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Scattering of electrons under the action of a strong standing electromagnetic wave is con­
sidered. It is shown that scattering occurs in the directions defined by the Laue conditions. 
Equations are derived for the electron scattering probability amplitudes. Formulas for de­
termining saturation of the scattering probability in the case of prolonged interaction between 
the electrons and field are also deduced. Asymptotic expressions are obtained under some 
assumptions for the scattering amplitudes in a strong radiation field. Numerical estimates 
are presented and compared with the experiments. 

1. The scattering of electrons in the field of a 
strong standing wave was first considered by 
Kapitza and Dirac [1] (see also [2)). Recently this 
effect has again become the object of numerous 
investigations. [a-s] This is due to the fact that the 
scattering probability of electrons becomes ac­
cording to Kapitza and Dirac appreciable only in 
sufficiently strong fields. Only the construction of 
powerful sources of coherent monochromatic radi­
ation (lasers) has made it possible to realize the 
experimental observation of the Kapitza- Dirac ef­
fect. 

From the quantum point of view this effect con­
stitutes stimulated Compton scattering, the fre­
quencies of the radiated and absorbed photons 
being equal and the momenta being equal and anti­
parallel. Such a process is possible only in the 
case when a definite condition relating the energy 
of the electron, the frequency of the photons and 
their direction of relative propagation is fulfilled. 
The specific nature of the standing wave consists 
in the fact that in this case the Compton scattering 
of the electrons can be interpreted as diffraction 
by a periodic "lattice" with a period A./2 (A. is 
the wavelength of the radiation). A process with 
absorption of n photons propagating in one direc­
tion and the emission of n photons propagating in 
the opposite direction corresponds to a diffraction 
peak of the order n. The condition determining the 
direction of motion of the electron for a given en­
ergy and frequency of the photons coincides in this 
case with the Bragg condition, the wavelength of 
the scattered particles being the de Broglie wave­
length of the electron A.e = h/mv. 

Restricting ourselves to the first diffraction 
maximum, we shall first of all consider the prob-

lem of how strict the Bragg condition is when weak 
nonmonochromaticity of the electromagnetic field 
is taken into account. Let the electron absorb a 
photon with a frequency w and momentum ( -k) 
and emit a photon ( w', k' ). The expression for 
the electron scattering probability can be readily 
obtained'from well-known formulas for the Comp­
ton scattering cross section [S) if the presence of 
the external field is taken into account and when 
one goes over from a spontaneous to a stimulated 
process. By virtue of the conservation laws for 
weak nonmonochromaticity of the field the fraction 
of deflected electrons is proportional to 

~ dwdw'I rolro•f> ( e'- e -liw + liw') ~ ( 1) 

where 

1w = cnwNw /V is the spectral intensity of the ex­
ternal field, ( Nw /V) dw is the number of photons 
per unit volume in the frequency interval [w, w 
+ dw ] propagating in a given direction, E is the 
energy of the incident electron, and p is the pro­
jection of the electron momentum on the propaga­
tion direction of the photons k. (For simplicity we 
neglect the spread of the photon momentum with 
respect to the direction.) As a result we find that 
the fraction of reflected electrons is given by the 
formula 

8:rt3e4t \ , e + cp ( 
W = li2 2 4 2 J I rol ro'(ro)dw, CiJ = CiJ + li , 2) 

m w c e- cp w 

where t is the time during which the electron 
traverses the laser beam. 

For optical frequencies nw « E, so that we 
have 
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1 [ liro ( sin s ) J 
(J) ~(J) 1-2- 1--.- . 

e \ sm So (3) 

1r/ 2 - (} is the angle between the direction of mo­
tion of the electron and the vector k, e 0 is the 
angle determined by the Bragg condition 

sin So= 'Ae/').., = lirojc IP I, (4) 

and p is the total momentum of the electron. 
When the condition e = e0 is rigorously fulfilled, 
the probability of electron deflection is maximum. 
We denote by A.(} that deviation from the Bragg 
angle for which the effect decreases considerably. 
Obviously this occurs when the frequency w 1 dif­
fers from w by a quantity of the order of the 
width A.w of the spectral line of the laser radia­
tion. Assuming that e0 « 1 and I A.(} I « 1, we 
find from ( 4) 

~8 e ~ro mc2 ~ro 

So= liro ~- liro ~· (5) 

