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The correspondence between the traditional solution of the four-fermion Thirring model and 
the results of perturbation theory is investigated. The total set of Feynman diagrams for the 
scattering operator is summed. The result obtained in this manner coincides with the Glaser
Berezin solution. However this result depends in an essential manner on the vanishing of the 
mass of the particles and on consideration of mass-shell matrix elements only. 

THE Thirring model [t] has been discussed in a 
large number of papers [2- 5] which are in many 
respects contradictory. The standard method of 
construction of an S-matrix, proposed by Glaser [2) 

and developed further by Berezin [31, consists in 
finding an exact solution in the nonphysical space 
H¢ in which an inequivalent representation of the 
canonical commutation relations is realized, but 
where the dynamical variables have a well de
fined meaning as operators. The next step in
volves a formal carry-over (with subtraction of 
singularities) of the functional dependence of the 
S-matrix on the field operators into Fock space. 
In a rigorous approach such an extrapolation is 
not at all justified. Indeed, the nonexistence in 
the physical space of a Heisenberg field having a 
local limit, and the absence of eigenstates of the 
total Hamiltonian (the latter is not an operator), 
make it impossible to define the scattering matrix 
in terms of asymptotic fields, or to make use of 
the Lippman-Schwinger procedure. This circum
stance, in particular, has allowed several authors 
(e.g., Wightman [G)) to assert that the traditional 
solution of the model has hardly any relevance to 
the problem itself. 

However, there exists another argument for or 
against the scattering operater obtained as a re
sult of the mentioned extrapolation procedure, 
namely the correspondence with "prosaic" per
turbation theory, and in our opinion this result is 
decisive. The present paper is devoted to an in
vestigation of this question. In fact, we carry out 
below a summation of the totality of Feynman 
diagrams for the scattering operator, a problem 
which is usually completely hopeless in realistic 
theories. By this method a new (in a certain sense) 
solution is obtained, which is free of the usual ob
jections, and can be compared with the traditional 
solution. 

2. In the standard formulation (which from out
ward appearances is noncovariant) the Thirring 
model is reduced to the interaction of two fermion 
fields ¢ 1 and ¢ 2 in a two-dimensional space-time, 
with the interaction Lagrangian 

where 

'i'i(x) = _f -s ~k eikz'l'·(k) 
(2:rt) 't. • ' 

1Jl1 (k) = 6(k0 - k)[a (-k)a( -k) + a(k) b+(k)], 

1Jl2(k) = 6 (k0 + k)[a (k)a( -k) + a(-k) b+(k)], (2) 

here (} is the usual step function. 
The Glaser-Berezin solution [2, 31 defines the 

S-matrix by means of the expression 

S = exp i S d2x2int (x). 

Reducing (3) to the normal form, one obtains the 
following result for the part of the S-matrix re
sponsible for the scattering, in each even order, 
N = 2n, of g: 

(3) 

T2n (g) s dp1 dp2 [a (Pt) 8 (- p2) ( :a+(pt) a(pi)a+(P2)a(P2): 

+ : b+ (pi) b (Pi) b+ (p2) b (p2) :) + ( 9 (pi) a (- P2) 

For odd order N = 2n + 1, we obtain 

T 2n+i (g) s dpi dp2 [9 (Pi) a ( -p2) (: a+ (Pi) a (Pi) a+ (P2) a (P2): 

+ : b+(pi) b (Pi) b+(p2) b (p2) :) -(a (pi) a (-P2) 

+a (-pi) e (p2)) ·: a+(Pt) a (pr) b+ (P2) b (p2) :], ( 5) 

where the coefficients Ti (g) depend on g only. It 
is our purpose to compare Eqs. (4) and (5) with the 
corresponding expressions obtained from the usual 
time-ordered representation of the scattering 
matrix 
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( 6) 

In the a-representation the contribution of an 
N-th order scattering diagram to the coefficient 
function is determined by the expression [7, R] 

(ig)N (-1)l+N-1 limY n[P ( !._ \a,a] 
N! (16n)N-i ....... o 0 J}r J 

XD 1 ( ) ·[A(a,p)-2B(a, r p)-K(a,r) J (7) 
- a exp' D(a) 

(the product in ( 7) and all subsequent equations is 
over all internal lines). In Eq. (7) to each internal 
line we associate a Feynman parameter a and a 
2-vector r. Each external line is described by its 
2-momentum, and in agreement with Eq. (2) it is 
assumed that for lines associated with the field 
1/!1 (type I) p0 = p, whereas for the field 1/!2 (type 
II) p0 = - p. The number l is the total number of 
closed loops in the diagram, each consisting of 
lines of the same type. The operator P is defined 
by: 

( a ) ~a~o ·-a~ for lines of type I (corresponding to contractions 
p ar = a of the field 1/Jl) 

a~o + ar for lines of type II (corresponding to conlractions 
of the field 1/J 2) •• 

(8) 

In ( 7) the form D is the sum over all trees in the 
diagram under consideration of products of the 
parameters a not belonging to these trees. The 
tree of a diagram is defined as the maximally 
weakly connected diagram containing the same 
vertices as the initial diagram. 

