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It is shown that the thermal flux in thin metal samples in a strong magnetic field is extremely 
nonuniform if the Fermi surface of the metal is an open one or if the numbers of the electrons 
and "holes" compensate each other (n1 = n2). The distribution of thermal flux within the sam
ple is quite similar to that of the electric current (a static skin effect takes place). The 
Kelvin-Onsager relations hold for the thermoelectric coefficients in the nonuniform case. 

A constant electric current in samples that are 
thin (in comparison with the length l of the free 
path of the electron) varies little, in the absence of 
an external magnetic field, over the cross section 
of a conducting sample. If the turning on of a strong 
magnetic field greatly changes the resistance of the 
conductor, 1l then, simultaneously with an unrestric
ted increase in the resistance, the current distri
bution over the sample is completely changed-the 
current is attenuated in the depth of the sample, 
being concentrated near the surface of the conduc
tor in a layer thickness of the order of r (static 
skin effect). 

This phenomenon, predicted by one of the au
thors ,0 J is associated with the special non-statis
tical character of the collisions of the electrons 
with the surface of the sample. In a more detailed 
study of this question, [2] it was made clear that in 
a thin metallic sample, the strong nonuniformity of 
the current can be so large, even close to the sur
face, that the electric current in the conductor 
flows in opposite directions at different depths. 

The effects that have already been pointed out 
should take place for all transport phenomena in 
the presence of a strong magnetic field. There is 
every reason for supposing that under these condi
tions, when the static skin effect sets in for the 
electric current, the heat will flow principally close 
to the surface of the conductor, inasmuch as the 

1)That is, if the numbers of "holes" and electrons in the 
metal are equal, or if the orbits of the electrons are open 

directed flow of particles-carriers of charge and 
energy-is concentrated near the surface of the 
sample. 

1. The study of thermomagnetic phenomena in 
thin samples is of fundamental interest. Actually, 
the equations of the problem themselves change in 
the microscopic approach. 

In a bulk sample (the dimensions of which are 
the largest parameter of the problem), in the 
macroscopic approach, the connection between the 
current density j and the thermal flux q on one hand 
and the electric field intensity E = - \7 cp and the 
temperature gradient on the other remain the same 
in the first approximation as in the unbounded med
ium, [3 ] and should be regarded as specified: 

j =dE+ b"vr = -~V',cp + bVT, 

( 1) 

and the Onsager principle of the symmetry of the 
kinetic coefficients is satisfied: 

; = -Tb~ (2) 

o'(-H)= aT(H). b(-H)= bT(H), 

d(-H)= dr(H); (2a) 

the index T denotes the transposed matrix. (Here 
and in what follows, we limit ourselves to the 
linear approximation in E and \7T, which is vir
tually always sufficient.) 

The fundamental equations of the problem are 
the conditions of continuity of particle and energy 
flux: 

div j = 0, div q = 0. ( 3) 

in a plane perpendicular to the magnetic field. A strong mag
netic field corresponds to a Larmer radius r that is small in 
comparison with l and with the linear dimension d of the 
sample. The first equation is a strict equality, while the 
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second is valid only in the linear approximation 
(in E and V'T) in which we are interested, with ac
curacy up to the energy dissipation in the specimen 
(quadratic effect). 

Equations (3), with account of the relations (1), 

( 2) and ( 2a), give differential equations of second 
order in <p and T. The role of the boundary condi
tions for these equations is played by the condition 
of the absence of an electric current through the 
surface of the sample: 

in"= 0 ( 4) 

(n is the inward normal to the surface of the metal, 
the index s means that the corresponding quantities 
are calculated on the surface of the specimen) and 
the heat flow condition on the boundary: 

(T- T,) + aaT /an= 0. (5) 

In the adiabatic case, 

( 6a) 

and in the isothermal case, 

Ts= 'IJ(rs), (6b) 

where 1/J is a given function of the point r s on the 
surface of the sample. 