Thus the nonmonochromaticity of the field leads 
to a washing out of the Bragg maxima. The criti­
cal value of the relative width of the radiation 
spectrum for which a value A.(}/ e 0 ~ 1 is reached 
is given by (5): A.w/w ~ tiw/mc2• In the case of 
optical frequencies w = 3 x 10t5 sec-t the non­
monochromaticity of the field becomes appreciable 
in this sense when A.w/ w ~ 3 x 10-6• 

Estimates in accordance with the Kapitza-Dirac 
formula show that when w ~ 3 x 10t 5 sec-t and 
A.w/w ~ 105, at an electron energy E ~ 10 keV the 
reflection probability of electrons reaches a value 
~ 1 for fields corresponding to an energy flux 
density I~ 1 MW/cm2• Such fields are fully at­
tainable with the aid of laser sources and do not 
constitute the limit of present-day experimental 
technique. Thus at present fields are attainable 
for which the Kapitza-Dirac formula is not valid 
by virtue of the inapplicability of perturbation 
theory. 

The Kapitza-Dirac result also loses its validity 
on going over to a highly monochromatic field. 
Here one must allow for the finite time of interac­
tion of the electron with the field. Obviously per­
turbation theory yields in the first order the 
following expression for the reflection probability 
of electrons: 

4:n2e~c2 ( sin 8 )-2 • [ 1iro2t ( sin 8 )] (6) w=---J2 1--- sm2 -- 1--- . 
ft~ro8 sin So mc2 , sin So 

This formula shows that the reflection proba­
bility of electrons in the case of a monochromatic 
field increases sharply on approaching a Bragg 
direction. The relative width of the maximum is 
determined by the interaction time A.(}/ eo 

~ mc2/tiw2t. The value of the probability at the 
maximum is w ~ 47T2e4I2t2/ti2w4c2• Equation (6) is 
not valid for very strong fields and for sufficiently 
long interaction of the electrons with the field. 
Estimates indicate that for sensible values of the 
interaction time t Eq. ( 6) leads to values w > 1 
for fields attainable at present. 

2. The results of perturbation theory are thus 
inapplicable for sufficiently long interaction and 
for sufficiently large field intensities, the critical 
values of the fields being definitely attainable with 
present-day laser-type light sources. It is there­
fore of interest to extend the theory to the case of 
strong fields and long interactions of electrons 
with the field. Below we shall restrict ourselves 
to consideration of a strictly monochromatic field. 
The treatment will be based on a semiclassical 
approach in which the motion of the electron is 
described quantum mechanically whereas the ex­
ternal field is described classically. With such an 
approach a rigorous consideration of the stimulated 
Compton scattering requires a knowledge of the 
exact wave functions of the electron in the field of 
two plane waves neither of which can be considered 
weak. The problem of finding such wave functions 
is generally speaking very complicated. However, 
in the case when the field is a standing mono­
chromatic wave and the velocity of the transla­
tional motion of the electron and the velocity of its 
oscillations in the external field is much smaller 
than the speed of light one can make a certain sim­
plifying assumption. 

Under these conditions the time during which 
the electron traverses a distance of the order of a 
wavelength is large compared with the period of 
the field oscillations. One can therefore assume 
that the time oscillations of the field are less ap­
preciable than the spatial oscillations and consider 
the motion of the electron in some average field. 
In practice this reduces to time averaging of the 
nonrelativistic Hamiltonian of the electron in the 
external field. Such a procedure fully corresponds 
to going over to gauge potentials.£1°1 The possibil­
ity of such an approach has also been indicated 
in [fi]. When perturbation theory is applicable one 
can verify directly that the discarded parts of the 
Hamiltonian make a small contribution ~ v2/ c2 or 
~ tiw/mc2• As a result we find that the stationary 
Schrodinger equation reduces to the Mathieu 
equation [l1 1 

y" +(a- 2q cos 2z)y = 0, 

kz _ 4ne2c 1 
q- h2ro~ ' z=h, 

(7) 
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where z is the spatial coordinate along the vector 
k. 

