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The response of a quantum system under the action of several coherent fields which are in 
resonance with various coupled transitions are investigated by aid of the density matrix and 
Maxwell's equations. Some features of the system as a source of laser radiation are also 
studied. It is shown that under some conditions which can be realized in the optical range, 
nonlinear interaction of allowed transitions via forbidden ones can occur. This interaction 
results in a change of the dispersion properties of the allowed transitions. Under genera­
tion conditions the transition interaction results in a change of the thresholds and genera­
tion frequency for each transition, the change depending on the frequency and intensity of 
the auxiliary-transition radiation. 

SEVERAL authors [1- 31 have shown that when 
atoms or molecules interact with several micro­
wave fields that are resonant with different coupled 
transitions, a change in their susceptibilities is 
observed. The change in the susceptibility can be 
either due to a redistribution of the particles 
among the energy levels, or to the existence of a 
non-linear interaction between the interatomic 
motions induced by the different fields. The ef­
ficiency of interaction is greatly influenced by the 
relaxation properties of the medium. By now, 
lasers generating at different transitions of the 
same substance have already been developed, in­
cluding those generating at several transitions 
jointly [4- 71. It is therefore of interest to ascertain 
what effects can be expected in the interaction of 
optical transitions and how different kinetic pro­
cesses become manifest in this case. 

In this paper we investigate the optical proper­
ties of atoms that are under the influence of sev­
eral coherent fields, and the singularities of such 
a system when viewed as a source of coherent 
emission. The optical transitions are character­
ized by relaxation properties and selection rules 
other than those of the microwave ones considered 
in [t-31. It turns out as a result that in the optical 
band a nonlinear coupling can be effectively pro­
duced, via the forbidden transitions, between the 
polarization components at the frequencies of the 
allowed transitions. This is reflected in the op­
tical properties of the system. 

1. RESPONSE OF A QUANTUM SYSTEM TO THE 
ACTION OF SEVERAL COHERENT FIELDS 

Let us consider a quantum system described by 
a time-independent Hamiltonian H0 with the eigen­
value scheme shown in Fig. 1. The optical electric­
dipole transitions a, b, c, and f are allowed while 
x and y are forbidden. The relaxation properties 
of the system are described by the level widths 
'Yn• by the relaxation-transition probabilities per 
unit time 'Ymm ( m > n), and by the reciprocal 

. 2 1 3 1 phase-memory tlmes 1'1 = 1'2 = 'Ya· 1'1 = 1'3 = 'Yx• 
etc. Each of the levels is filled, from the levels 
which do not enter in the system under considera­
tion, the excitation probability per unit time being 
Qn· 

The forced motions in the system under the in-
fluence of the field 

E (r, t) = Re {EaUa (r) eiDat + EbUb (r) el0 bt 

+ E0U0(r) ei0 ct + E1U1(r)eiD1t} 

will be described by the aid of a density matrix p, 
which satisfies the equation 

{} 
-Pmn + i[Ho + W(r, t), P]mn- Rmn(P) = 0 (li = 1),(1.1) at 
where W is the Hamiltonian of the perturbation, 
and the matrix elements of the operator of relaxa­
tion and excitation are 
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2; ( Phh'\'hn - Pmm'\'mh), 
h 

-vn mPmn, m =I= n 

m=n 

L; Phh'\'hn = Qn, 
"*4,3,2 

2; '\'mh = '\'m· 
h 

(1.2) 

For convenience we represent the matrix of the 
perturbation Hamiltonian in the form 

·o t 
{W mn (r, t)} = 0 ybVbe' b 0 (

0 raVaemat 0 y1V1eml) 

·o t ' 
K.C. 0 YcVce' c (1.3) 

0 

where the frequencies S.~a• i~b• Qc, and Qf are 
respectively close to the eigenfrequencies wa, 
Wb, we, and Wf of the transitions a, b, c, and f. 

The optical properties of the medium will be 
investigated with the aid of the complex polariza­
tion that arises at the frequency of each of the 
transitions. Accurate to the third approximation 
in the stationary mode, we can seek the matrix of 
the solution of Eq. (1.1), confining ourselves to 
resonant terms, in the form 

n2 

{Pmn (r i t)} = (

nt P12 

K.C. 

where 
Ptz = aei0 at + fieOat, 
psq = ceirJ.t + ceioct, 

Pta= xei0 a1 + xei!lxt, 

Pta 

"") P2a P24 . 
na Ps4 ' P;; = P \i 

n4 

pzs = bembt + '5eiobt, 
Pt• = fei 0 t1 + fei?itt, 
Pz• = yeiDut + 'llei!l.,/; 

(1.4) 

(1.5) 

Qa = Ql-::::: Qb- Qc, Qb = Qf -Qa- Qc,Q-: = Qf- Qa- Qb, 

Qf = Qa + Qb + Qc, Qx = Qa + Qb, 
Q" = Qf - Qc, Qy = Qb + Qc, Ql] = Qf - Qa. 

