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To analyze weakly excited states of a molecular crystal whose Hamilton operator is expressed 
in terms of the Pauli molecular-excitation creation and annihilation operators, it is suggested 
that the Pauli operators be represented in terms of Bose operators. This representation in its 
approximate form is identical with the Holstein-Primakoff representation[15J, but does not in­
volve the appearance of "nonphysical states." Transition to Bose operators in the crystal 
Hamiltonian permits separation of the kinematic-interaction operator which, together with the 
dynamic interaction operator, leads to exciton-exciton scattering. For the case of absence of 
dynamic interaction between the excitons, i.e., for an ideal gas of paulions, it is proven that 
condensation should be possible and the elementary excitation spectrum under condensation 
conditions is found. The various terms in the exciton-exciton interaction energy are estima­
ted, and in the case of molecular crystals with weak exciton-phonon interaction a criterion is 
formulated for the appearance of Bose-Einstein exciton condensation. Methods for experimen­
tally investigating the collective properties of excitons in molecular crystals are discussed. 

1. INTRODUCTION 

IN the theory of Frenkel excitons[i], the zeroth­
approximation wave functions are constructed by 
using the wave functions of the individual molecules 
of which the crystal is made up. Such an approach 
is justified if the intermolecular interaction is 
sufficiently weak, as is the case for the lowest ex­
cited states of a large number of molecular crys­
tals. In these crystals, the spectrum of the lowest 
excited states, although possessing a large number 
of qualitatively new features, differs in general 
very little from the corresponding spectra of the 
individual molecules (see, for example, [2]). 

Frenkel and Dabydov used the Heitler- London 
method for the analysis of the excited states of 
crystals. In accordance with this method, the wave 
function of the lowest excited state is a superposi­
tion of the states of the crystal, in which one of the 
molecules is excited and all the others are in the 
ground state. Then the contribution made to the 
wave function of the crystal by the states in which 
not one but two, three, etc. crystal molecules are 
excited, is disregarded. The correction to the 
crystal energy, due to these higher excited states, 
is of the order of ~(V/ ~) 2 , where ~f is the energy 
of the f-th excitation of the isolated molecule, and 
V is the magnitude of the resonance interaction be­
tween the molecules. For certain states, this cor­
rection is negligibly small. At the same time, 
there are also states for which this correction 

leads to a noticeable shift of the terms. Thus, for 
example, the ratio for the second transition in 
anthracene is V/~f ~ 1/3, and the indicated correc­
tion shifts the terms of the crystal by several 
thousand reciprocal centimeters. 

Allowance for the contribution made to the ex­
citon energy by the aforementioned excited-states , 
can be made by going over to the second-quantiza­
tion representation, which turns out to be also con­
venient in the study of exciton-photon and exciton­
phonon interactions, and also for the investigation 
of the molecular-state mixing due to the intermole­
cular interaction in the crystal (see [3-5 J). 

In the first stage of the transition to the second­
quantization representation, the Hamiltonian opera­
tor of the crystal is expressed in terms of the 
operators of creation and annihilation of the exci­
tations of the individual molecules. Let, for exam­
ple, the index s denote a crystal-lattice site in 
which the molecule is located, and let the afore­
mentioned operators be denoted by P~ and P~, 
where f is the number of the excited state of the 
molecule. Then, if we consider only the f-th non­
degenfrate excited state of the molecule, the opera­
tors P: and P~ satisfy the following commutation 
relations: 

+ + + 
P/P/- P,tP,t = 1- 2P/P,f, 

P,IP/ = 0, 
P.tP.,t- P.,tP,t = 0, 

+ + 
P/P.,t- P8 ,tP,t = 0, s =F s'. 

(1a) 
(1b) 
(1c) 

(1d) 
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Thus, P~ and P; are Pauli operators, since Eqs. 
(1a, b) and (1c, d) are combinations of the commu­
tation relations for the Fermi operator (when s = s') 
and the Bose operator (s "'s') (see[G-81). 

The appearance of commutation relations of the 
same type as the relations for the Fermi operators 
in the case when s = s' is a reflection of the fact 
that the number of excitations in the molecule that 
is, the eigenvalues of the operator P~P~, can be 
equal either to zero (molecule in the ground state) 
or to unity (molecule is excited). On the other hand, 
the presence of Bose commutation relations when 
s "' s' is due to the fact that operators with differ­
ent s act on different variables of the crystal wave 
function. 