The standard statement of the quantum mechan­
ical problem consists in the fact that at the initial 
moment the electron has a momentum p and it is 
required to determine the probability that at the 
instant t it will go over into a state with momen­
tum p'. The wave function of the electron at the 
instant t can be formally written in the form 

Sip)= exp{h( ::2 -2qcos2z)} lp). (8) 

Here I p) is the wave function of the electron at 
the initial instant T = 0. It is assumed that this is 
a plain wave; T = nw2t/2mc2 is the dimensionless 
time. Here and everywhere below we understand 
p to be the projection of the electron momentum 
onto the direction of the vector k expressed in 
dimensionless units, i.e., referred to the quantity 
k = nw/ c. 

The amplitude of the scattering probability of 
the electron with a transition to the state with 
momentum p' is obviously given by 

The simplest method of analysis of expressions 
(8) and (9) consists in expanding the plane wave 
I p) in eigenfunctions of the Hamiltonian a 2/a z2 

(9) 

- 2q cos 2z, i.e., in Mathieu functions. In this 
case we obtain for the amplitude of the scattering 
probability App' the expression 

App•(t) = :nk~ dvexp{ -i2:~av} 
X [Yiv"(P)Yiv(P') +g2v"(p)y2V(P')]; (10) 

N1v N2v 

Y1v ( z) and Y2v ( z) are two linearly independent 
solutions of Eq. (7) corresponding to definite 
values of the parameters ( q, av ), where v is 
some index which determines the solutions; Yiv ( p) 
are Fourier transforms of the solutions 

Yiv(P) = ~ dzy; .. (z) exp[- ipz], (11) 

Niv are normalizing factors 

~ Yiv(z) Yi~' (z) dz = N;vbu6 (v- v'). (12) 

Integration over v extends over all stability re­
gions of the Mathieu equation (7). 

The probability amplitude is normalized in 
such a way that the fraction of electrons under­
going scattering at the instant t is given by the 
expression 

(13) 

where L is the normalization length. 
Unfortunately, only series expansions in powers 

of q, valid for sufficiently small q which corre­
sponds to sufficiently weak fields (at a frequency 
w = 3 x 1015 sec-1 a value I~ 10 MW/cm2 corre­
sponds to q "" 1 ) , are known in practice for the 
Mathieu functions. Therefore the exact solution 
(10) hardly permits an investigation of the asymp­
totic properties at q » 1. However, Eq. (10) makes 
it possible to obtain a result which differs under 
certain conditions from the usual formulas of 
perturbation theory even when q < 1. 

We choose one of the solutions of the Mathieu 
equation in the form [H) 

Yta = exp (J.t(cr)z)q>(z, cr). (14) 

One can convince oneself that when q « 1 the 
most appreciable contribution to expansion (10) 
is due to solutions near the first instability region 
of the Mathieu equation (this is only true for the 
first diffraction maximum). For q; ( z, a), iJ. (a), 
and aa ( q) we have the following expansions: 

c:p(z, cr) ~sin (2z- cr) + ... , 
J.t(O'),....,- 1/ 2qsin2cr + ... , (15) 

aa(q) ,...., 1- q cos 2cr + 1/sq2 cos4cr + ... 
The parameter a takes on values iv or ( -1r/2 
+ iv ), v ::: 0 in the stability regions. The second 
solution is obtained from (14) by changing the sign 
of a. 

Calculating the norm, carrying out the integra­
tion in (10), and taking into account expansions 
(15), we obtain the following expression for the 
fraction of electrons deflected in the direction of 
the first diffraction maximum: 

(16) 

where 

mc2 t:.E ( sin 8 ) ( 8 ) 
s= (hro) 2 = 2 1 - sin8o ~ 2 \ 1 -8;;' 

[formula (16) is valid for ~ « 1]. 
The result indicates that the usually employed 

formal expansion in powers of q2 is correct only 
in the region ~ » q, and for ~ - 0 it contains 
divergences in the higher orders of q2 (beginning 
with q6 ). 

The region of applicability of perturbation 
theory is thus limited by the condition qT « 1. In 
practice this condition can turn out to be consid­
erably stricter than the condition q « 1. If one 
makes the time of interaction t of the electron 
with the radiation field go to infinity, then the 
equations of perturbation theory become in general 
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inapplicable to an analysis of the stimulated pro­
cess in a strictly monochromatic field. 