The second-approximation solutions for An <2> 
<2> <2> <2> <2> <2> a = n2 - n1 , Anb = na - n2 , etc., represented 

in matrix form, are 

( !ln~::) (!lna) (IXa flnb flnb ~a 
A (2) = + unc flnc Sa 
fln12) 

f flnt IPa 

where Anc = n~o> - n~0 >, Anf = ni 0>, etc. are the 
zeroth-approximation solutions, which describe 
the fraction contributed to the formation of the 
difference of the populations in each of the transi­
tions by the sources of excitation of the different 
levels. For example, when Q1 = Q3 = 0 -,.e have 

!lna = '\''-3'\'32('\'t- yzi) Q4 + ~- '\'21 Qz , 
'\'3'\'2'\'1 '\'4 '\'1 '\'2 

'\''-3(yz-ys2) Q. Qz 
!lnb = -----'-- flnc :- '\'3- '\''-3 Q,, 

'\'2 '\'3 '\'4 

flnt = '\'3'\'2 ( '\'1 - vu)- '\'43'\'32'\'21 Q4 - '\'21 Qz ; ( 1. 7) 

'\'3'\'2'\'t '\'4 y1 V2 

The values of onJJ. are 

w"-Q" . . 
D" = + ~ = 6Q" + ~. 

"" and the coefficients a, {3, s, and cp describe the 
contribution of each of the fields to the redistribu­
tion of the particles in the allowed transitions, 
and are completely expressed in terms of the re­
laxation constants. Thus, 

P. _ 2 '\'a P. 2 '\'2 + Ys - '\'32 
pa - -, pb = - '\'b , 

Y2 '\'3'\'2 ( 1. 8) 

r:>. _ 2 (y.-y'-3)(yz-y32), R 2 V•s('\'2-'\'32) 
pc - Yc ' t'f = - Yt 

V•'\'3'\'2 Y•Y3Yz 
Depending on the relation between the relaxa­

tion constants, the role of each of the fields in the 
redistribution of the particles among the levels 
under consideration can be different. Whereas the 
field that is resonant with the transition under 
consideration always decreases the inverted popu­
lation (a a• f3b, sc, cp f < 0), interaction with other 
fields may contribute to the occurrence of inver­
sion. For the transition b, for example, we note 
that the action of the field Ec is proportional to 
the factor 1- y 43 /y4, whereas the analogous ac­
tion of the excitation source Q4 is proportional 
to Y4a1Y4· The action of both factors is propor­
tional to y 2 - y 32 and contributes to the creation 
of inversion if y 2 > y 32 . Under these conditions, 
the action of the field Ef is favorable only when 
Anf < 0, and in the opposite case it worsens the 
conditions for the formation of the inversion 
An~> 

It also follows from the second-approximation 
solutions that the interaction between the oscilla­
tions at the frequencies of the allowed transitions 
produces in the system oscillations with combina­
tion frequencies close to the natural frequencies 
of the forbidden transitions. The amplitudes x, K, 

y, and TJ of these oscillations are proportional to 
the product of the field amplitudes at the combin­
ing frequencies, and have three resonances. These 
are the resonances of the combining transitions 
and the "combination" resonance corresponding 
to the requirement that the frequency of the com­
bination oscillation be close to the natural fre­
quency of the forbidden transition. 

The combination oscillations x, K, y, and 1'), 

which are not accompanied by emission of photons 
of suitable frequency, ensure the "reactive" 
coupling between the oscillations of the allowed 
transitions via the forbidden ones, and introduce 
additional resonances in the third-approximation 
solutions: 
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b<3> = _!_ (fin~2> Vb + 'Va xVa*-~ yVc"J\ , 
Db 'Vb 'Vb 

o<3>=_!._ (Y"xVa·-~'YJVc" ). (1.9) 
Db 'Vb 'Yb 

The remaining solutions have an analogous con­
struction. 

