtaining the trajectory 
equation in the form [BJ 

r- ro ~ {L\v + [ (L\v)2 + 2rofficVg(cos t}- 1) ]"'} I 0 08, (8) 

where 
dv (ro, 0) = Dii (ro, 0) - DE (ro) I e, 

c d<D 
DE ==n ar' 

tJ,Ho/m + v~/82 
Dg =· fficR 

It is then obvious that a particle with velocity 
(~v) 2 < 4roWcVg will be trapped in a toroidal 
magnetic field with a rotational transform. This 
trapping effect arises because the line of force of 
the magnetic field go from the inner portion of 
the toroidal tube to an outer portion and vice 
versa as a result of the rotational transform. For 
this reason the magnitude of the magnetic field 
varies along the line of force (the field is larger 
at the inner region of the torus and smaller at 
the outer region) . The weakly trapped particles 
exhibit the largest displacement from the mag
netic surface 

Mt(tt = 0) = 4(tJ,H0/m + DE28-2.]'f•/ffic8 

(cf. Fig. 2). Untrapped particles which are almost 
trapped exhibit half of this displacement ~ru 
= 0.5 ~rt. The displacement of untrapped parti
cles with velocity ~v ~ v is found to be small 
(of order Ei/ 2 ) compared with the displacement 
of trapped particles. 

The particle motion in time is described by 
the equation of motion for the J coordinate. 
Neglecting the toroidal drift, we can write this 
equation in dimensionless variables: [to] 

r ~~ =- cr.e [ ( D2 + D~)e J'hx2 -1 +cos tt]'", (9) 

where 

D2 = 2(E- e<D(r))/m, cr.= signdD(r, tt), 

2x2 = [dD(r0, 0))2/ (v2 + DE28-2) e. 

It then follows that the motion of the trapped par
ticles can be described in terms of elliptic func
tions with modulus K2 < 1. The period of oscilla
tion of the trapped particles along the closed tra
jectory is then given by 

UE(IQ)>8vu(!Q.O) 

FIG. 2. Trajectory of trapped particles (1) and transiting 
particles (2). 
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4r 'Ito df} 

't = [ ( 8 2v2 + vE2) e]''• ~0 [2 ( x2 - :sin2 { f} /2) ) ]''• · 

4y2rK(x) 

8 [e (v2 + vE28-2)]'" 
(10) 

where K ( K) is a complete elliptic integral of the 
first kind while J- 0 is a zero of the expression in 
the radical. 

Our problem is now to take account of the ef
fect of collisions on the drift motion described 
above and to determine the net result on transport 
phenomena in the plasma. 

3. TRANSPORT PHENOMENA IN A LOW
DENSITY MAXWELLIAN PLASMA 

We shall use the Boltzmann kinetic equation in 
the drift approximation, writing the collision 
terms in the Landau form 

at; 
--at+£3£,/;] = St {/;}, (11) 

where 

{ JlHo/m; + vu2 a ( c d<V 
[.n',/;] = - sintt-+ -ElVJI +--

We;R ar Ho dr 

'tlHo/m; + Vu2 A) a +c. JlHo/m; + Vu2 • .A a }t· 
- COSv- o Sinv- l• 

WeiR af} Wc;R avu 

a e·2e-,2 ~ [ t'la~ Ua;Ujl] 
St{t-} ==- ~-2nl..-3-3 dv'. ---

3 av m· u u3 
j' a J 

( fJ (v) atj' (v') /;' (v') ajj {V) \ 1 
X -- ------~1 , Ua=Va;-Va;. 

my av~' m; avll 

We first consider the case in which collisions 
are not very rare so that a Maxwellian particle 
distribution can be established by virtue of 
collisions in a small region with dimensions given 
by t::..v ~ .fE VT ( VTj = ...J 2T/mj is the thermal 
velocity) within the period of gyration of the 
trapped particle in the closed trajectory T. The 
time required to establish equilibrium within this 
region can be estimated from the expression for 
the collision term (11) and is of the order of the 
following quantities: 

16l'~).e'n(r) 
'VJ = (12) 

3m;vTl 
On the other hand we assume that collisions can 
be neglected for the majority of particles. Thus, 
our limitations on the collision frequency can be 
expressed by the inequality 

e "Vvd· + VE28-2/r > Vj > e''•ElfVT/ + v#El~ I r. ( 13) 