By determining the temperature and potential 
distribution in the sample through the use of Eq. ( 3), 
we can find the charge distribution. The density of 
uncompensated charge is determined from the 
Poisson equation 

p' = - (4n)-1 div D, (7) 

and for metals in the first approximation (see[2]) 

we have 

p'= 0. ( 8) 

In a sample whose dimensions are equal to or 
less than the microscopic characteristics of the 
electron motion (free path lengths, radii of Larmor 
orbits), the situation is fundamentally different. 
The connection of the charge and energy fluxes j 
and q with the electrostatic potential <p and the 
temperature T cannot be assumed to be given be
forehand-it must be determined from the solution 
of the microscopic problem: here the operators in 
( 1) will be operators with respect to the coordinates 
also. It is clear that in the microscopic problem, 
the conservation of charge both in the volume and 
on the surface (in connection with the condition of 
reflection, at the boundary of the conductor, of the 
conduction electrons which do not penetrate the 
surface) and the conservation of energy (in the 
linear approximation) in the volume are automatic
ally guaranteed-Eqs. (3) and (4) reduce to identi
ties. 

Microscopic theory also determines the connec
tion of p' with the potential <p and the temperature 
T; as a result, Eq. (8), from the definition of the 
uncompensated charge density, becomes the funda
mental equation of the problem. The replacement 
of Eq. (7) by Eq. (8) is connected with the high den
sity of free electrons in the metal and has theoret
ical significance, inasmuch as only with such ac
curacy are the kinetic coefficients determined by 
the properties of the conductor alone (see[2]). 

Since the microscopic theory connects the tem
perature at any point of the sample, 2> for example, 
with the specified temperature on the surface (see 
the boundary condition ( 6b)), Eq. ( 8) is an integral 
equation relative to the only remaining unknown 
function <p. 

Thus, for small samples, the problem of the 
thermal conductivity divides into two parts: 

1) the determination (from the microscopic 
theory) of the connection of the charge and energy 
fluxes j and q and the charge density p' with the 
potential <p and temperature T, and finding the tem
perature in the sample for given conditions of heat 
exchange on the surface; 

2) solution of Eq. (8). 

2. We proceed to the solution of the problem. 
As is well known, for the determination of the elec
tric current density, the uncompensated charge 
density and the energy flux, it suffices to know the 
distribution function n(r, p) of the electrons: 

2e (" 
j = J;3 j vn(r, p)dp, 

q = -~- (' v(e- Jlo)n(r, p)rlp, 
hl j 

, 2e (" { ( E- r.to )} p=---;:;;;Jn(r,p)-no To- dp; 

(9) 

(10) 

(11) 

Jl.o is the chemical potential, and n0(x) = (ex + 1r1 

the equilibrium Fermi function; the integration is 
carried out over momentum space; v = Bt/ Bp is 
the velocity of the electrons. 

The distribution function n(r, p) can be found 
from the kinetic equation. However, since one can 
neglect the volume collisions in the first approxi
mation in 1/Z, it is simpler to start out from phys
ical considerations. 

We shall assume the reflection of the electrons 
from the surface of the sample to be diffuse (this is 
correct in metals, since the deBroglie wavelength 
is of the order of the interatomic distance, i.e., 

2 lit should be noted that the concept of a locally equili b
rium temperature at a given point has a somewhat formal char
acter for a small sample, since a locally equilibrium temper
ature can in turn be introduced only for a subsystem whose 
dimensions are large in comparison with the free path length. 
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extremely small even in comparison with the dis
tance at which the boundary condition is estab
lished), so that the distribution function for the re
flected electrons is an equilibrium one: 

{ 8- ~t(rs)} 
n(rs, p) j, >O =no . 

n T(rs) 
(12) 

The chemical potential ~J.(r 8) is generally not iden
tical with the equilibrium !J.o, since the numbers of 
electrons moving toward the surface and away 
from it are not equal, owing to the electric field 
and the nonuniformity of the temperature (it is this 
directed flow which ensures the transport of charge 
and energy) . 

As they move from the surface, the electrons 
acquire an energy ~E =- e{ q7(r) - q7(r 8)} ; as a re
sult, the density of electrons which have an energy 
E at the point r is equal to the density of the elec
trons which have an energy E- ~E at the point r 8 , 

i.e., 

( ) - {8+e[cp(r)-cp(rs)l-~t(rs)}- (~>-Ito\ 
n r, p - no · - n0 --) 

T(rs) To 

a no 
+- {ecp (r)- eh (rs)- (8- ~to)-r(rs) }, (13) 

08 

where the functions h(r 8 ) and T(r 8 ) are defined by 
the relations 

eh(rs) = !1(r.)-~to + ecp(rs), 

T-1 (rs) = T0- 1 (1- -r(r.)). (14) 

The point r 8 , from which come electrons to the 
point r with momentum p, is determined by the 
intersection of the electron trajectory (for E = 0 
and T(r 8 ) = 0) with the surface of the sample G(r 8 ) 

= 0: 
t 

r-r.=r(t)-r(A)= ~ v(t')dt', 
:1. 