The form A is defined as the sum over all 2-
trees of the diagram of the products of parameters 
a not belonging to these 2-trees, and where each 
of these products is multiplied by the square of 
the algebraic sum of external momenta entering 
into one of two disjoint vertices of the 2-tree un
der consideration. A 2-tree of a diagram is ob
tained from the tree by removing one arbitrary 
line from the latter. 

The form B is linear in all ri. The coefficients 
of the ri can be found by means of the following 
rule. One takes all trees of the diagram from 
which the i-th line can be removed, and for each 
of these one forms the product of parameters a 
not belonging to the tree under consideration. This 
product is multiplied by the algebraic sum of all 
external momenta entering into one of the two 
halves of the tree, separated by the removal of 
the i-th line, the sum being taken with positive 
sign if the i-th enters into the half of the tree 
under consideration, or with a minus sign-if the 
line leaves this part. Then the expressions so ob
tained are summed over all such trees. 

The form K, which is quadratic in r, is de
fined as follows: The squares of the algebraic 
sums of r belonging to the lines of a given loop 
of the diagram are taken. Then these squares are 
multiplied by products of the parameters not be
longing to the tree containing the loop under con
sideration, and the results so obtained are summed 
over all loops of the diagram. A tree with a given 

loop is a configuration which becomes the tree of 
the diagram if any line of the loop is removed 11 • 

3. Making use of Eq. (7) and the definitions 
given above one can prove several propostions. 

First of all, one can prove that all scattering 
diagrams with external lines of the same type give 
no contribution if the particles are on the mass 
shell (proposition 1). 

Indeed, considering, for instance, a scattering 
diagram of order N with external lines of type I, 
it is clear that there will be two more internal 
lines of type II than of type I. We first carry out 
all the differentiations in ( 7) corresponding to 
lines of type II. After the first differentiation a 
factor of the form 

~ (1) (2) 

LJ [u( a) L1 (p) + v ( a)Lt (r) ], 

will appear in front of the exponential function in 
the integrand, where u (a ) and v ( a ) are some 
functions of a, and L~i)( x) are linear functions 
of x, depending on it only in the combination 
x0 - x. Since in this case on the mass shell p0 

= p, the factor reduces to ~v (a ) L11) ( r). This 
factor will not be subject to differentiations under 
the action of the operators p corresponding to the 
remaining lines of type II, since (a/a r 0 + 
+ a Ia r) Lf1 > ( r) = 0. As a result of all such differ
entiations we obtain a factor in front of the ex
ponential for which the effective power of r will 
be N. Since the number of operators p corre
sponding to lines of the type I is ( N - 2 ) , it is 

1lThe prescription for the construction of the forms Band 
K has been first formulated by B. M. Stepanov, who has kindly 
informed us about his results, for which we are sincerely in
debted. 
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clear that in the limit r = 0 we obtain zero, which 
proves our proposition. 

Thus, on the mass shell one needs to take into 
account only diagrams involving external lines of 
different types. 

We introduce the following notation. The 2-
momenta p1 and p2 denote the incident particles, 
the 2-momenta p3 and p4 belong to the outgoing 
particles, and p~ = p1; pg = Pa; pg = - P2; pg = - P4· 
It is convenient to introduce the combinations 

s = (Pt + P2) = (Ps + p,), t =(Pi-Ps) =(p,- P2). 

u = (Pi - p,) = (ps - P2). 

such that 8 2 = s, 'P = t, and u2 = u are the usual 
Mandelstam variables. In diagrams which do not 
vanish on the mass shell and are of order N, we 
associate to the internal lines of type I the collec
tion of parameters ( a 1 r 1 , ... , O!N-trN_2), and to 
the internal lines of type li-the collection 
(aNrN, · · ·, 0!2N-2r2N-2). 

Introducing into (7) the new integration vari
ables A and ~ i• defined by a i = A~ i with 0 ::s A 
< oo, 0 ::s ~ i ::s 1, and 1:~ i = 1, then the definition 
of the forms D, A, B, and K yields in N-th order 

D(a) = .f.N-1D(s), A (1a,p) = .f.NA (s,p). 