Thus, the solution for each transition consists 
of two components. The first is proportional to 
the intensity of the resonant field and describes 
oscillations having the same frequency and phase 
as this field. Besides the ordinary oscillations, it 
receives contributions also from the combination 
oscillations. The second component is due ex­
clusively to the combination processes and does 
not depend at all on the intensity of the field which 
is resonant to the given transition. It describes 
oscillations whose frequency and phase are in 
general not equal to the frequency and phase of 
the resonant field1l. 

2. DISPERSION PROPERTIES OF THE RESPONSE 

By way of an example let us consider the com­
plex amplitude Pb of the polarization in the 
transition b, belonging to the first spatial har­
monic. For simplicity we consider the case Ua 
+ Ub + Oc = Of and ka + kb + kc = kf, when both 
components of the solution (1.9) for the transition 
b describe oscillations at the same frequency Ub· 
We assume that the fields are essentially inhomo­
geneous only along one coordinate axis: 

Va = A sin kaz, V b = B sin kbz, 

Vc = C sin kcz, V1 = F sin k1z, 

where A=- Eada/2ya, C =- Ecdc/2yc etc., da 
= d12 is the matrix element of the dipole moment 
of the transition, and k is the projection of the 
wave vector on the z axis. 

With the aid of the third-approximation formulas 
we can obtain 

~pb =.!!_ [anb+~ (Pallna+A) 
Ndb Db 2 

1 
X lA 12 +2 (Pcllnc + ~) ICI 2 

+ __! PtllntiFI 2 + ~ PbllnbiBI 2 ] + __!__~A*C*F· (2.1) 
2 4 4 Db ' 

l)Tbe possibility of a similar effect in a two-level system 
was noted by Kuznetsova and Rantian[8]. 

D a - (i).,- Q., + iy., _ Jtn + 'Vb "n + ·Yo: 
., - -- u~~a -u~~b l-, 

'Va 'Va 'Va 

Dye= liQc + 'Vb l)Qb + i 'VY (2.2) 
Yc Yc 

( N-density of the atoms of the working component 
of the medium). The numerical coefficients in 
formula (2 .1) are due to the operation of separat­
ing the first spatial Fourier component of the 
polarization, and vary with the character of the 
spatial inhomogeneity of the fields. The coeffi­
cients A, 1;, and e describe the contribution of 
the combination processes to the formation of the 
polarization in the transition b. The correspond­
ing formulas for the other transitions have a form 
which is symmetrical to (2.1). 

It follows from (2.2) that A =A ( oQb). 
1; = 1; ( oUb) and e = ®( oUb), meaning that the 
contributions made to different sections of the 
spectral contour of the transition are different. 
The conditions for the manifestation of the effect 
are as follows: 

IAI;;z:,max {lf:la6nal, lfinbl}, 

l1:ld;max{lf:lcllncl, lfinbl}, l6l;;z:,lfinbl· (2.3) 

When conditions (2.3) are satisfied in fields Ea. 
Ec and Ef that noticeably perturb their own 
transitions, that is, when I A 12, I C 12, IF 12 ~ 1, 
one can observe a distortion of the dispersion 
properties of the transition b; this distortion in­
creases with increasing intensity of these fields. 
The required fields I Ed/y I ~ 1 are attained in 
laser cavities when the threshold is exceeded by 
several times (see, for example, formula (12) 
of [SJ). At small relative detunings, the conditions 
for the appearance of combination processes take 
the form 

'Yo I 'Va fina ,....._ { 1. 2 'Va I fin" I} 
- 1--- .pmax --
Yx 1 'Vb finb ' V2 finb ~ 

(2.4) 

Yc I Yc /!J.nc I { I fine I} - --- ;,:;:max 1, Pc- , 
yy 1 'Yb finb finb 

(2.5) 

"!__!_ ( 'Va fine+_}':__ fina J- ( 'Va _}':__ + ~~) fint 1;;,:;: 1. 
'Yb , 'Yx ~nh '(y ~nb 1 'Vx 'Vb 'VY 'Vb finb I (2.6) 