The Hamiltonian operator of the molecular crys­
tal, expressed in terms of the operators pf and pf 
(we shall henceforth omit the index f) has fhe s 
following form (see[3]): 

H = Ho + H;nt, 

where the operator 

(2) 

A ~ + 1~ r+ 1 u++ 
Ho = LJ !:iP.P. + 2 LJ v ••. P.Ps• + 2" ~ V,.•(P.Ps• + P.P •• ) 

s s:::Fs' s-=Fs' 

(3) 

is quadratic with respect to the operators P and 
+ A S 
P s whereas the operator Hint is the sum of the 
third and fourth order terms. 

If we are interested in such states of the crys­
tals, in which the mean value is 

+ 
(P.P.) == c~1, (4) 

that is, in other words, if we consider only weakly­
excited states of the crystal, in which the quantity 
c (dimensionless concentration of the excitations) 

+ 
is small, then the operator PsPs in the right side 
of (1a) can be neglected. Then the operators Ps and 
+ + + 

Ps become Bose operators (Ps = Bs, Ps = Bs>· 
This circumstance is the basis of the second quan­
tization method, of the main representations of 
which were predicted by Bloch [s,7], and which was 
subsequently developed by Bogolyubov and 
Tyablikov [8 • 9 J • 

If we neglect in the zeroth approximation the 
scattering of excitons by excitons, then the opera­
tor Hint can be omitted. In this approximation, 
using the canonical transformation from the Bose 

+ 
operators Bs and Bs to the Bose operators BJ.Lk and 

BJ.Lk: 

1 ~ • + 
B.=--= LJ [Uv.k (s)Bv.k + Vv.k (s)Bv.k], (5) 

l'Mv.,k 

where k is the wave vector of the exciton, J.L the 
number of the exciton band, and M the number of 
cells in the crystal, we obtain 

A + 
Ho = ~ Ev.(k)Bv.kBv.k· (6) 

v.k 

In this expression EJ.L(k) are the new energies of the 
elementary excitations of the Coulomb excitons 
produced when full account is taken of the Coulomb 
interaction. 

The delayed interaction can be taken into account 
by adding to the operator H0 the field operator of 
the transverse photons, together with the operator 
of the exciton-photon interaction [3 • 10 J • If at the 
same time we disregard the anharmonicity as be­
fore, then the total operator of the excitons and of 
the field of the transverse photons turns out to be 
quadratic with respect to the exciton and photon 
Bose operators, so that the diagonalization of this 
Hamiltonian with the aid of a canonical transforma­
tion leads to normal electromagnetic waves in the 
crystal (photons in matter), which at large wave­
lengths can be considered also within the frame­
work of phenomenological electrodynamics with 
account taken of the spatial dispersion (see[ttJ). 
The availability of powerful radiation sources has 
made it possible to observe in number of crystals 
processes in which photons collide with one another. 
Corresponding to these processes in the Hamil­
tonian of the crystal are terms of third, fourth, etc. 
orders with respect to the Bose operators. We 
shall consider below precisely the procedure for 
correctly separating these terms, since replace­
ment of the Pauli operators by Bose operators gives 
rise, as it were, to an additional interaction be­
tween the elementary excitations, which we shall 
designate, just as in magnetism theory, as kine­
matic. 

When speaking of a kinematic interaction, it 
should be noted that the problem of its separation 
in connection with the transition from Pauli opera­
tors to Bose operators is far from new. This prob­
lem arises, in particular, for the Heisenberg 
Hamiltonian, which corresponds, for example, to an 
isotropic ferromagnet with spin S = 1/2 when spin 
waves whose creation and annihilation operators 
obey Bose commutation relations are introduced. 
This problem was dealt with by many people, in­
cluding Dyson[12 J, who obtained low temperature 
expansions for the magnetization. However, even 
before Dyson's paper, van Kranendonk[t3J proposed 
to take into account the kinematic interaction by 
starting from a picture in which one spin wave pro­
duces an obstacle for the passage of another spin 
wave, since two flipped spins cannot be located at 
the same site (for Frenkel excitons this means that 
two excitations cannot be localized simultaneously 
on one and the same molecule). In mathematical 
language, such an approach means adding to the 
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initial Hamiltonian, in which the Pauli operators 
are replaced by Bose operators, a term that corre­
sponds to the limiting strong repulsion of two 
bosons in one site. 