In the case when qT » 1, the width of the Bragg 
maximum is determined by the magnitude of the 
field 1::.9/9 0 ~ q. Inside the maximum the proba­
bility of reflection of electrons oscillates rapidly 
on changing the angle of incidence. Under the ac­
tual conditions of the experiment these oscillations 
are averaged out on account of the spread of the 
velocities of the electrons due to the nonmono­
chromaticity of the field. The average value of the 
probability increases sharply on approaching the 
Bragg angle 90 and reaches a value ~ Y2• 

3. Thus the use of the plane-wave expansion in 
Mathieu functions makes it possible to obtain a 
generalization of perturbation theory to the case 
of long interaction qT » 1 assuming the field to 
be weak q « 1, and only for the first Bragg max­
imum. An extension of the theory to the case of 
higher-order maxima and an analysis of the 
asymptotics of a very strong field by the above 
method are very difficult to carry out. 

It turns out, however, that considerably more 
information can be obtained by determining cer­
tain general properties of the scattering ampli­
tude. From the periodicity of the operator S ( T) 
(8) in the spatial coordinate it follows that it can 
be represented in the form 

n=-oo 

where n takes on integer values. Bearing in mind 
that henceforth the operator S ( T) will always act 
only on the wave function of the electron in the 
initial state I p ), we can consider the operator 
quantities F n to be ordinary functions F n 
=Fn(T,p). 

Thus the amplitude of the electron scattering 
probability differs from zero only for changes of 
the electron momentum t:.p = p' - p by -2n, 
where n = 0, ± 1, ± 2, ... , and is given by the 
functions F n ( T, p). Consequently F n ( T, p) is the 
amplitude of the electron scattering probability in 
the direction of the n-th diffraction maximum. 
The condition t:.p = -2n can be written in the form 

1M.(sin 8- cos a tg 8') = n'A., (18) 

where A.e = li/mv, v is the electron velocity, (} 
and (}' are the glancing angles of the incident and 
scattered electron beams, i.e., the angles between 
the direction of motion and the equal-phase planes 
in the standing wave. 

For small angles (} and not very large n con­
dition (18) coincides with the Laue condition 

1/2'A(sin 8- sin 8') = n'Aeo 

The difference between condition (18) and the 
Laue condition is due to neglect of the finite width 
of the light beam. Under practically realizable 
conditions [2•3] (} ~ 10-5 and consequently condition 
(18) differs from the Laue condition only for 
n ~ 105• The intensity of diffraction maxima of 
such high order is practically always very small. 
One can therefore practically always assume that 
the directions of propagation of the scattered 
electrons are determined by the Laue conditions. 

Differentiating ( 8) and ( 17) with respect to time, 
we obtain for the amplitudes the following equa­
tions: 

aFn/fh: = iynFn +q(Fn+t- Fn-t), (19) 

where Yn = -4n ( n + p) with the initial conditions 
F n ( 0, p) = On O· 

The proble~ of determining all the amplitudes 
F n ( T, p) from Eq. (19) can be reduced to the 
following equivalent problem. We introduce the 
function 

+oo 

S(z)= ~ e2in•Fn(-c,p). 
n=-oo 

The system of equations ( 19) is equivalent to 
the equation for S ( z ) : 

as azs 0 as 0 

i-= --+2~p-+2qSsm2z, 
a-c az2 az (20) 

S(O,z)=1, S(-c,z)=S(,;,z+:n:)o 

The amplitudes F n are determined with the 
aid of a Fourier transform of the function S ( z): 

1 n 
Fn('t, p) =- ~ S(,;, z)e-2inz dzo 

:n: 0 

(21) 

Equation (20) is an analog of the equation for 
Bloch functions, except that in solid state theory 
one usually seeks stationary solutions of the 
Schrodinger equation. One can of course seek 
S ( T, z) in the form of an expansion in terms of 
stationary solutions, but with this we again go back 
to the expansion in Mathieu functions. 

4. The system of equations (19) is readily 
solved by successive approximations in the case 
when q « 1. These are the usual results of per­
turbation theory. With accuracy up to quantities 
of higher order of smallness in q the amplitudes 
Fn are given by the expressions 

Fo = 1+ q2{y1-2(eiv,-r- 1) + Y-C2(eiY_,-r -1) 

- i't(YtY-t)-l(yct + y_,-1)] + O(q4), 
(22) 

F1 = iqy1-1(eiv,-r- 1) + O(q3), (23) 

F2 = q2yc1[y2-1(1- eiY,-r) -(yt- vz)(eiy,-r- ei"'')] + O(q4), 

(24) 
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(25) angles of both the first and second order m = 1 
and m = 2. 