It follows from (2.4)-(2.6) that in the optical 
band the effectiveness of the combination oscilla­
tions is determined not only by the ratio of the 
relaxation constants, but also by the ratio of the 
differences of the populations in the interacting 
transitions, which can be appreciable in the op­
tical band. With respect to relaxation, it is neces­
sary above all that the relaxation constants of the 
combination processes be smaller than or close 
to the widths of the spontaneous-emission lines at 
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the corresponding transitions ( Yx .$ Ya• Yy .$ Yc) · 
Further, if the population difference in the 

transition under consideration is much smaller 
than in the transition combining with it, then a 
relatively large change takes place in the suscep­
tibility, owing to the incoherent interaction of the 
transitions, which changes only the difference in 
the populations. In order for the combinations of 
the first type ( Y2 AB I A 12• Y2 l:B I C 12) to be 
noticeable, it is necessary that the line width of 
the spontaneous emission in the additional transi­
tion be close to the width of the level which is 
common with the transition under consideration 
( 2 Ya ~ Y2• 2 y c ~ y 3). To observe the combination 
effect of the second type ( Y4eA*C*F) at this ratio 
of the population difference, it is necessary that 
the line widths for the additional transitions be 
larger than or close to the line widths of the 
spontaneous emission for the transition under 
consideration. 

If the ratio of the population differences is in­
verted, the principal factor that must be compared 
with the magnitude of the combination contributions 
is the proper population difference in the transi­
tion under consideration. In this case it is neces­
sary to satisfy the condition Ya· Yc· Yf ~ Yb· and 
this requirement must be more stringent for the 
combination process of the second type. 

Obviously, the conditions for the observation 
of the effects connected with the combination 
processes are easiest to realize in gases. In this 
case the most favorable situation is one in which 
the broadest of all the levels of two transitions 
under consideration is the common level. In 
gases, however, additional effects connected with 
the motion of the particles can arise if the Dop­
pler width of the spectral line is much larger 
than the dispersion width ( ku/y » 1). An investi­
gation of these effects is beyond the scope of the 
present work, but the results can be used for 
estimates for long-wave transitions of heavy inert 
gases ( ku/y ~ 1 )2>. 

Let us consider a model with characteristics 
that are typical for this case: Y4 = y1 
= 8 x 10-7 sec-1, y 41 = y 43 = 0.1 x 107 sec-1, y 3 

= 108 sec-t, y 32 = 0.8 x 107 sec-1, y2 = 107 sec-1, 

y 21 = 0.5 x 107 sec-1, Ya = Yy = 4 x 107 sec-1, Yb 
=5X107 sec-1, Yc=Yx=9X107 sec-1, Yf=8 
x 107 sec-1, Q4/y4 ~ 10-10, Q2/y2 ~ 10-11, and 
Q3 = Q1 = 0. With the aid of formulas (1.7) and 
(1.8) we get 

2)Thus, for example, for the 3s2 - 3p4 and 3p4 - 2s2 transi­
tions, at which generation was attained, the respective values 
of ku/y are 3 and 7. 

Q2 Q, 
Ana= 0,9- -5·10-3-= 8,5·10-12, 

V2 V• 
Q2 Q. 

Anb :::::; - - = - 10-11, Ant= Ane :::::; - = 10-10, 

V2 V• 
Ba:::::; 8, Bb :::::; -10, Be:::::; 0.4, Bt:::::; -2, 

I A I ~ Ba Ana, I~ I ~ I BeAne I , 

181...., IPeAnel, IPaAnal, I BtAntl (11\Qa,b,c,fl ~ 1). 

Thus, under the considered conditions, the ex­
citation of level 4 exerts a noticeable influence on 
the formation of inversion in transition a, and has 
practically no effect on the population difference 
in transition b. Excitation of level 2 exerts no no­
ticeable influence on the population difference of the 
transition f. The effect of the field Ef turns out to 
be the largest in the change of the population differ­
ence of the transition b, producing an increase in the 
latter. Fields Ec and Ea of equal intensity in­
crease .tln~> in approximately equal fashion. How­
ever, the action of the field Ec is manifest not 
only in an increase in the difference of the popula­
tions of the transition b, but also in the change of 
its dispersion properties, whereas the action of 
the field Ea under the same conditions only 
changes the magnitude of the population difference. 