The solution of the kinetic equation can now be 
sought in the form of an expansion in the toroidal 
parameter. We write the distribution function in 
the form 

(0) (1) 
/;(Jl, vu; r, ft) = /; (Jl, vu, r) +I; (!-L, vu; r, ft), (14) 

is a local Maxwellian function while the correction 
f ~ 1 > takes account of toroidal effects. Linearizing 
tfie kinetic equation (1i) we now write it in the 
form 

(1) 
a~; <1> 

( -E)vll + VE) raft = - 'Vj/j 

~-tHo/m; + Vjj2 • [ a 1 a J ,(0) + smft -8-+-- Ji . 
R avu Wcj ar 

(15) 

For reasons of simplicity we now write the colli
sion term in the T approximation. This procedure 
is justified for rare collisions; to take account of 
collisions themselves we need only use the cor
rect contour around the singularity that arises. 
Further, writing the dependence on the angle J. in 
exponential form we write the solution of the 
equations: 

Multiplying this expression by the radial drift 
velocity of the particles 

- [ (JlH0/m; + vu2) /•We;Rj sin f} 

and integrating over velocity, we obtain the par
ticle flux across the magnetic field: 

2" "" +<x> H/ 2 1 · i i i (t) Jl o m; + vu . 
(nv>; = -- J df} J d~-tHo J dvuf; R sm ft 

m; 0 0 -co WeJ 

X r [-e !._ + -1- _!_ J /~0> • 
iJv11 Wej iJr 

After some simple calculations we find 

ne2re;2 ( VE \ { ( 3vE2 )} dn; 
(nv>;= -~iJT;F; e/ 1+ 1+ S2vd d;' 

(17) 
where Fj =rr-11 2 exp(-vk/® 2v~j) is the relative 
density of trapped particles in velocity space. 

It is interesting to note that the particle flux 
appears to be proportional to a kind of particle 
work in the field of a "magnetostatic curvature 
wave" of the magnetic field (this is to be com
pared with Landau damping in a collisionless 
plasma). In some sense this particle diffusion is 
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a result of the effect of a frictional force on the 
"wave." Hence it is completely reasonable that 
the diffusion is not ambipolar. Defining the dif
fusion coefficient in the usual way 

D.L; = -<nv); I Vn, 

and using (17) we can write 
ll.rt·2 -

D.L; = --' isF;, (18) 
-r:; 

where the factor ..fE F j takes account of the 
smallness of the number of trapped particles; an 
estimate of the deviation of these particles from 
the magnetic surface .6.rt has been given earlier 
while the displacement time is found to be of the 
order of the orbit time around the closed orbit. 
This result is completely reasonable since it is 
precisely within this time that any significant 
disturbance of the local Maxwellian distribution 
maintained by particle collisions can be achieved. 

Because the plasma is neutral, an electric field 
must arise in such a way as to reduce the ion 
diffusion to the level of electron diffusion. To a 
high degree of accuracy the magnitude of this 
field can be determined from the condition 

e<I>(r) = Tdnn(r). (19) 

Under these conditions the diffusion becomes 
ambipolar while the diffusion coefficient is given 
by (17) computed for electrons taking account of 
(19): 

D.L = 2 in Pl-rce CTe , 9VTe 9VTe (20) s1•--<ve<--. l8lr eHo r ·r 
As before, the thermal conductivity coefficient 

for the ions under these conditions is found to be 
much larger than for the electrons: 

(21) 

4. EQUILIBRIUM AND TRANSPORT PHENOMENA 
FOR VERY RARE COLLISIONS 

We now consider the case of very rare colli
sions; in this case the relaxation time for the 
trapped particle distribution due to collisions is 
much larger than the period associated with their 
motion: 

(22) 

Under these conditions, as a first approximation 
we can neglect collisions and write the solution 
of the kinetic equation at the outset in the form of 
a function of the integrals of the motion: 