G(rs)=O, A<t, Vn(A)>O, (15) 

where t is the time of revolution of the electron 
along its trajectory of motion in the magnetic field, 
A. is the instant of collision with the surface (obvi
ously, the root of Eq. (15) closest to t); E, PH• and t 
determine p uniquely. Thus, the expression 

r. = r + r(A,) - r(t) 

must be substituted in Eq. (13) in place of r 8 . 

By substituting (13) in the expression for the 
electric (9) and thermal (10) fluxes and the uncom
pensated charge density (11), we find 

j(r)= e(v(t)h(r+r(A,)- r(t) )) 

nzrz d 
+ ---- (v(l)-r(r+r(A,)-r(t) )>, 

3 d~-to 
(16) 

nzrz 
q(r) = ~ (v(t)-r (r + r(A,)- r(t) )> 

n2T2 d 
+ ---- (v(t)h(r + r(A,)- r(t) )>, 

3 d~-to 

p'=-(e) cp(r) +(eh(r+r(A,) -r(t) )> 

n2T2 d 
+ --. --- (-r(r+r(A,)-r(t) )>. 

3 d~-to 

Here (g) denotes the integral of the function eg, 
computed over the Fermi surface: 

(g) = e ~ g dSp . 

e(p)=~o V J.. 

(17) 

(18) 

By making use of Eq. (8) we obtain the potential 
<P(r): 

cp (r) = - 1-{ (eh(r+r(A,)- r(t) )> 
(e) 

n2T2 d } +----(-r(r+r(A,)-r(t))) . 
3 d~-to 

(19) 

It remains to determine the function h( r 8 ), re
quiring that the condition (5) of the continuity of 
charge flux at the boundary be automatically satis
fied: 

h(rs) (v,)+ + \vn (t)h(rs + r (A,,)- r(t)) )_ 

n2T2 d 
= -- -d {(vn)+-r(rs)+\vn (t)-r (1'8 + r(:\8)- r(t) }>-}. 

3e ~-to 
(20) 

The meaning of the notation (vnx )+ is that it is 
necessary to integrate VnX over the region where 
vn > 0, while 

To determine the connection between the thermal 
flux and the temperature gradient on the boundary 
of the conductor, the last component in Eq. ( 1 7) can 
be omitted, since its contribution to the thermal 
conductivity tensor is proportional to (T I !J.o) 2, and 
account of this component would be of higher order 
of accuracy (everywhere only the first approxima
tion in the parameter T/!J.o has been used). There
fore the thermal conductivity of the sample is de
termined only by the given function T(r 8 ): 

n2T2 
q(r):=::;;-, -(v(t)-r(r+r(t.)-r(t))> . 

• 3e 

To determine the thermoelectric field, it is 
necessary to know the function h(r8 ), i.e., to solve 
Eq. (20). In the case of a plane-parallel plate this 
problem is solved exactly for l = oo for any value of 
an oblique magnetic field H -.r 0. 

3. We consider a thin (d « Z) plane-parallel 
plate placed in an oblique magnetic field. In this 



668 M. Ya. AZBEL' and V. G. PESCHANSKII 

case the collisions of the electrons with the surfaces 
of the plate take place much more frequently than 
collisions inside the conductor, and it is enough for 
us to compute the asymptotic expressions for the 
electric and thermal fluxes, when the free path l of 
the electrons tends to infinity. 

The theory of thermomagnetic phenomena in a 
plane-parallel plate can be constructed in the gen
eral case for an arbitrary temperature distribution 
over the surfaces of the plate. However, we shall 
limit ourselves (only to be specific; generalization 
to the general case is similar to the problem of 
the electrical conductivity with arbitrary con
tacts[2J and presents no difficulties) to the case 
which is "natural" for the experiment, in which 
the temperatures are given on the faces of the 
plate and, for example, there is no heat transfer on 
its surfaces: 

(21) 

In the microscopic problem, it is sufficient here 
to consider the dependence of all the quantities 
only on ~, the coordinate normal to the surface of 
the plate. This means that the equations of continu
ity are automatically satisfied only in the first ap
proximation: 

ohfo£ = o, oqsfo£ = o, (22) 

while it follows from Eq. (3) (TJ and t are the coor
dinates in the plane of the plate) 

( 23) 

Equations (23) now again lead, in conjunction 
with Eqs. (16) and (17), to constancy of the gradients 
of the potential cp and the temperature T in the 
plane of the plate, which is natural for the one
dimensional problem. If the temperatures of the 
upper and lower surfaces at the ends of the plate 
are the same, then the temperature gradient on the 
boundary of the conductor is not only uniform but 
also the same on the lower and upper surfaces of 
the plate. 