The picture postulated by van Kranendonk[13 ] 
leads molecular cross sections of a size corre­
sponding to the "hard-sphere" approximation. 
Dyson calls this approach naive and criticizes it as 
incorrect and leading to results different from 
those obtained by him (see[12 ], end of Sec. 3). We 
shall show in what follows, however, on the basis 
of an exact representation of the Pauli operators 
in terms of Bose operators, that the picture des­
cribed above does take place for excitons. How­
ever, this takes place only because the excitation 
energy D. for excitons is large compared with the 
width of the exciton band. As to the spin waves, 
where the inequality indicated above is not satis­
fied, the cross section for the scattering of long­
wave spin waves by each other can indeed, in 
agreement with Dyson, differ substantially from 
the value that follows from van Kranendonk' s "hard 
sphere'' approximation[13 ]. 

2. REPRESENTATION OF THE PAULI OPERA­
TORS IN TERMS OF BOSE OPERATORS 1l 

We note first that the replacement of the Pauli 
operators by Bose operators, which was used in 
Sec. 1, is approximate, since the occupation num­
bers for the paulions take on values from 0 to 1, 
whereas the occupation numbers for the bosons 
take on arbitrary positive integer values: 0, 1, 2, 3, 

+ 
etc. Therefore when the operators Ps and Ps are 
replaced by Bose operators, uncontrollable errors 
are introduced in all those cases when the number 
of bosons exceeds unity. These errors are known 
in the literature as the ''contribution from the un­
physical states" (see, for example[14]). It is possi­
ble, however, to make more exact the transition 
from+ the Pauli operators to the Bose operators Bs 
and Bs by stipulating that for any number of bosons 
the number of paulions be either 0 or 1. To this 
end, we rewrite the Pauli operators in the form 

00 + .,, + + '( 00 + )''• 
P. = ( ~avB • ..,B • ..,) B., P. =B. ~ a..,B • ..,B • .., , (7) 

'11=0 '11=0 

where a 11 are real coe{ficients. We stipulate that 
the operators Ps and Ps satisfy the condition 

+ + 

P.P. + P8Ps = 1, (8) 

1 >The results of this section can apparently be used also 
in the quantum theory of magnetism. 

if Bs and Bs in (7) are Bose operators. Substituting 
(7) in (8) and taking into account the identity 
+ A + A + 

B 11 + 1BV+ 1 = (N - v)B 11B 11 where N = B B we 
S S S S S' S S S' 

find that (8) takes the form 

'11=0 

whence 
-2 

a..,= 1+vav-t. ao= 1, 

or 

a..,=(-2)'~~/(1+v)! (9) 

Thus, the sought exact transformation from the 
Pauli operators to the Bose operators takes the 
form 

[ 
co (-2)'1/ + ]'12 P- B..,B .. B 

8 - '11~0 ( 1 + v) ! 8 s •• 

+ + [ 00 (-2)'1/ + ]''• P. =B. ~ B • .., B • .., .. 
v=o (1 +v)! 

A + 

(10) 

The paulion-operator Ls = P sP s then is expressed 
in the following fashion in terms of the boson-num­
ber operator: 

~ ~ 00 ( -2)'1/ A A A 

L.=Ns+ ~ N.(N.-1) ... (N.-v). (11) 
v=t (1+v)! 

It is easy to verify that states with arbitrary even 
number of bosons corresponds to Ls = 0, and states 
with arbitrary odd number of bosons to Ls = 1. 
Thus, the transformations (10) and (11) do not give 
rise to boson numbers corresponding to ''unphys­
ical" paulion numbers (that is, numbers Ls > 1). It 

+ 

:d::;. :::yo::::Y['f ~~:~:r,:::.:": ~: ~ ·· 
v=O J 

state corresponding to an odd number of bosons 
produces zero. Therefore, the result of the action 
of the operator 

co + . ''• 00 + ,,, 
Pi= [ ~ a.,B."B•"] B. [ ~, a..,B."B•..,] B. 

V=O '11=0 

on any boson state is also equal to zero, as follows 
directly from the structure of the ~perator P~. It 
is analogously easy to verify that P~ = 0. 

If we confine ourselves in (10) to only the first 
term under t~e surp.mation sign (with v = 0), we get 
Ps = Bs and Ls = Ns, that is, we obtain exactly the 
approximation used in Sec. 1. If we also include 
the term with v = 1, then 

P. = B.l'1 - N.~ 
+ + --, 

Ps = Bsl'1- N. (12) 
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and we obtain the well known representation of 
Holstein and Primakoff[15 J. With this, 

PsPs + P8P8 = 1- lv8 (N8 -1), (13} 

so that the right side of (13) is equal to unity if the 
boson number is restricted to 0 and 1. Therefore, 
if the number of elementary excitations in the crys­
tal is large, the uncontrolled errors mentioned 
above arise when (12) is used. 