AD) (0) E 1 
It= Tt (Jl, E,l)' fu = fu (Jl, ' 'cr)' (23) 

where f i O> and f ~o> are the distribution functions 
for the trapped and untrapped particles. The de
rivatives of the distribution functions defined in 
this way with respect to the longitudinal velocity 
(and sometimes even the functions themselves) 
exhibit discontinuities at the surfaces that divide 
the phase volumes for the trapped and untrapped 
particles. [a] This result is not surprising since a 
change in the topology of the trajectories which is 
also discontinuous occurs at these surfaces (Fig. 
2). However, in the presence of even a very small 
number of collisions close to the surface there 
will arise a transition layer which will appear to 
give rise to a continuous transition of the func
tions f £ o> and f ~o> into each other. In an earlier 
section we have found that the diffusion of parti
cles across the magnetic field can be explained in 
terms of an interaction of the particles with a 
"magnetostatic curvature wave" of the magnetic 
field and this was found to be analogous to the 
collisionless damping of this wave in a Maxwel
lian plasma. Correspondingly, we now wish to 
compute the work of the particles in field of this 
wave for very rare collisions, in which case we 
must take account of the relaxation of the distri
bution of resonant particles under the influence 
of the wave. The analogous problem of damping 
of a plasma wave of finite amplitude has been in
vestigated qualitatively in [tt J and a rigorous 
quantitative solution has been given by Zakharov 
and Karpman.[12 J The results of this work indi
cate that the damping factor is reduced in the 
rarefied plasma in proportion to the number of 
collisions. In the following we shall follow the 
method used in the work cited. 

We solve the kinetic equation by the method of 
successive approximations, writing the particle 
distribution function in the form 

AO) (1) /; = Ti (E, Jl, I; 'cr) + /; (E, Jl, 1; cr; it)+ ... (24) 

In addition, we linearize the collision term 
since deviations from the Maxwellian distribution 
are important only in a small region of velocities 
of the trapped particles. The kinetic equation then 
assumes the form 

( £> + ) at}1
' + £> JlHo/m; + V~2 • A aff> 

-oVJI VE ~ o .Slllv--
ra'ft R avu 

~ 2rr."J.e,.2e;fl. a {( + , 'li' ) = -'.J 'li' 'I'Jj' - --. . m; ava. 2z;, 
J (25) 
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where 

Here, we have neglected the derivative of the 
corrections to the distribution function with re
spect to the r coordinate because the following 
inequality is satisfied: 

-y-;,aj~1> ;ar~atJI> /raft. 

Furthermore, in the first approximation the dis
tribution function is most sensitive to changes in 
the longitudinal velocity and we can neglect all the 
other derivatives in (25). We also neglect all 
quadratic terms in the electric field because the 
assumption that the ion-Larmor radius is small 
(3) and the assumption of ambipolar diffusion (19) 
imply that 

~=~dn~i. 
9VTi 2(3n dr (26) 

Finally, we shall rewrite the relations in the new 
variables J.L, n2 and J making use of the following 
substitution of variables: 

vn = ':; + 20' [~ Hoe( x2- sin2 ~ ) r. (27) 

The kinetic equation now assumes the form 

(0) 

( at; <o>) - <o>} X axz + 2x;ef; + c; f2x;e /; , 

where 

3-y-;t ~ ( I t'Jj' ) a A; (x;) = ~ ."-! t'Ji' + 'l'Ji'--- x;-''• 
4 ., 2z;, 

J 

(28) 

Integrating both parts of (28) with respect to the 
angle J over the limits ( 0, 21r), from the 
periodicity conditions on all these physical quan
tities (with respect to the angular coordinate J) 
we find an equation for the function f j0>: 

a 211 ,; -& a/0> 
axz [ S { 0' f x2.- sinz2( a:.& + 2x;e//o>) 

0 

-<o>} ] + c3 y2x;e !; d{} = 0. 
(29) 

We first consider the transiting particles. We 
will seek a solution which, appearing as a func
tion of the constants of the motion 
(J- 2(riJ.LHoE/mK/®~. J.L, and K2, becomes a Max-

wellian distribution in the limit K2 ...... oo. Making 
use of the work of Berk and Galeev [B] and the 
work of Zakharov and Karpman [121 we find the 
solution of interest here: 

f(O) _ n; (r) [ _ ec:D (r) 
u.- ,1 exp 

J :rt 'VTl T; 

-- "' 
2 2 :rtO'f28XjCj s dt ] 

- Xj8X - 2 - 1 t'J.E (t-'1.) 

x {t+ cry~rc; dn(r) (rx2-sin2(ft/2) 
8n(r) dr 

- ~ ~ t'I•E ~~'I•) ) } ' 