The choice of axes in the plane of the plate for 
metals with closed Fermi surfaces does not play an 
important role. In metals with open Fermi surfa
ces, it is convenient to use the line of intersection 
of the plane of the plate with the plane of all possi
ble drifts of the electrons as the TJ axis (the yz 
plane; the z axis is the direction of the magnetic 
field; for simplicity, we assume that the open plane 
cross sections Pz = const of the Fermi surface 
have a common mean direction Px and the motion is 
finite in the direction of the x axis) . 

Because of the constancy of ETJ and Et, the func-

tion h(~, TJ, ?;) should be sought in the form 

while the function T(L TJ, ?;) can be represented in 
the following fashion 

(25) 

It would appear that the temperature ought to be 
the same along the transverse cross section of the 
plate. However, the frequent traveling back and 
forth of the electron between the two surfaces along 
the magnetic field leads to the equalization of the 
temperatures just along the magnetic field. There
fore, T1(0) "" T1(d). To determine the temperature 
difference along the ~ axis on the surfaces of the 
plate, one can use the boundary condition (21) for 
the thermal flux q~. 

Making use of Eqs. (20) and (21), we determine 
the potential difference and the difference in tem
peratures on the surfaces of the plate. Omitting 
simple transformations, and limiting ourselves to 
the principal terms of the expansion in powers of 
T/f.-! 0, we get 

where 

a=(YJ,s), 

a~ex oT 
-rt(O)- -rt(d) = ---~-, 

(v~)+ OXa 

( 26) 

(27) 

a;a (s} ::= {<S_v;(l) (rex (t)- rex(/,)))-+< (1 - S-) v;(t) (ra ( t) 

- ra(/c')))-+(S+v;(t) (rx(t)-ra(A'))>+ 

(28) 

Here s_ is a step function, equal to unity when the 
electron traveling toward the surface ~ = 0 is re
flected from this same surface, and equal to zero 
if the electron arrives by being reflected from the 
other surface of the plate (~ = d). The function S+ 
has the same meaning, except that the roles of the 
surfaces have been reversed. 

In expressions of the type (X f, the integration 
is carried out over all the states of the electrons 
on the Fermi surface, for which the value of the 
velocity averaged over one period is v~ < 0, and 
<xt = <x>- <xf; A.(~; t) and A.'(~; t) are the in-
stants of reflection of the electrons from the sur
face ~ = 0 and the surface ~ = d, i.e., the roots of 
the equations 

rr, (t) -· rd!,) = £, rt, (t)- rs(A,') = s- d. 

It is easy to note that a~ a does not depend on ~, 
which guarantees the vanishing of j~ and q~ at any 
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depth inside the plate: 

h<s> = qs(£> = o. 
The fact that we have determined only the tempera
ture difference (27) on the two surfaces of the plate 
is connected with a specific feature of the one
dimensional problem, namely that the ends-the 
points of heat supply, where the temperature is 
fixed-are not considered. Therefore, "instead," 
it is necessary to fix the temperature at some 
point of one of the surfaces. (It is clear that there 
ought to be supplies of heat or current without fail 
in any case, for otherwise, under adiabatic condi
tions and in the absence of an outside emf, an 
equilibrium state with constant temperature and 
potential would be established throughout the sam
ple.) 