It is seen from these formulas that in addition 
to an oscillatory time dependence of the type 
exp ( i yn T) the amplitudes F n also contain terms 
which depend on T according to the power law 
Tm exp ( i Yn T). This is explained by the following 
reasons. , 

The exact solution of the system (19) is a 
superposition of oscillating functions, the eigen­
frequencies being the exact solutions of the corre­
sponding characteristic equation. Therefore the 
expansions (22)-(25), being successive expansions 
of the amplitudes in powers of q, contain also ex­
pansions of oscillating exponents for deviations of 
the eigenfrequencies from the quantities Yn· 

These are the so-called secular terms. They 
lead to a power dependence on T. The other rea­
son for the appearance of the power dependence on 
the time is specific for the system (19). The 
eigenfrequencies of the zeroth approximation de­
pend on the parameter p. For p = -m, m = 0, 
± 1, ± 2, ... all the eigenfrequencies (or all except 
one) turn out to be pairwise degenerate Yn = Ym-n· 
This is related to the sharp increase of certain of 
the amplitudes Fn when the momentum p ap­
proaches an integer value. The condition p = -m 
coincides with the Bragg condition of order I m 1. 
When the finiteness of the parameter is taken into 
account this degeneracy is lifted. For this reason 
the exact solution of the system (19) contains only 
an oscillatory dependence on T. 

An analysis of perturbation theory formulas 
shows that the expansion of the amplitudes F n in 
powers of q begins with qn where in the first 
nonvanishing order in q the amplitude F n contains 
oscillatory terms of the type exp ( i Yk T ) , 0 s k 
s n. The power dependence on T appears only for 
integer values of the momentum on account of the 
degeneracy. For T- ao these terms lead to 0 
functions in the reflection probabilities. 

On approaching integer values of the momentum 
p = - m (for simplicity we assume m 2: 0) the 
degeneracy begins to play a role in amplitudes F n 
with n 2: n0 where n0 = 1 + m/ 2 for even m and 
n0 = ( m + 1 )/2 for odd m (in the first nonvanish­
ing approximation in q). 

The form of perturbation theory under consid­
eration (when the finite width of the light ray is 
not taken into account) predicts thus that on ap­
proaching the Bragg angle of order m ( p ~ - m) 
the scattering occurs primarily with a momentum 
change f}.p of -2n0• Thus, according to perturba­
tion theory, the angle of incidence is equal to the 
angle of reflection only in the case of Bragg 

5. The presence of a power dependence in 
expansions (22)-(25) leads to the circumstance 
that the conditions of applicability of the perturba­
tion theory formulas impose restrictions not only 
on the magnitude of the field q but also on the 
length of the interaction T. We shall attempt to 
obtain more accurate formulas assuming, as be­
fore, the field to be weak q « 1. This problem 
consists of two parts: it is necessary to find more 
accurate expressions for the eigenfrequencies and 
then to determine the contribution of the various 
oscillating functions to the amplitudes F n- We 
shall restrict ourselves to a consideration of 
angles close to Bragg angles of first, second, and 
third order. We shall seek more accurate expres­
sions only for these eigenfrequencies which lead 
according to perturbation theory to a power de­
pendence of the amplitudes F n already in the 
first nonvanishing orders in q. 

In the case when the direction of motion of the 
electrons is close to a direction determined by 
the Bragg condition of the first order we have 
11 + pI « 1. The eigenfrequencies of interest are 
those solutions of the characteristic equation 
corresponding to the system (19) which for q- 0 
go over to Yo and y1• The characteristic equation 
for determining these roots can be written ap­
proximately in the form 

(26) 

Obviously this equation has the following solu­
tions: 

Vo,t(q) ~-2(1+p) ±sgn (1+p))'4(1+p) 2 +q2• (27) 

On approaching the Bragg angle of the second 
order I p + 21 « 1. One must find eigenfrequencies 
going over for q- 0 to Yo and y2• The approxi­
mate characteristic equation is of the form 

144v2 + 48v{q2 + 24(2 + p)) 

- q2(5q2- 192(2 + p)) = 0. (28) 

Hence we obtain expressions for the eigenfrequen­
cies 

1 
vo,z = T2 {- 2 ( q2 + 24 ( 2 + p) ) + 3 sgn ( 2 + p) 

X i[16(2+ p)]2+ q4}. 
(29) 

Equations (26) and (29) are obtained when con­
sistent account is taken in the characteristic equa­
tion of terms ~ q2 and ~q4 respectively. 