B(a,r~p) = .f.N-1B(s, r,p). K(a~r) = .f.N-2K(s,r). (9) 

Substituting Eqs. (9) in (7), we transform the 
latter to the form 

(ig)N <-1>z+N-1 . 11 <>(1- ~s> ( a ) 
Nl (16n)N-1 !:~ ~ (IIds) D(s) P2 a;:; 

( a ) a a "" 
X···p2 -a- ·P1(0 ) ... P1(-)~ dl. 

TN-1 TN ar2N-2 0 

x .f.N-2ex i[.t. A(s,p) _ 2B(s,r,p) _ 1 K(s,r) J. 
P D<s> D<s> .~. D(s) 

4. From now on we shall discuss only the 
theory on the mass shell, without separately 
mentioning it every time. 

(10) 

We first note that for each diagram involving 
the combination s of the incoming momenta, there 
exists a mutually crossing complementary dia
gram involving the combination u, i.e., there is a 
diagram with an oppositely oriented open chain of 
lines of type II. This refers also to nonplanar 
diagrams, depending simultaneously on s and u. 
An exception is formed only by the t-diagrams, 
i.e., by those for which at least one open chain of 
lines has zero length (owing to the kinematical 
condition t = 0, such diagrams give a contribution 
to the scattering amplitude which does not depend 
on the external momenta). 

Relative to mutually crossing complementary 
diagrams one can formulate the following proposi
tion 2. 

The sum of the contributions of two crossing
complementary diagrams to the coefficient func
tion of the scattering operator is const. E ( s) in 
every even order and a constant in every odd 
order (here E ( s) is the sign function). 

In order to prove this proposition we first con
sider an arbitrary scattering diagram of order N 
with an incoming momentum combination s. Since 
the theory admits nonplanar diagrams, for such 
diagrams the form A ( ~, p) is a linear function of 
s and u. But in the theory under consideration 
t = 0, and hence s = -u. Thus A(~, p) =a(~) s, 
where a ( ~ ) is a function of the parameters ~. 
Moreover, the quadratic dependence of the form 
K ( ~. r) on r in the limit r = 0 implies that a 
nonvanishing contribution to the integral (10) 
comes from those terms which appear as a result 
of the action of an identical number of operators 
p1 and P2 on exp [ K ( ~, r )/ i AD ( ~ ) ] . If in one 
such term the exponential function is subjected to 
N - k - 1 operators p1 x p2, there will appear a 
factor (A)-N+k+t. The remaining k operators 
p1 x P2• acting on exp l -iB ( ~, p, r )/D ( ~ ) ] yield 
a factor proportional to sk, since in the diagrams 
of the type under consideration the coefficient of 
each rj in the form B will necessarily contain p1 

and P2· In addition P2 ( P2) = P2 (s), Pt ( Pt) = Pt ( s). 
Thus the contribution of each such diagram of 
order N to the coefficient function of the scatter
ing operator is given by the expression 

(ig)N (-1)l+N-1 ~ ()(1 - ~S) N-t. 

lVl (16n)N-1 ~ (lidS) D(s) ~o Yk(~) 

X sk S d.f.j,h-texp[i.t. a(s) s] e-A• 
o D<s> · 

(11) 

In Eq. ( 11) Yk ( ~ ) denote functions of the 
parameters ~ . A characteristic feature of this 
equation is the fact that the variable s occurs in 
it only in the combination As· We note that this 
circumstance is also a consequence of dimensional 
considerations, and that a nonvanishing mass 
would liquidate this feature. 

In order to derive from (11) an expression for 
the contribution of a crossing complementary dia
gram to the coefficient function of the scattering 
operator it is necessary first to perform in ( 13) a 
substitution s - u =- s. Then the mutually cross
ing complementary diagram is obtained from the 
original one by changing in it the orientation of one 
of the chains consisting of lines of the same type 
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and having a beginning and an end. Therefore it 
follows from Eq. (10) and the definition of the 
forms B ( ~, r, p) and K ( ~, r) that in addition to 
the substitution s - - s the expression ( 11) will 
be multiplied by (- 1 ){), where () is the number 
of lines in the chain whose orientation has been 
reversed. It turns out that the parity of the num
ber of internal lines in two chains of lines in the 
diagram having a beginning and end is the same, 
and is opposite to the parity of the order of the 
diagram. These facts are simple consequences of 
Furry's theorem and of the fact that the total num
ber of internal lines of each type in a scattering 
diagram of order N equals N - 1. 