When the exact representation (10) is used, the 
terms with v 2-: 1 under the summation sign can be 
regarded as small operators, the smallness of 
which increases with ·increasing v. Indeed, for 
Bose operators we have 

iJ.vB;" = fv.cfv. -1) .. . (N.- v + 1). (14) 

Thus, the operator (14) vanishes identically on the 
class of functions corresponding to boson numbers 
N s < v. On the other hand, this class of functions 
broadens with increasing v. This is precisely why 
the square root of L.in (10) can be represented in 

lJ 00 

the form of the series L b Bz;Bsz;· 
lJ lJ s 

To determine the coefficients bz;, we make use 
of the fact that the relation 

00 ~ [L; avlY.(N.-1) ... (N.-v+1)] 
V=O 

= ~bvNs(N.-1) ... (N.-v+1) 
V=O 

should be satisfied in the representation of the 
boson occupation numbers for arbitrary integer 
Ns 2- 0. Putting in this relation Ns = 0 and using 
(9), we get b0 = 1. Assuming Ns = 1, we get b 1 =-I; 

assuming N = 2, we analogously obtain b2 s 
= (1/2) (1 + Vs/3), etc. 

Knowledge of the coefficients bv enables us to 
represent relations (10) in the form 

00 + 
Ps = [ L; bvBs"Bsv]Bs, 

+ + 00 + 
Ps = Bs [ L; bvBs"Bs" J (lOa) 

V=O V=O 

It is interesting, that if we confine ourselves in 
these expansions to terms with v = 0 and v = 1, we 
get 

P 8 = (1- N8 )B8 

+ + ' 
Ps = B.(i-N.), 

(lOb) 

which differs from the expansion of th~ Holstein­
Primakoff relations (12) in powers of N: 

" + + " 
P. = (1- 1/zNs)Bs, Ps = B.(1- 1/2Ns)· 

The cause of the discrepancy is the inaccuracy of 
the latter expansion, where the discarded terms in 
the state Ns = 1 differ from 0, whereas all the dis­
carded terms in (lOb) vanish identically when 
Ns = 1. 

Substituting the expansions (lOa) in (2) and (3), 
we obtain the sought-for expansions of the Hamil­
tonian operators in powers of the Bose operators, 
with allowance of not only the dynamic but also the 
correct kinematic interaction. The resultant terms 
of the third-order anharmonicity contain no kine­
matic corrections. Their role in the theory of 
third-order nonlinear optical effects was evaluated 
by Ovander[tsJ. The fourth-order anharmonicity 
terms contain kinematic corrections. Their role 
in the theory of fourth-order nonlinear optical ef­
fects, which calls for an account of retardation, can 
be considered in similar fashion, and fourth-order 
anharmonicity terms can be separated by the ap­
proach described above 2>. We shall therefore con­
fine ourselves only to a discussion of the possibility 
of Bose-Einstein condensation of Frenkel excitons. 3> 

3. COLLECTIVE PROPERTIES OF AN IDEAL GAS 
OF PAULIONS 

We shall henceforth define the paulions, for 
brevity, as elementary excitations whose creation 
and annihilation operators satisfy the commutation 
relations (I). 

In this section, using the results of Sec. 2, we 
consider the collective properties of an ideal 
paulion gas, that is, a system to which the Hamilton 
operator (3) corresponds, whereas the operator of 
dynamic interactions4> between the elementary ex­
citations, that is, the operator Hint• is equal to 0. 

Substituting expressions (10) and (11) in (2) and 
going over from Pauli operators to Bose operators, 
we obtain, besides the zeroth-approximation 
Hamiltonian ( 6), also terms of two types in the 
operator of kinematic interaction of the excitons. 
The terms of the first type are those resultin_p from 
the fact, as seen from (11} that the operator PsPs 
,.o Ns. These terms are proportional to the excita­
tion energy b.; they are of the following form: 

00 ( 2) v + 
H' = ~ L; - ~ s.v+1s;+1 • 

v=i (1 + v)! (15) 

2 >see the paper by S. S. Toshich[17]. 

3 )An investigation of the collective properties of Wannier­
Mott excitons was carried out by Keldysh and Kozlov ['•] and 
by Kazarinov and Suris [19]. In earlier papers Moskalenko and 
Blatt et al. [20 ]) different aspects of Bose-Einstein condensa­
tion of excitons were also discussed. 