(30) 

where E ( c!/ 2 ) is a complete elliptic integral of 
the second kind while the expression in the curly 
brackets is essentially the first two terms of an 
expansion of the function of the third constant of 
the motion: 

(31) 

where 

N ( CiJc; S 8dr) == n(r). 
0 

The determination of the distribution function 
for the trapped particles is facilitated by the fact 
that it must be symmetric with respect to the sign 
of the longitudinal velocity (}'. Consequently all 
those terms must vanish on the right side of the 
kinetic equation (28) which contain (}'. For a solu
tion of the following form ([(compare with (30)]: 

t:O'j = n(r) e-x1F;(x2) 
J n'l•vT;s 

X { 1 + cr-y2x;e rc; dn(r) l'xz- sin2(-fr/2)} (32) 
8n(r) dr 

the last condition becomes simply 

(33) 

We can solve this equation together with the 
kinetic equation for the correction f <t >, which is 
now simplified considerably: 
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As a result we find the complete solution: 

n(r) 
,1 3 exp {-cl- x;- 2x;ex2} itJ= 

:rt •vx; 

X {'1 + rry""2i;:reJ dn(r) ")'x2- sin2(~/2) 
& ~ (~ 

+ 2v;A;~ ( + re; dn(r) )} 
Xj8 Cj ----- • 

vx;8 28n dr 

Thus, taking proper account of even very weak 
collisions removes all the arbitrariness in the 
determination of the distribution function which 
always exist if one neglects collisions completely, 
this has been shown, for example, in the work of 
Berk and Galeev. [Bl From a comparison of (30) and 
(34) it is evident that the particle distribution 
function in velocity f j0' is continuous at the point 
K2 = 1 whereas its derivatives are different at 
K2 - 1 ± 0 (cf. Fig. 3). Hence, in the vicinity of 
the point K2 = 1 there is a narrow transition 
region whose structure can be determined only 
from a solution of the complete equation in (28) 
rather than by perturbation theory. 

Fortunately, as we shall show below, the trans
port coefficients of interest here do not depend 
on the fine structure of this transition region and 
the difference in the values of the derivatives on 
both sides of the region can be determined. In 
terms of the variables 1-' and K2 the element of 
phase volume can be written 

d!J. 
2:rr.H(}- dvu ( !J., x2, ~) 

m 
dx2 (35) 

==. 2:rt "Y2e!J.H0/md!J.Ho {2 [x2 _ sinZ(~/2)]}'/• ~ . 

Multiplying the particle distribution function by 
the particle velocity across the magnetic field 
( f..I,H 0/mwcR sin J.) and integrating over phase 
volume, we can find the particle flux across the 
magnetic field: 

(2e)''• r ~ r ( !l )''• !l (n~J); = ---_-J d~ LJ J' ~Ho d-Ho 
@c1 0 11 0 m m 

(36) 

It is evident that in the absence of collisions the 
integrand is a total differential with respect to the 
angle J. and that the flux will vanish after inte
gration. Thus, the frictional force acting on the 
particles is proportional to the collision frequency. 

We now consider separately the contributions 
to the flux due to transiting and trapped particles 
as well as the contribution due to particles from 

FIG. 3. General form for the particle distribution in a 
toroidal magnetic system for rare collisions (1) and frequent 
collisions (2). 

the transition layer. We shall denote these parti
cle classes respectively by ( nv) Ct' 2• 3'. The total 
flux is then given by the expression 

(nv) = (nv)<1l + (nv)(2l + (nv)<3>. 

In considering the transiting particles 
( K 2 > 1) in (36) we can change the order of inte
gration with respect to K 2 and J. and then inte
grate this expression by parts. Using the kinetic 
equation for f jl' we can express the particle flux 
in terms of the right side of this equation: 

00 2n 00 

(nv)(l) = v;vd ~ r A;(x;)x;dxj s d-6> Sdx2fx2- sin2 (~/2) 
26(J) . J 

CJ IJ 0 0 I (37) 
(0) 

x_!_{<n'x2- sin2('1'tj2)(at;u + 2x;efJ~) + c;"/2x;e/;~}. 
8x2 8x2 

Having computed in explicit form the first de
rivative afj~/oK 2 in accordance with (30) and 
having carried out the second integration by parts, 
we reduce this expression to the form 

{ n2 rdt[ n2 ]} 
X 4 - -2 + 2 ; -t•t, K (t-'1•)- -:-:4E=-(~t--:-:-,1,:-) 

(38) 

( TcJ dn) 
x . c; + 2en dr • 

In similar fashion, substituting in the expres
sions for the flux (36) the distribution function for 
the trapped particles, we find 

2 f2e3v;rc; 1 , 1 Tcj dn) 
(nv)<Z>= JA(x;)e-"';x;'•dx;lc;+ 2"" -d .(39) 

en''• 0 \ on r 

It is evident that this contribution can be neglected 
compared with the contribution of the transiting 
particles. 