By substituting Eqs. (24)-(27) in the expressions 
(16) and (17) for the electric and thermal fluxes, we 
obtain relations which connect the electric and· 
thermal fluxes with the uniform electric field and 
the temperature gradient applied along the plate: 

n2T dGc.ll(~) fJT 
jc.(s)=Gc.!l(s)Eil--3 a -a , (29) 

e llo xll 

n2T2 dGc.ll (s) n2T fJT ( 30) 
qc.(S)=-3- d Ell--3 z Gc.ll(S)fJ-, 

e ~ e ~ 

where 

(S_vc.)- + (( 1-S+) Va)+ 
Gall(s)=aall(s)+' (v~)- a£1l (31) 

is the electric conductivity tensor in the plane of 
the plate, the method of calculation of which is set 
forth in detail in the work of the authorsf2l, and 
(a, {3) = ( 17, ?;) . It so happens that the tensor a a f3W 
is computed there for plates and wires in the case 
of closed Fermi surfaces. For brevity, the step 
function S± has been set equal to zero in all inter
mediate formulas in[2J, inasmuch as the final re
sult did not depend in any essential fashion on 
consideration of electrons which collided twice 
with the same wall within the period of motion in 
the magnetic field. 

We note that the relations (29) and (30) corre
spond to the Onsager principle of the symmetry of 
the kinetic coefficients (2): 

n2T2 d 
Call(~)=- Tbc.ll(S) =-3--d Gall(£). 

e !lo 

Calculation of the electric conductivity tensor of 
the plate aa{3(~) in the case of metals with open 
Fermi surfaces does not present any difficulties. 
In strong magnetic fields, a'rJ'rJ does not depend on ~: 

" 0 \vz2> (vy2)- \vyvz>2 
G'l'l = ua'l'l ' ,_ (v,l)2 , 

where o is the thickness of the layer of the open 
trajectories in momentum space, and a~'r/ is iden
tical in order of magnitude with the electrical con
ductivity of the plate in the absence of a magnetic 
field. All the remaining components of the electric 
conductivity tensor are proportional to r. There
fore the electric current in the direction of the 'rJ 

axis is uniform (p'rJ'rJ "'" a~1'r/) and a sharp nonuniform
ity of the electric current appears when its direc
tion departs from the 17 axis by an angle e » r/d. 

So far as the mean value of the electric conduc
tivity tensor 

d 

Gall = d-1 ~ Gall (S} d£ 
0 

is concerned, all the Onsager relations are satis
fied for it, and att o:: r 2/d and the asymptote of the 
resistance in strong magnetic fields have the same 
character as in an unbounded sample.f4,5l 

The uniform thermoelectric field Ea is easily 
determined from the condition ja = 0 (in Eq. (29), 

we must set ja = 0). For the determination of the 
nonuniform electric field, it is necessary to use 
the condition of electrical neutrality of the metal 
(8). As a result, we have 

E _ n21' _1 dGvll fJT . 
a- -Gav ---

3e d!.to fJx11 ' 
(32) 

E. = - fJqJ (£, 1], ~) 
" fJ£ 

n2T ( dGvll d 
= 3e (1) l Gay-1 djlo d£ ((rc.(A.)-rc.(t))) 

d2 } fJT --- ((rll(A.)- rll(t))) -. 
d110d£ fJxll 

(33) 

In those cases in which the thermal resistance 
reaches saturation in strong magnetic fields, the 
electric field E~ is practically uniform, since 
(ra(A.)- ra(t)) ~ ~. In all other cases, the electric 
field E~ is essentially nonuniform. 

The results obtained above are valid if the elec
trons collide much more frequently with the sur
faces of the conductor than inside the volume. 
Asymptotic expressions for the electric and ther
mal fluxes and the electric field correspond to the 
zeroth approximation in the parameter d/Z. We 
note that there are always electrons with v~ "'"0, 
which either collide with the surface within a time 
shorter than the period of revolution of the electron 
in the Larmor orbit (the electrons close to the sur
face), or do not collide with the surface within the 
free path time (electrons in the interior of the 
plate). It is not difficult to show that the role of 
such electrons in the electrical and thermal con
ductivity is not important if the angle that the mag
netic field makes with the surface of the sample is 
J. » d/Z. 
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In the opposite case J. :S d/Z, i.e., in a magnetic 
field almost parallel to the surface of the sample, 
an electron with a closed orbit cannot collide with 
the two surfaces of the plate if the plate thickness 
exceeds the diameter of orbit of the electron in the 
~nagnetic field. Therefore it is not possible to de
termine the difference in potential on the surfaces 
of the plate with the help of Eqs. (20) and (21). In 
this case, it is impossible to regard the mean free 
path as infinite, since v~ , 0 for a significant frac
tion of the electrons (for all except electrons with 
open orbits), and only volume collisions of elec
trons are possible in the interior of the sample, and 
much more important than surface collisions. 