4 >rn crystals such as benzene, naphthalene, etc., made up 
of molecules having an inversion center, the operator Hint van­
ishes identically if one confines oneself only to allowance for 
the dipole-dipole interaction between the molecules. More de­
tails concerning the operator Hint are contained in the next 
section. 
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We shall consider in greater detail the term of 
(15) with v = 1, corresponding to scattering of two 
excitons by each other. In accordance with (15), 
this term has the following form: 

++ 
H'(v = 1) =- ~ 2; FJ •• B.B.•BsBs', (15a) 

ss' 

that is, it corresponds to scattering of excitons by 
each other with a o-like interaction potential 

If we go over to a coordinate frame connected with 
the mass center of the system consisting of the two 
excitons, then, in accord with (15a), the problem 
of determining the cross section for the scattering 
of the excitons by each other reduces the problem 
of the scattering of a quasiparticle by a potential in 
the form 

(16) 

A potential in the form (16) cannot be regarded as a 
weak perturbation, since this potential leads, in 
particular, to the appearance of local states 
(see[taJ). The appearance of local states denotes 
that two bosons can be in a bound state, that is, 
they can form a biexciton. In this connection, let 
us consider the question of local states in somewhat 
greater detail 5>. 

It should be noted first that, inasmuch as the 
quantity 2fl in molecular crystals is larger by more 
than one order of magnitude than the width of the 
exciton band, a local level at large depth, approxi­
mately equal to 2ll, always appears under the in­
fluence of the potential ( 16). If local levels that are 
remote from the lowest exciton bands, at distances 
the order of the width of the exciton band, appear 
at all under these conditions (large fl), they are 
always located in the intervals between the exciton 
bands. No shallow local levels are produced under 
the influence of the perturbation (16) below the 
lowest exciton band, which is the very band that is 
essential for the study of the possibilities of Bose­
Einstein condensation of excitons. 

However, the process of boson binding at a 
deep local level need not be taken into considera­
tion if no account is taken of processes of non­
radiative loss of individual excitons, whereby an 
energy ~ ll goes over into phonon energy. In crys­
tals where the quantum yield of the exciton lumin-

S)The situation under consideration is similar to that which 
occurs in the study of local states produced in the exciton 
spectrum in the presence of an impurity molecule whose exci­
tation energy differs greatly from the excitation energy of the 
molecule of the main substance (see [21 ' 22 ] and also [23 ' 24]). 

escence is close to unity (for example, in anthra­
cene crystals), nonradiative electron-loss proces­
ses do not have time to occur within the exciton 
lifetime (otherwise we cannot regard the number of 
excitons in the crystal as specified). 

It is clear that in crystals of this kind, the bind­
ing of two bosons at a deep local level is even less 
probable, since it presupposes replacement by 
phonons of double the energy. Therefore, in spite 
of the fact that states in which two bosons are 
situated in the same site are formally possible, 
their formation out of individual bosons is in prac­
tice forbidden from purely energetic considera­
tions6>. Thus, the potential process (16) leads only 
to the scattering of the bosons by each other. The 
effective scattering length cannot be calculated in 
the Born approximation. 

An exact calculation of the scattering of an ex­
citon by an impurity model, carried out by Dobov­
ski'i' and Konobeev[24 J, leads to the conclusion that 
in our case (fl » exciton width) the length for scat­
tering of long-wave excitons by each other is- a/2, 
so that the scattering cross section is 

(17) 

where a is the lattice constant. This result be­
comes obvious if we also use, for example, the re­
sults of the calculation of the length for scattering 
of a slow particle by a square well of depth 2fl and 
of radius a/2 (see[25 ], problem No. 1 of Sec. 130) 
under conditions when the inequality 2fl » 4n 2 /mea2 

is satisfied, and furthermore the quantity 
(a/ 2n )\I 4mell is not close to an odd multiple of 
7r/2 (that is, when there are no shallow levels in 
the well). In this case, the scattering length is 
equal to the radius of the well taken with the op­
posite sign, so that relation ( 17) holds, and this is 
precisely the result obtained if the potential well 
is replaced by a potential ''hill'' of height 2fl. In 
both cases, the scattering length is negative, that 
is, repulsion takes place effectively at shorter dis­
tances. This repulsion is a reflection of the fact 
that the true electronic excitations in a molecular 
crystal a1'€ not bosons but paulions, so that the 
presence of repulsion at small distances (shorter 
than the lattice constant) offsets the error connec­
ted with the transition from paulions to bosons. 