Figure 2 shows the imaginary (solid) and real 
(dashed) parts of the factor ( f3c one + l: )/ .tlnb~· 
describing the ratio of the weight of the contribu­
tion to the polarization by the fields Ec and Eb 
to the intrinsic characteristics of the transition 
at the center of the line. Curves 1 correspond to 
oQc = -0.4. On curves 2 we show for comparison 
the case one = 0. It is seen from curves 1 that 
the contour of the contribution due to the field Ec 
is antisymmetrical, and has a positive maximum 
and negative minima. Since the contribution of the 
field Ec can even change sign in different parts 
of the contour of the transition. The maxima and 

FIG. 2. Dispersion properties of the contribution of the 
field Ec to the polarization in the transition b. The real 
part is shown by the dashed line, the imaginary one by the 
solid line; curves: 1-BOc = -0.4, 2-BOc = 0. 
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FIG. 3. Dispersion properties of the contribution of the 
field Ea, E0 and Er to the polarization in the transition b. 
The real part is represented by the dashed line, the imagi­
nary one by the solid line; ana = 1, anc = -0.4, 

ana + anb + anc = anf. 

minima are the results of a superposition of the 
resonances referred to above. In this case the 
position of the maximum Im J:./ ~nb~ is close to 
the point onb = - ( y c hb) Oflc, tending to 0 nb 
= 0 as one-- 0. As follows from curves 2, the 
intensity of the maximum and of the minima in­
creases in this case. 

The dispersion properties of the factor 
®/ ~nbDb as a function of onb are also described 
by a complicated contour. The solid and dashed 
lines of Fig. 3 are respectively the imaginary and 
real parts of this factor for the case onb = 1, 
one = -0.4, ona + onb +one = onf. Thus, the 
dispersion properties of the transition b in the 
model under consideration can experience notice­
able changes when the field intensity is increased. 
Therefore the effects noted can lead to a distortion 
of the properties of the interacting optical signals 
and exert an influence on the operation of lasers. 

3. FEATURES OF GENERATION IN THE CASE 
WHEN COMBINATION PROCESS DO NOT 
APPEAR 

Let us consider the self-consistent problem of 
the emission from atoms in a laser cavity. In 
view of the fact that we are investigating only the 
case of generation near threshold, we assume that 
the radiation is single-mode in each of the transi­
tions. To investigate the interaction between the 
radiation and the "active" medium in the optical 
resonator, we obtain from Maxwell's equation in 
the stationary state the equation 

Q"'2 - ka:2 Aka: 1 
-----i--= -8:rtPa:- (c= 1), (3.1) 

Qa:2 ka Eu. 

where na is the generation frequency, ka the 
wave vector resolved by the interferometer, ~ka 
the width of the transmission band of the inter-

ferometer relative to radiation of frequency na 
~ ka ( l na - ka l :S ~ka ), Ea the amplitude of 
the field intensity of the radiation at this frequency, 
and Pa the amplitude of the first spatial harmonic 
of the complex polarization at the frequency na. 
Thus, knowing Pa and equating real and imaginary 
parts of (3.1), we obtain the conditions imposed on 
the frequency and generation power by the rates of 
excitation and by the relaxation characteristics of 
the quantum system and the Q of the interferome­
ter. 

We confine ourselves to an investigation of the 
case of interaction of electric-dipole cascade 
transitions 4 -- 3 -- 2 -- 1 ( F = 0). We consider 
generation in the transition b when the conditions 
(2.3) -(2.5) are not satisfied, that is, the field in­
teraction merely redistributes the particles over 
the levels. The expression in the curly brackets 
in formula (2.1) will in this case be pure real and 
will describe the saturated population difference. 

A. If the fields Ea and Ec are specified and 
the field Eb is generated, then, substituting (2.1) 
in (3.1), we obtain formulas for the frequency and 
amplitude of the generated field: 

(Qb2 - kb2) /Qb2 = fjQbf1kb/kb, (3.2) 

IBI 2 = Kb'(1- ITb'/Anb), (3.3) 

where 

ITb' = fib- 1/2 Ba6na lA 12 - 1/2 Bc6nc ICI 2, rrb =I Db 12 Mib, 

Mcb = AkbVb I 4:rtNQbldbl 2 , Kb' = Kb = - 4lalDbl 2 I Bb· 

Putting in (3.2) nb + kb ~ 2nb and ( wb - kb)/yb 
= okb we get 

(3.4) 

We see therefore that in our case the generation 
frequencies do not depend on the power and are 
closer to the natural frequency of the system 
having the higher Q (atomic or resonator). When 
kb = Wb we get nb = Wb· It is seen from (3.3) that 
Ilb is the threshold value of ~nb. We shall hence­
forth take the threshold value of ~n to mean al­
ways the zeroth-approximation ~ corresponding 
to the threshold excitation rates. 