4. Thus the thermoelectric coefficients were 
shown to be connected with the electric conductivity 
tensor in simple fashion. We can thus conclude that 
in thin metallic samples the thermal flux has the 
same features as the electric current. In those 
cases in which the electrical and thermal resistan
ces increase quadratically with the strong magnetic 
field (metals with open Fermi surfaces or metals 
with equal numbers of electrons and "holes," 
n1 == n2), the thermal flux and the electric current 
are highly nonuniform, being concentrated princi
pally in the region near the surface of the conduc
tor, while their directions can be reversed in the 
interior of the conductor. 

With accuracy up to terms of the order of T/110, 

the components of the thermal conductivity tensor 
of a thin plate are equal to 

rr.2T 
%a~ m = 3e2 cra~ (~)' (34) 

and the law of Wiedemann and Franz holds for any 
value of~. 

Moreover, as was pointed out earlier, the 
Kelvin-Onsager relations are satisfied at any depth 
in a thin plate, i.e., the thermal diffusion tensor of 
the electrons, multiplied by the temperature, is 
equal to the tensor of "diffusion thermal conduc
tivity." 

It is not difficult to show that in strong magnetic 
fields the thermal flux in a thin conductor is also 
highly nonuniform. In a statement of the problem 
analogous to that in the case of the plate, it is 
necessary to make use of the results of Sec. 6 of 
the previous paper of the authors. [2 J There is no 
necessity of carrying out the calculations here, 
inasmuch as the problem of the distribution of 
thermal flux is entirely analogous to the problem 
of the electrical conductivity of a wire. [2 ) 

Evidently an analogy exists, even in bulk sam
ples, between the distributions of the thermal and 
electrical fluxes in the sample. For bulk samples, 

it is convenient to seek a solution of the kinetic 
equation 

f) f) ~ at {n(r, p)- n0} + va;-n(r, p)+ W {n(r, p)- n0} 

ono 
=--eEv 

oe 

immediately in the following form: 

(35) 

n(r, p) =no (e- f.to)- ono{e¢1(r, p) +~-~-to '¢2(r, p) }. 
To Be To 

(36) 
In the case of a bulky plane-parallel plate, the 

uniform electric field Ef3 and constant temperature 
gradient BT I Bxf3 can be take~!. outside the sign of 
the operator a; at+ va;ar + w, and the kinetic equa
tion (35) can be linearized over a small tempera
ture gradient along the surface of the plate. Then 
the functions lj! 1 and lj! 2 will satisfy the following 
equations: 

8'\j1t 8¢1 -
- +v-+ W{¢1} =vE, at ar 

B¢2 B¢2 - aT 
- +v-+ Wi{¢2} = -v-_, at ar ar 

where the linear operators w{l/! 1} anq wdl/!2} are 
connected with the collision integral W by the re
lations 

~ { 8no} 8no -W ¢1- =-W{tll1}, 
Be Be 

~ { e- f.to 8no}- e- ~-to 8no ixT { } W ¢2----- ------;- ••1 ¢z · 
To Be To oe 

If the kernels of the integral operators W{l/! 1} and 
W1 { lj! 2 } are the same (which is the case for tem
peratures high in comparison with the Debye tem
peratures and for very low temperatures, when the 
scattering of the energy flux and momentum flux by 
the impurities is important[6J), then we find that 
for the electric and thermal fluxes 

rr.2Te d 
j = e2 (v'¢1 (r, p)) + - 3--1- (v\jlz(r, p)), 

· c ~to 

rr,2T rr.2eT2 d 
q = 3 <.v'ljJ2(r, p)) + - 3-d;o (v¢1 (r, p)) 

the formulas (29) and (30) are rigorously valid, with 
Uaf3W the thermal conductivity tensor of the plate, 
computed for finite free path length Z. Therefore, 
the Wiedemann- Franz law ( 34) is also valid in a 
bulky plate for any value of ~. 

Account of thermal radiation by the surface of 
the conductor in the medium recalls the problem of 
the electrical conductivity with asymmetrical cur
rent contacts. Therefore some results on the dis
tribution of the electric current in conductors with 
asymmetric contacts can be transferred to the case 
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of the thermal conductivity of samples covered by 
a thermal isolator with apertures. (The role of 
these apertures, which guarantee removal of the 
heat, is similar to the role of current contacts.) 
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