6 )0ne must not think that the local level is unphysical be­
cause the number of paulions at a given site does not become 
larger than unity on going to this level. To the contrary, on 
going to this level, the total number of paulions, which is not 
equal to the total number of bosons (see formula (11)) only de­
creases by two. 
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However, repulsion at short distances still does 
not make it possible to determine the state of the 
exciton system at low temperatures. Indeed, the 
presence of sufficiently strong attraction between 
the excitons at distances on the order of the lattice 
constant or larger can lead to the appearance of 
bound states, that is, to biexcitons (see, for exam­
ple,[26J), after which the analysis of the system of 
excitons at low temperatures becomes somewhat 
more complicated and calls for a special approach. 

In connection with the foregoing, let us calculate 
the remaining part of the kinematic interaction be­
tween the excitons, and let us consider first that 
part of the operator for the kinematic interaction 
between the excitons, which is not allowed for in 
H' (see (15)); this part, just like H', arises in (3) 

on going over to Bose operators, and is determined 
by the matrix elements vi,II ,. Substituting (lOa) in 

s,s 
(3) we find that the principal term in the operator 
that determines the kinematic interaction between 
two excitons not allowed for in (15) is7> 

c 1 I ++ ++ 
Hint=--~ Vss•(BsBsBsBs' + BsBs•Bs,B..). (18) 

2 ~*s; 
Let us discuss the properties of this operator in 

greater detail. When this operator acts on an exci­
ton situated at the point s, it transfers it to the 
point s'. However, the result of the action of this 
operator on the corresponding wave function of the 
system differs from zero only if besides the exciton 
at the point s there exists also an exciton at the 
point s' or else a second exciton at the point s. 
Thus, the matrix element of the operator (15) dif­
fers from zero only for such pairs of states, for 
which both excitons "sit" on one site either in the 
initial state or in the final one. We now use the fact 
that, as shown earlier, the excitons experience 
strong repulsion at short distances. It is easy to 
show, using the results of[21-24 ], that the wave func­
tion corresponding to small relative distances be­
tween excitons has an absolute value ~VI D., where 
V is a quantity on the order of the width of the ex­
citon band. Because of this circumstance, in spite 
of the fact that the quantity IV~s'l in (18) is of the 
order of the width of the exciton band, the correc­
tions to the energy of interaction between the exci­
tons, which result from the kinematic interaction 
( 18), are proportional to the corresponding powers 
of the small parameter lVII/ D. in different orders 
of perturbation theory, and are small compared 
with the width of the exciton band even at a distance 

7)For a reason which will explained in the next section, we 
have left out from (18) the terms which do not leave the number 
of excitons unchanged. 

on the order of the lattice constant. Inasmuch as 
the matrix elements v~s' decrease with increasing 
Is - s'l not slower than 1/ Is - s' 13, the interaction 
between the excitons, due to the operator (18), 
satisfies by virtue of the foregoing the following 
inequality at arbitrary distances between excitons: 

IV~s·l~li2/mels-s'l 2, s=Fs', (19) 

where me is the effective mass of the exciton. 
In accordance with Sees. 45 and 125 of the book 

by Landau and Lifshitz [26], fulfillment of inequality 
(19) denotes that even if the interaction V~s' corre­
sponds to attraction between excitons, it does not 
lead to the appearance of bound states, and its con­
tribution to the scattering amplitude can be calcula­
ted in the first Born approximation. Since, as 
already indicated, the interaction energy I Vc ,I is ss 
small even compared with the width of the exciton 
band, allowance for this interaction, which does not 
lead to the appearance of bound states, can only re­
sult in small corrections to the exciton-exciton 
scattering length, due to the energy ( 16). Therefore 
the exciton-exciton scattering length remains nega­
tive, thus pointing to the possibility of Bose­
Einstein condensation of the excitons in the absence 
of dynamic interaction between them. 

Using the scattering length obtained above, and 
also the results of[27 • 28 J, we find that if k = 0 corre­
sponds to the minimum energy in the exciton band, 
then the spectrum of an ideal paulion gas is of the 
form 

[( /i2k2 \2 4nnofi2a ( /i2k2 )]''• 
e(k)= -)+ - , 

2me me 2me 
(20) 

where n0 is the excitation concentration, n0 « a- 3, 

that is, it coincides with the spectrum of a weak 
non-ideal Bose gas with repulsion between parti­
cles. The use of the transition from the Pauli 
operator to the Bose operators has enabled us here 
to separate the kinematic interaction between the 
excitons, to determine the scattering length in­
volved in (20), and to use the well known results of 
the theory of a weakly non-ideal Bose gas. 