In the absence of the fields Ea and Ec, the 
proper generation threshold is Ilb = I Db 12 ~kb. 
The presence of additional fields in the system 
can raise or lower the threshold, depending on the 
ratio of the relaxation constants and of the popula­
tion differences in the additional transitions. From 
the formula for Ilb and from (1.8) it follows that 
when ~na > 0, ~nc > 0 and y 2 > y 23 the fields Ea 
and Ec lower the threshold of generation in the 
transition b. Comparing the experimental values 
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of Kb and rrb with the calculated values, we can 
determine the unknown relaxation constants from 
the known characteristics. If the fields that are 
resonant to the transitions a and c are homo­
geneous, then the coefficients Y2 in the formula 
for rrb must be replaced by unity. The coefficient 
% in the formula for Kb is also connected with 
the inhomogeneity of the generated field along the 
resonator. 

B. Assume that the resonator has several 
natural frequencies that are close, for example, to 
the natural frequencies of the atomic transitions 
a, b, and c. Then, with increasing excitation 
power, the first to begin to generate is the transi­
tion in which the condition .6.n = I D I2Ak' is satis­
fied most rapidly. The radiation produced by one 
of the transitions facilitates the excitation of 
generation by the other transitions. When all three 
fields generate simultaneously, their frequencies 
are described as before by formulas such as (3.4), 
and the amplitudes must satisfy the following 
system of equations: 

3/• aafma lA 12 + 1/2 abfmb lB 12 + 1/2 acfmc ICI 2 

= lDal 2 Alia- Ana, 
1/2 ~abna lA 12 + 3h ~b6nb JB 12 + 1/2 ~c6nc I C 12 

= IDbl 2 A'lib- Anb, 

1/2sb6nblBl 2 + 3/,sc6ncJCJ 2 = lDcl 2.Akc- tlnc. 
(3.5) 

For each of the transitions, the solution can be 
represented in the form (3.3). Thus, under condi­
tions when the fields Ea and Ec generate, the 
formulas for the threshold population difference 
II and for the coefficients Ka,c for the transition 
b are 

J(ba,c = ~. aasc !Db 12 [~ aa( Sb~c- ~ Sc~b \} 
2 2 \ 4 

+~a (23 s"ab- s~ac) r1
• (3. 7) 

If Yt > Y21 and y 2 > y32, then it turns out that the 
coefficients Sb, f3c, ab, f3a, and ac are positive. 
Analysis of (3. 7) shows that under these condi­
tions Ka,c > Kb. Thus, if the following conditions 
are satisfied for the transitions c and a 

Anc -lDcl 2 A 'lie> 0, Ana -lDal 2 A'lr,a > 0, 

then generation by the transition b can be excited 
even if the proper threshold is not exceeded, that 
is, when .6.%- I~ 12 .6.kb < 0). 

For the other elements of the cascade, the 
formulas for the threshold values of .6.n, under 
conditions of generation by the remaining transi­
tions, are 

IIcb,a= !Dci 2.Alfc+ ·(_i~-2 ~aab \J-\tlnb-\Db\ 2tl'lib) 
2 sb 3 aasb 

+(~-~~baa·)-! (tlna-\Da\ 2 117ia), (3 ·8) 
Sb 4 Sb~a 

_ 3absc - 2sbac _ 
IIab,c = IDa\ 2 Aka + (tlnb- \Db\ 2 tlkb) 

9/z~bSc- 2~cSb 

+ 3~bac- 2ab~c (Anc _ IDc\ 2 .AJ1U. (3.9) 
9/2~bSc- 2~cSb 

If we consider the conditions of excitation in 
the presence of generation by only one of the ele­
ments of the cascade, then it is necessary to set 
equal to zero in (3.6), (3.8), and (3.9) those coef­
ficients which make independent the corresponding 
pair of equations in the system (3.5). It follows 
from (3.6), (3.8), and (3.9) that if II~ < IIE and 
IIE > .6.nE > rrt then II~ > rr0 and has the meaning 
of the threshold population difference in the transi­
tion o, for which joint generation is still realized. 
It can be shown, however, that even if II~ > rr0 at 
fixed .6.n0 > II~, the generation power in the transi­
tion o in the presence of generation by the transi­
tion E is larger than in the absence of generation 
by the transition E. The latter is connected with 
the fact that K~ > K0 . This is also seen directly 
from (3.5). At all transitions, the generation is 
excited simultaneously only under the condition 
that the relation .6.n = I D 12 .6.k is satisfied in each 
of the transitions simultaneously. In the opposite 
case, for fixed .6.lla, it is possible to excite or 
stop the generation by some transitions by selec­
tively varying the resonator Q for the other 
transitions. 