For the transition region we have 
' 00 2R ~~ 

(nv)(3) = ~ ~ ~ A;(x;)xidxi S d-6- S dx2 
2Eiroc 11 0 0 1-0(-lt) 
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X l'x2- sin2 (tl/2)~ {cryx2- sin2(-fr/2) ( ofJ + 2XjB/i)\ 
ox2 8x2 I) 

+ Cj l'2XjB/j}, 0 < c5 (tJ)~ 1. 

Here, it is sufficient to consider only the term 
with the second derivative since only the first 
derivative afji<)K2 has different values at the 
boundaries of the transition layer; the values of 
the function itself can be considered to be the 
same to accuracy of order ~6 « 1. Then, the 
magnitude of the flux can be expressed in terms 
of the discontinuity of the derivative a fj /8 K2 in
Side the transition layer: 

V·VT·4 r r" ( 'fr) 
(nv)<3J = de~ . J A (xi) xidxi J dtl ~. cr x2- sin22 

CJ 0 0 1J 

(40) 

( ne )'/' rcj r 3 ( rcj dn) =- - -J e-x;A(xi)xihdxin ci+--·-.. 
2 I eO 2®n dr 

Using the numerical estimate of the integral 
on the right side of (38) taken from [121 one can 
easily show that the contribution of the transiting 
particles is numerically smaller than the contri
bution due to the transition layer. Computing the 
integral on the right side of (40) in explicit form 
we finally obtain the final result 

v ·r ·2 1'; ( dn e · ) (nv)::::::: \nv)<3J = ai J CJ - + _J n<D' (r) , 
8 2 dr Ti 

Uj = 3n [«Sie + ~+ ln(1 + l'2) ]. (41) 
81'2 2y2 

It then follows that the diffusion of the particles 
becomes ambipolar for an electric field whose 
magnitude is determined (as before) by (19) and 
that the diffusion coefficient is larger by a factor 
E- 312 than that computed by Pfirsch and 
Schliiter: [3) 

Verce2 4n2 ~ VTe®e'f, 
Dj_ :=:::: 3,6--,1---, Ve~ • 

e ' i 2 r 
(42) 

The ion thermal conductivity can be computed in 
completely analogous fashion: 

v·r ·2 4n2 
0 4 t Ct 

Xj_i ~ ' -,-1 --.-2 ' 
e ' ~ 

5. CONCLUSION 

(43) 

Let us now compare our results with those ob
tained earlier. In the limit of very rare collisions, 
where the particles trapped in the region of weak 
magnetic field do not succeed in exhibiting a 
Maxwellian distribution, the diffusion coefficient 
is proportional to the collision frequency, being 
described by (42) and the line denoted by 1 in 

FIG. 4. The particle diffusion coefficient as a function of 
the electron-ion collision frequency. 

Fig. 4. The physical meaning of this expression 
is clear. If, in the relation D1 ~ (~re) 2 v we 
substitute ~re ~ rce .../ E/® (for the trapped parti
cles) and v ~ veE -1 (the effective collision fre
quency for the trapped particles is large) we ob
tain the result (42), which takes account of the 
fact that the fraction of trapped particles ~IE. 

It is also very interesting to consider the case 
in which collisions can establish a Maxwellian 
distribution for trapped particles in velocity while 
the main mass of particles are collisionless. In 
this situation the particle diffusion is determined 
only by the plasma parameters (20) and is inde
pendent of the collision frequency (the segment 2 
in Fig. 4). Finally, for a highly collision domi
nated plasma, in which the hydrodynamic model 
can be used to describe the plasma, we obtain 
the result of Pfirsch and Schliiter. The behavior 
of the thermal conductivity due to the particles is 
completely analogous. It will be evident that all 
of the considerations given above apply so long as 
turbulence effects can be neglected. 
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