Thus the total contribution of two mutually 
crossing-complementary scattering diagrams of 
order N to the coefficient function of the scatter
ing operator is given by 

1 N-1 
(ig)N (-f)l+N-1 I II d 6(1- ~~) ~ y ):: 
N! (16n)N-1 ~ ( ~) D(~) k=:o k(,) 

"" a(~) J 
X ~ dt.,{ s"A,"-1 exp [ i/, D (£) s - e/, 

0 

+(-1)N-1(-s)"A,"-1exp[-il., a(~) s-er..]'J·(12) 
D(~) 

It can be inferred from Eq. (12) that in even order 
of perturbation theory the sum of matrix elements 
of interest is expressible in terms of the function 

• 
A+>(sj~)- ~ dt.,e-e'l.')..l<-1 {s"exp[i/.,qJ(~)s] 

0 

- (-s)"exp[-i'AqJ(~)s]}, 

whereas in odd orders it can be expressed in 
terms of the functions 

00 

tt>(sj£)= ~ dt.,e-•"t.,"-1 {s"exp{iA.'IJ(~)s] 
0 

+ (-s)" exp [ -i/.,'IJ (s) s]}. 

( 13) 

( 14) 

In Eqs. (13) and (14) c.p ( ~) and 1/J ( ~) are functions 
of the parameter ~ . 

It is easy to see that there are no divergences 
in ( 13), the variable s occurs only in the combina
tion A.s, and that the functions fk+ > ( s I~ ) are odd 
in s; thus the functions f t> ( s I ~ ) depend only on 
the sign of s: 

( 15) 

where 

co 

fk+> (6) = ~ dxe-ex {x"exp[iqJ(;)x]- (-x)k exp[-iqJ(£)x]}. 
0 

At the same time it follows from (14) that 
among the functions q~> ( s I ~) there is one which 
is defined by a divergent integral, namely the 
function with k = 0. On the other hand it is known 
that the model under consideration involves no 
charge renormalization [1- 3]. The latter circum
stance means that although in individually taken 
sums of crossing-complementary diagrams 
divergences may occur, all these divergences 
compensate each other within the same order [9, 10 ]. 

This circumstance gives us the possibility to 
operate formally with divergent integrals. It fol
lows then from Eq. (14) that all the functions 
f ~> ( s I~) are even in s, and since s again en
ters only in the combination A.s, it follows that 

tt> (sIs)=~~->(~), ( 16) 

where 
co 

tt> (6) = ~ dxe-•x {xk exp [i'IJ m x] + ( -x) k exp [ -i'IJ (S) x]}. 
0 

Substituting these expressions into Eq. ( 12) we 
arrive directly at the result stated in propostion 
2. 

We note that diagrams of the t-type which have 
no mutually crossing complementary partners are 
essential only in odd orders, since otherwise such 
a diagram would contain at least one closed loop 
consisting of an odd number of lines of the same 
type. By Furry's theorem all such diagrams can
cel out. 

If nevertheless it should turn out that in this 
model there are proper vertex singularities, these 
should be removed by means of the usual pro
cedure, the R-operation. In this case the model 
would be determined not only by the interaction 
Lagrangian, and in order to determine it com
pletely one has to specify the subtraction point. If 
one chooses the latter in a manner which is natural 
for the model (all external momenta equal to zero), 
the regularized expressions ( 15) would have all 
the properties of the unregularized ones, and thus 
proposition 2 remains in force. 

Making use of the results of proposition 2 and 
of the fact that s = ( p1 + P2 ) 2 = - 4p1 · P2, it is easy 
to show that the in even orders of perturbation 
theory ( N = 2n ), the on-mass-shell term in the 
S-matrix responsible for scattering has the form 
(4), whereas in odd orders N = 2n + 1 the corre
sponding term is given by Eq. (5). 

This means that as a result of summing all 
Feynman diagrams for the coefficient function of 
the S-matrix corresponding to scattering on the 
mass shell, we obtain an expression containing 
the sum of two operator structures, defined by the 
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expressions (4) and (5), in complete agreement 
with the results of Glaser [2) and Berezin [3). 

5. Thus the summation of the perturbation 
theory series confirms the traditional result [2, 31 
for the scattering operator and may serve as a 
justification of the legitimacy of the procedure 
used by Glaser and Berezin. However, it is clear 
from the above that the simplicity of the model is 
essentially due to the vanishing mass of the parti
cles and to the fact that all matrix elements are 
considered on the mass shell only. Indeed, for 
m ;C 0, or if one goes off the mass shell (even for 
m = 0 ), the class of nonvanishing diagrams turns 
out to be extremely large, and the diagrams ac
quires a nontrivial dependence on the external 
momenta. Therefore the hope to obtain local ex
pressions for a theory connected with an off-mass
shell S-matrix (even for m = 0) is just as illusory 
as the hope to be able to sum the perturbation 
theory series in a real four-dimensional theory. 

The authors are indebted to B. V. Medvedev, 
V. N. Sushko, A. S. Shvarts, D. V. Shirkov, and 
Yu. M. Shirokov for useful discussions. 
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