Let us consider the limiting case, when Ymn 
« Yn· Ym and the excitation is realized only at 
the level 4. Under these conditions .6.nb = .6.na 
= 0 and the lower levels are filled essentially as 
a result of induced transitions. If the resonator 
bandwidth is sufficiently large, then we get from 
(3.4) that I Dal =I Db I= I Del= 1, and from 
formulas (3.8), (3.5), and (3.9) it follows that the 
threshold rates of excitation of the level 4 are 
related like 

Q4:Q;,C:Q,.c,b 

= Me:(\ A'lic + 3
2 '\'S + '\'4 d'lib) : [ tl'lic + 3

2 12+ '\'4 tlkb 
'\'4 . '\'4 
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Thus, it is easiest to excite the cascade if y 4 

» y 3 » y 2, and then 

The numerical coefficients are connected as be­
fore with the inhomogeneity of the generated 
fields. As follows from the formula, this factor 
raises the excitation threshold. 

4. INTERACTION OF TRANSITIONS WITH 
PARTICIPATION OF COMBINATION 
PROCESSES 

In this case the expression in the curly brack­
ets of (2.1) becomes complex and does not repre­
sent simply the saturated population difference. 
The solution of the system (3.1) for the general 
case now has too complicated a form. We there­
fore confine ourselves to an analysis of the inter­
actions of only two transitions, band c. 

We consider the case when the generation is 
realized only in the transition b, and the field Ec 
is specified ( Ea = Ef = 0). It follows from (3.1) 
and (2.1) that 

( 1 + Akb )6Qb = 6kb- ..!._ Akb Mb-1Jm~ ICI2, (4.1) 
' 2vb . 2 2yb 

3/. f:lbllnb IB 12 + 1/2(Pc6nc- Im {Db • ~}) ICI 2 

= A7CbiDbi 2 -Anb. 

The effect is connected with the fact that an 
additional phase shift due to the combination 
processes is observed during the passage of 
the radiation through the medium. This phase 

(4.2) 

shift is proportional to the intensity of the field 
combining with the given field. In addition, the 
field Ec gives rise to a ''hump'' on the plot of the 
grain of the transition if .6nc < ~nb, and to a "dip" 
of ~c < .6nb, at a frequency close to the resonance 
of the combination process 

under analogous conditions, the formula for oflc 
has a symmetrical form. 

If I oflbl. I Oflc I « 1, then we find from (4.3) 
and (4.4) that when .D.nc » .D.nb > 0 the sign of the 
pulling is opposite to the sign of Oflc, and when 
.D.nc « .D.nb the signs are the same. The magnitude 
of the effect depends essentially on the ratio 
y c I y y and on .D.nc and .D.nb. If y c ~ 'Yb ~ y y• as 
is frequently the case in gases, and if I C 12 ~ 1 
and .D.nc ~ .D.nb, then, recognizing that .D.k-1 .D.n ~ 1, 
we find that the order of magnitude of the pulling 
is ( .D.k/ 2yb) o flc and can be appreciable. 

The effect is connected with the fact that an ad­
ditional phase shift due to the combination proces­
ses is observed during the passage of the radiation 
through the medium. This phase shift is pro­
portional to the intensity of the field combining 
with the given field. In addition, the field Ec gives 
rise to a "hump" on the plot of the gain of the 
transition if .D.nc < .D.nb, and to a "dip" of .D.nc 
< .D.nb, at a frequency close to the resonance of 
the combination process ( oQb ~ -( 'Yc hb) Oflc). 
Since the generation frequency at a fixed excita­
tion level can be determined also by the condition 
that the gain per pass be equal to the losses due 
to reflection from the mirrors, then the result can 
be understood from this point of view. 

The solution of Eq. (4.2) for the amplitude of 
the field generated in the transition b in the 
presence of a field Ec can be represented as be­
fore in the form (3.3), with the following values of 
the coefficients: 

(4.5) 

1 D*D* )] 
Ih" = [ nb - 2 ( ~c + Im -iy~ 6nc I c 12 

[ 1 V D * J-1 x 1----=-rm-b-ICI2 
2 Vb Dy•Db 

(4.6) 

From (4.5) and (4.6) it follows, under the condi­
tions I o flb I , I o flc I « 1 and .D.nc > 0, that the 
combination process lowers the generation 