As follows from (20), when lkl « Van0/2 the 
quasiparticles have acoustic dispersion, and when 
lkl » Van0/2 they go over into "almost free parti­
cles'' with 

1i2k2 2nli2ano 
e(k)=--+ . 

2me me 

At a concentration n0 ;S 1018 exciton/cm3 and at 
a0 ~ 5 x 10-8 em, we have for the wave vector Van0/2 
~ 105 em - 1, i.e., on the order of optical. The en­
ergy shift for lkl » an0/2 is equal to 2wn 2an0/me 
;S 2 X 10- 4 eV. 
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We note that the deduction that condensation of 
elementary excitations of a system with Hamiltonian 
(3) is possible in momentum space agrees with the 
result of Bocchieri and Seneci [29 ], who also discuss 
the possibility of condensation of an ideal paulion 
gas in a crystal lattice. They, however, did not ob­
tain the spectrum of the elementary excitations of 
the system under the condensation conditions. 

In concluding this section, we note that the terms 
of the kinematic interaction in (15) with v > 1, which 
were not taken into account above, are negligible 
because of the proposed smallness of the exciton 
concentration (the concentration of the excitons 
produced by a laser apparently does not exceed 
1 o-4). If we recognize that the operator of the kine­
matic interaction H'(v =I) causes the state of the 
excitons in the presence of condensate to be stable 
(owing to the predominant repulsion), it is easy to 
show, using for example the Bogolyubov method [27] , 

that the unaccounted for terms in (15) add under 
these conditions only negligible corrections both to 
the energy of the ground state and to the energy of 
the elementary excitations; these are proportional 
to higher powers of the exciton concentration. 

4. COLLECTIVE PROPERTIES OF FRENKEL 
EXCITONS WITH ALLOWANCE FOR THE 
DYNAMIC INTERACTION BETWEEN THEM 

The operator Hint in (2) contains, generally 
speaking, third- and fourth-order terms in the 

+ 
operators P 8 and ~s· The third-order terms in the 
operators P s and P s in Hint always lead only to very 
weak interaction between the excitons. Since the 
width of the exciton band in the crystals under con­
sideration is much smaller than the energy of exci­
ton production, the third-order terms, which do not 
conserve the number of excitons, make a contribu­
tion of their own to the energy of interaction between 
the excitons only in even orders of perturbation 
theory. If v~Ii, is the matrix element that enters in 
the cubic terms, then, for example, the second­
order correction to the energy of this interaction is 
""'IV~i,l 2/ ~. that is, it is negligibly small compared 
with the width of the exciton band even if IV III, I is 

· · III ss of the order of this width. Inasmuch IV ,I decrea-
ses more rapidly than Is - s'l-3 with inJlfeasing 
Is - s'l, it can be assumed that an inequality such 
as (19) is always satisfied for this energy of inter­
action between the excitons. As to the fourth-order 
terms, they are significant and we shall consider 
them in greater detail. 

Using formula (15) of[3], we find that the exciton­
exciton interaction operator is 

(21) IV 1 "' IV+ + Htnt = T ..::::.J v ••. P.P.·P8P8·, 

s+s' 

where, in the notation of[3], 

V!i = Vss' (ff, ff) + v ••. (00, 00)- 2Vss' (Of, Of). (22) 

The first term in (22) is equal to the interaction 
energy of the molecules s and s' in the f-th excited 
state, the second equals the interaction energy of 
the same molecules under conditions when both 
molecules are in the ground state. As to the third 
term, it is determined by the energy of interaction 
between the molecules s and s' in the case when 
only one of them is in the excited state f. The 
quantities contained in (22) can be obtained if one 
knows the wave functions of the isolated molecule 
in the ground and in the f-th excited states. 

In crystals with inversion centers, the quantity 
v~, decreases like Is- sl-5 or faster with increas­
ing Is - s' I, and consequently at large Is - s'l an 
inequality of the type of (19) is always satisfied for 
the quantity lviV,I. Of greatest significance for the 
solution of the ~~estion of the possibility of forma­
tion of a biexciton is therefore the sign and magni­
tude of the interaction viV, in the case when the ss 
molecules s and s' are nearest neighbors. a> If the 
quantity V~, is positive or negative in this case, 
but its absolute value is small compared with the 
width of the exciton band, then the dynamic interac­
tion, just as the kinematic interaction considered in 
the preceding section, does not lead to formation of 
bound state of two electrons, so that the Bose­
Einstein condensation of the excitons is possible 
in this case. 