If the glancing angle of the electrons is close 
to the Bragg angle of the third order then I p + 31 
« 1 and the eigenfrequencies Yo ( q) and Y3 ( q) 
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are important. In this case it is impossible to 
write a finite characteristic equation by making 
use of the smallness of the parameter q only. 
This is connected with the fact that terms ~q4 

determine the shift of the eigenfrequencies Yo and 
y3 but do not lift their degeneracy. The degeneracy 
is lifted when account is taken in the characteris­
tic equation of terms ~q8 • The number of such 
terms in the characteristic equation is infinite. 
One can write only a characteristic equation 
whose coefficients contain infinite sums. But the 
terms in these sums decrease with increasing n 
like n-4• This makes it possible to restrict one­
self to a few of the first terms. The characteristic 
equation is of the form 

(1 + aq2)y2 + y(12(3 + p) + pq2 + l)q~) + 'Kq~- pqs = 0 

(30) 
Solutions of this equation determine the eigen­

frequencies .:Y0, 3 (q): 

yo,s:::::::- 6(3 + p) - q2/16 + sgn(3 + p)l'36(3 + p) 2 + 'J..q6, 

where A= {36/2- aK + p. 
(31) 

The coefficients a, {J, 6, K, and p can be ex­
pressed in terms of the quantities Yn ( p). The 
corresponding formulas are not cited because of 
their unwieldiness. In calculating the coefficient 
A in Yn ( p) one should substitute the value of the 
momentum p = -3. As a result we find A~ s-4• 

When the initial momentum is close to Bragg 
directions of higher order I p + m I « 1 the de­
generacy of the eigenfrequencies Yo and Ym is 
lifted apparently only when terms ~ q2m are 
taken into account in the characteristic equation. 
The degree of the equation increases at the same 
time, and this complicates considerably the 
problem of finding accurate eigenfrequencies for 
m > 3. 

A general solution of the system (19) can ob­
viously be written as 

Fn = ~ Cnn exp (iy:-r), (32) 
where Yn are the exact solutions of the charac­
teristic equation. 

After substituting the solution (32) in the sys­
tem of equations (19) we can express approxi­
mately all coefficients C~ in terms of cr. Intro­
ducing the notation xk = - c~;cr, we find 

X-tn = iq/ (yn- 'Y-t)' 

Xtn= iq/(yn-Y-t) -iVn/q, 

(33) 

(34) 

X2n = -1- (yn- Yt)/ (Y:,- 'Y-1) +in (~n- 1) /q2, (35) 

Xsn = iq/ (Vn- 'Y-t)- (i/q) (2yn- 'Y2) 
- (i/q) (Yn- Yt) (Yn- 'Y2} (Yn- 'Y-t)-1 (36) 
+ (i/q3)yn('Yn- Yt) (Yn- y2) etc. 

The coefficients C~ must be determined from 
the initial conditions which yield 

~Con= 1, ] XnnCon = 0. (37) 
n n 

Let us consider, like before, the case of angles 
close to the Bragg angles I p +m I « 1, m = 1, 2, 3. 

1) m = 1. It is readily seen that in this case 
only the coefficients C~ and C~ are not small. 
Solving the system (37) for these two quantities 
with account of formulas (27) and (34), we obtain 

Co0 = -q2 / (~1 -Yo), Co1 = 1 - Co0• (38) 

The amplitude of the probability of electron 
scattering F 1 ( T, p) is of the form 

F ~- e2i(HpJ..:sin[-rl'4(1+p)2+q2] (39) 
1- q [4(1 + p)2 + q2]'i· . 

This formula leads to a reflection probability 
given by Eq. ( 16) and describes the effect of prob­
ability saturation on increasing the interaction 
time T. On the other hand it goes over into the 
usual expression obtained in accordance with 
perturbation theory for qT « 1. 