(4.3) threshold, but at the same time the value of K~ 
is decreased by an approximate factor 

where 

1 [( V11) 'Yc ] 
Xc= -ID •l 2 1 +- 6n0 --6nb , 

Y · 'Yc '\'b 

1 [( '\'y) Vb ] Xb = --- 1 +- llnb --fmc . 1Dv•l 2 'Yb 'Yc -

[ 1 - ( Y2)( y~hb'Yy) I C 12 ]-1• Information concern­
ing these characteristics is contained by their 
variation with the value Ec, since these charac­
teristics are connected with the relaxation con­
stants. However, as follows directly from (4.2), 

(4.4) at fixed .D.nb > 1fb > lib, in spite of the fact that 
Kb < Kb· the appearance of the combination pro-
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cess increases the power generated in the transi­
tion b if Anc > ( y c /yb) Anb, and decreases it in 
the opposite case. If the field Ec is represented 
in the form of a traveling wave, then the coeffi­
cient % is front of I C 12 in the obtained formulas 
should be replaced by unity. 

When lone I ;: 1 the generation threshold may 
rise (if Im ( DbD6 /De) + f3c < 0 and ~nc < 0, and 
also as a result of tfie possible increase of 
Jonb I) solely as a result of the combination 
phenomena. This can lead to an interruption of 
the generation and can serve as an experimental 
confirmation of the appearance of combination 
processes. 

By solving (4.2) together with the equation 
symmetrical to it for the field Ec, it is easy to 
obtain a solution for the case of combined genera­
tion in the system of both fields. This solution is 
too complicated, however and we state, without 
presenting the solution, that generation at the 
center of the line is realized only if both natural 
frequencies of the resonator are tuned to the 
centers of the lines of the corresponding transi­
tions. Then the generation is realized at the center 
of the line in both transitions. In the opposite case, 
scanning of the proper frequency of the resonator 
at one of the transitions leads to a change in the 
generation frequency in the other transition. 
Other characteristics of generation of both transi­
tions are likewise interrelated. The larger the 
ratio Ychy or Ybhy• the stronger the coupling. 

5. CONCLUSION 

In this paper we did not consider effects con­
nected with the motion of the particles that inter­
act with the field. In the case of Doppler contours, 
the combination processes apparently cause the 
dips to have an asymmetrical form with singulari­
ties corresponding to the combination processes. 
We plan to consider this case in the future. The 
effects considered in Sec. 4 have, when considered 
by themselves, the same order of magnitude as the 
effects connected with the formation of the dips, 
since they are due to the same cause-relative 
deformations, of comparable magnitude, of the 
contours of the spectral lines of the atomic transi­
tions. Thus, it is seen from Fig. 2, that a notice­
able distortion of the contour of the spectral line 
of transition b can be attained at relatively weak 
fields (if the accuracy of the perturbation-theory 
methods is satisfactory). For example, when 
I C 12 ~ 0.025 and one= 0.4 we have 

max {lm{1/2(~c<'lnc+l:)/Dbdnb]} ~ 1/b 

and its position does not coincide with the natural 
frequency of the transition. Since the gain for 
some transitions is so large that the resonator 
can become broadband, such a change in the dis­
persion properties of the transition leads to a 
noticeable change in the generation frequency. 

Substituting the third-approximation solutions 
in the equations for the diagonal elements, which 
represent in the stationary regime the balance of 
the probabilities of the transitions due to different 
kinetic processes, and setting the corresponding 
values of ~n equal to 0 and =Fl, we can verify 
that the contributions due to the combination os­
cillations are connected with two-quantum transi­
tions. Thus, the combination oscillation x is 
coupled to the transitions between levels 1 and 3 
via the intermediate level 2, and K is coupled 
via the intermediate level 4. On going from the 
lower state to the upper one, the photons tma and 
tmb are absorbed in one act in the former case 
and in the latter case the quantum liQf is absorbed 
and the quantum line is emitted. The efficiency of 
the processes is determined by the presence of 
resonant intermediate levels. Such a phenomenon 
whereby the efficiency of third-harmonic genera­
tion is greatly enhanced if the medium has a 
transition that resonates with the second harmonic, 
was noted in [tO). Thus, under the conditions ex­
plained above, the contribution of these processes 
becomes noticeable. Thus, with increasing inten­
sity of the field Ec an increase takes place in the 
probability of participation of the quanta of the 
field Eb in the two-photon process, which becomes 
manifest in the dispersion characteristics of the 
medium in the form of an additional resonance at 
a frequency connected with the energy conserva­
tion law in the two-photon transition. 
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