Inasmuch as the Bose-Einstein condensation of 
the excitons is accompanied by the appearance of a 
spectrum (20) satisfying the Landau superfluidity 
criterion, this condensation could apparently be 
detected by observing the contribution of the super­
fluid component to the energy transfer from the 
main substance to the exciton detector, in experi­
ments similar to those of Simpson[30]. The energy 
transfer of the super-condensate excitons can be 
estimated, as before, with the aid of the diffusion 
equation. As to the motion of the condensate, it can 
be initiated by the concentration gradient of the ex­
citons which are produced in connection with the 
fact that their concentration is small on the surface 
of the exciton-capturing detector. 

B)If a biexciton is produced, the quantityV88 , 1V might be 
estimated from the shift of the term of the biexciton relative to 
double the energy of the exciton. Unfortunately, there are no 
corresponding experimental data at present. 
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We note that in the opposite limiting case, that of 
very narrow exciton bands, when the interaction 
(21) leads to the "sticking" of the excitons in pairs, 
triads, and larger exciton "drops" 9>, the transition 
used above from the Pauli operators to the Bose 
operators makes it necessary to take into account 
the terms with v > 1 in the operator (15), since the 
distribution of the excitations of the crystal ceases 
to be homogeneous in this case, and the small 
parameter (4) of the theory disappears. In this 
situation, it is more correct to describe the system 
of excitations in terms of excitons (paulions) that 
are ''localized'' at the lattice sites and diffuse in 
the lattice, so that the process of coagulation of the 
excitons can be described by the well known method 
of colloidal statistics [3i]. 

We note in this connection that the character of 
the distribution of the "exciton drops" by sizes de­
pends on the lifetime of the exciton, and also on its 
mobility, and should be considered separately in 
each concrete case. If, however, the formation of 
"exciton drops" does take place, then the crystal 
becomes optically inhomogeneous, since the polar­
izability of the excited molecules differs from the 
polarizability of molecules in the ground state. This 
circumstance can lead to an additional scattering of 
light and to other analogous effects. As to the en­
ergy transfer from the main substance to the im­
purity or to the exciton detector, this transfer 
should decrease rapidly as a result of the small 
mobility of the "drops" compared with the mobility 
of the individual excitons, It is possible that this is 
precisely the simplest way of investigating the 
states of the exciton system. 

In the foregoing discussion of the properties of 
the exciton systems we disregarded the possibility 
of exciton decay by collision, accompanied by 
formation of free carriers or of higher-energy 
exciton states. This process is particularly impor­
tant in the case when the exciton system has a ten­
dency to produce drops, since it prevents the 
formation of sufficiently large coagulations of ex­
citons. On the other hand, if repulsion between ex­
citon predominates in the system, then the process 
of exciton decay by collision is apparently not very 
significant under realistic concentrations. 

If n is the concentration of the excitons, then the 
number of decays per unit time is equal to yn2, 

where y is the corresponding kinetic parameter. 

9)1£ the interaction (22) corresponds to attraction, with the 
modulus of the energy (22) large compared with the width of the 
exciton band for arbitrary nearest neighbors, then the character 
of the interaction (attraction) remains the same for arbitrary ex­
citation groups. 

At the same time, the number of exciton decays 
with emission of a photon is equal to n/T, where 
T is the exciton lifetime. Thus, decays resulting 
from the collision are perfectly insignificant if 
n :.S 1/y T. For singlet excitons in anthracene[32 ] 

T :::::: 10-8 sec andy :::::: I0- 12 cm3/sec, so that when 
n ~ 1020 cm-3 the collision-induced decays are in­
significant in this case. The situation is somewhat 
different in anthracene with triplet excitons. Here 
T :::::: 2 x 10-3 sec andy :::::: 10-11 sec, so that decays 
occurring during the collision can be regarded as 
inessential only during a time on the order of 
10-6-10-8 sec. This time, however, is much larger 
longer than the time of establishment of thermo­
dynamic equilibrium of the excitons with the lat­
tice, and nevertheless sufficient for a noticeable 
migration of the exciton10>. 

In conclusion the authors are grateful to L. N. 
Bulaevskil', V. L. Ginzburg, L. V. Keldysh, Yu. V. 
Konobeev, R. A. Suris, and S. V. Tyablikov for use­
ful remarks made during a discussion of some of 
the problems touched upon in this paper. 
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