2) m = 2. An analysis of Eqs. (33)-(36) shows 
that only the coefficients C~ and C~ make an ap­
preciable contribution to Eq. (37) (the second one 
for k = 2). We obtain a system of equations with 
two unknowns from which we find 

Co0 = [y(V2 + q2(1 -:- '\'1f'V-t) Jyt-1(;.2-vo)-t, (40) 

Co2= - [Yt~o + q2 (1 + y1/Y-t)]yz-1 (Yz- y;;)-1• (41) 

This makes it possible to find the only appreciable 
(other than F 0) scattering amplitude F 2 ( T, p): 

- - sin [~'Tl'{16(2+p)]2+q~J 
F . • { . Y2 + Yo } 4 
'2 ::::::: - tq- exp t -2-,; --,-([-16_(_2_+_P_)-=-]2 + q4) •;, - ' 

(42) 

where .:Yo and .:Y2 are given by Eq. (29). This ex­
pression coincides with the results of perturba­
tion theory in the case q2T « 1. 

3) m = 3. Generally speaking, in this case the 
coefficients C~ and C~ as well as cf and C~ can 
be appreciable. This follows from a comparison 
with the results of perturbation theory. However, 
in Eqs. (37) (for k = 3) the contribution due to 
these coefficients contains a small parameter. 
This makes it possible to solve, as before, a 
system of two equations with two unknowns. In 
full analogy with the preceding cases we obtain 

Co0 = [YtYs + q2 (1 + 'Yt'Y-t-1)]yt-1(y;;- ~)-t, (43) 

Co3 = - htVo + q2 ( 1 + 'Yt'Y-t -!) l'Yt -! (Yo - y'~) -t, ( 44) 
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F ~ _ q3 I. Yo+ V3 \ sinhl"36(3 + p) 2 + ~=Jz_~ 
3= Sexp,lT 2 I {36(3+p)2+8-"q6)/, • 

(45) 

where Yo and y3 are given by expression (31). 
The condition for the applicability of perturba­

tion theory in this case is of the form q3 T « 1. 
The coefficients cf and C~ should be deter­

mined with the aid of two of Eqs. (37) (for k = 1 
and k = 2), in which one should substitute expres­
sions (43) and (44) for C~ and C~. Calculation 
shows that in this case there is compensation of 
the terms not containing the small parameter q. 
Consequently, under conditions of saturation, on 
approaching the Bragg angle of the third order the 
scattering takes place basically in such a way that 
the angle of incidence is equal to the angle of re­
flection (unlike the conclusions from perturbation 
theory). One can assume that this result is also 
valid in the case m > 3. 

6. Let us consider the question of the asymp­
totic behavior in a strong field. It is seen directly 
from the system (19) that in the case q » 1 the 
first term in the right-hand side of the equations 
becomes less important. Neglecting this term, we 
find that the system of equations (19) goes over 
into the system of recurrence relations for the 
Bessel functions. Consequently the system (19) 
has the following solution that satisfies the initial 
conditions 

Fn('t',p) ~Jn{-2qT). (46) 

For not very small interaction times qT » 1 
one can utilize the asymptotic values of the Bessel 
functions for large values of the argument, which 
yield 

Fn~(-f)n{:rtq't')-'f,cos(2q-r-n2:rt- :). (47) 

It is readily seen that on substituting the solu­
tion (47) in the system (19) the discarded part of 
the equations tends to zero like q-1/ 2 as q- oo, 

whereas the parts taken into account increase like 
..fQ. This speaks for the fact that expression (47) 
is indeed the asymptotic solution of the system 
(19) as q- oo. For a more rigorous determination 
of the limits of applicability of solutions ( 46) and 
( 4 7), we turn to Eq. ( 20). Introducing the notation 
S ( T, z) = exp ( -i 'It), we arrive at an equation for 
the function 'It ( T, z): 

o'¥ = 2p o'¥ + ( o'l' \}2 + i 02'1' + 2q sin 2z, 
a, oz oz oz2 (48) 

'¥(0, z)= 0. 

Neglecting the derivatives of 'It with respect to 
the spatial coordinate, we obtain the solution of 
the zeroth approximation 

'¥ o = 2q-r sin 2z, (49) 

which corresponds {according to (21)] to the solu­
tion (46) for the amplitudes Fn. Account of the 
first power of the derivative a <It/a z and of the 
second derivative a 2 <~t/a z2 leads to a correction 
<~t,1 = 4qT 2 ( p cos 2z - i sin 2z). Allowance for the 
square of the derivative (a<~t/az) 2 yields 
<~t1' = (16/3) q2T3 cos22z. 

Thus expression (49) is indeed the solution of 
Eq. (40) with definite restrictions on the duration 
of the interaction, T: T « 1 and T « q-11 2• Since 
q » 1, the second condition is stricter, but neither 
contradicts the condition q T » 1 for which the 
asymptotic representation (47) is valid. The re­
striction T « q-11 2 can be removed if one neglects 
in (48) the second derivative a 2 <~t/a z2 and then 
seeks an exact solution of the equation. The result­
ing nonlinear equation in partial derivatives can be 
solved.[12J However, the solution is very unwieldy. 
It is expressed in terms of a function defined by a 
complex implicit algebraig equation and admits ap­
parently only numerical investigation. Thus in the 
case of a strong field q » 1 the initial electron 
beam splits into a series of beams whose direc­
tions are determined by conditions ( 18). The in­
tensity of the diffracted electron beams depends 
weakly on the initial direction of motion. The time 
after which there occurs an appreciable decrease 
of the intensity of the initial beam, To~ q-1• Un­
der the condition T « q -11 2 the propagation of elec­
trons, the splitting of the initial beam, and the in­
tensities of the beams of scattered electrons are 
given by solutions (46) and (47). In the case of qT 
» 1 the directions along which intensive scatter­
ing occurs are located symmetrically with re­
spect to the direction of initial electron motion. 
The number of scattered beams is ~qT. The frac­
tion of the electrons scattered in the direction of 
each of these beams iS ~( qT r 1• 

7. Thus, our treatment shows that the magni­
tude of the field in the Kapitza-Dirac effect is de­
termined by the parameter q. In the case of a 
weak field q « 1 the probability of electron re­
flection can reach values ~ 1 only for long dura­
tion of the interaction qT » 1. In the case of a 
strong field q » 1 the Bragg maxima are strongly 
washed out, only the Laue condition is fulfilled, 
and the initial beam splits into a fan. The non­
monochromaticity of the field in the case q « 1 
leads to a washing out of the Bragg maxima and 
to a weakening of the effect. In the case of a 
strong field the role of the nonmonochromaticity 
is apparently not very large. 

The first experimental observation of the 
Kapitza-Dirac effect was carried out in [fi). Ac-
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cording to the estimate of the authors the intensity 
of the field was 1-10 MW/cm2 and the relative 
width of the radiation spectrum f:l.w/w :S 2 x lo-5• 

The values of the parameters q and T were: 
q ~ 0.98 and T ~ 2.24. An experimental observa­
tion of stimulated scattering of electrons in a 
standing wave was also carried out in a paper by 
Schwartz et al, [61 who apparently used in their 
estimates somewhat too low a value of the field 
and too high values of the spectral width. Compar­
ing the conditions of the experiment of [61 with 
those in [fil, we can estimate the parameters q 
and T in the case of [6]. As a result we obtain: 
q ~ 6, T ~ 0.3, and f:l.w/w ~ 3 x 10- 5• Possibly 
in [6] the field and its spectral width were in fact 
somewhat smaller. In both cases the values of the 
parameters correspond thus to the intermediate 
situation between the cases of a strong and of a 
weak field. One can expect then the appearance of 
rather strong diffraction maxima, including max­
ima of higher orders. Their widths should be 
rather large. 

For a more detailed comparison of theory with 
experiment it is apparently necessary to carry out 
detailed quantitative measurements. It is essen­
tial to observe experimentally the dependence of 
the effect on the magnitude of the field and the 
duration of the interaction, to measure the intensi­
ties of the diffraction maxima of various orders 
for various values of the field etc. 

The observation of the saturation effect of the 
probability of the case of a weak field for long in­
teraction of the electrons with a standing wave is 
possible, for example, when the following experi­
mental conditions are fulfilled. At a frequency 
w = 3 x 1015 sec-1 and a field power in the stand­
ing wave of I~ 2 MW/cm2 (which corresponds to 
a value q ~ 0.2) one must insure a spectral width 
I:J.w/w .S 2 x 10-7• The energy of the electron beam 
should not exceed ~0.14 keV, which corresponds 

to an electron velocity v ~ 7 x 108 em/sec and a 
Bragg angle ll 0 ~ 1. 7 x 10-4• According to the 
theory presented, a splitting of the initial electron 
beam into a whole series of beams should occur in 
strong fields. 

In conclusion, the author expresses his sincere 
gratitude to F. V. Bunkin for proposing the sub­
ject and for continuous interest in the work. 
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