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In the case in which the atom has levels whose spacing is a multiple of the frequency of the 
light beam, there is a possible resonance mechanism of ionization in which there first occurs 
a real transition of the atom into an excited state with the absorption of N photons, and then 
there is ionization from the excited state. For the probability of ionization of the atom under 
these conditions we have derived the general resonance formula (24), which also takes into 
account the possibility that higher harmonics are present in the light beam. We also point out 
that it is possible for the probability to be considerably increased owing to resonance effects, 
and that the resonance is very wide. 

1. OWING to the development of laser techniques 
and the production of intense light beams it has be­
come possible to observe the ionization of atoms 
by the field of an electromagnetic wave (see [ 1• 2 l). 

The first theoretical study of the ionization of at­
oms by an alternating field was made by Kel-
dysh. [ 3 J Thereafter this problem was studied in 
greater detail in a series of papers (see [ 4- 7 l). 

The probability of ionization by the action of 
an alternating field F(t) has been calculated for a 
system bound by short-range forces in the approx­
imation F /Fo « 1, w/w0 « 1 (F0 is the strength of 
the atomic electric field, w0 = K 5/2 is the binding 
energy, and F, w are the intensity and frequency 
of the external field). Under the action of the field 
F(t) there can be resonance transitions to excited 
states. If the characteristic times corresponding 
to these transitions are smaller than the time for 
ionization from the original level (the original 
level can be either the ground level or an excited 
level; the latter case is possible if we are consid­
ering the ionization of previously excited atoms), 
then there is first a transition to the excited state 
and ionization occurs only thereafter. Since for 
high levels the effective potential barrier is nar­
rower, the probability for ionization should be 
much larger. In the present paper we use the 
method developed in [ 5] to derive the formula for 
the probability of ionization with resonance transi­
tions taken into account. Resonance ionization ow­
ing to the admixture of higher harmonics in the 
light beam has also been investigated by Kel-
dysh. [ 3 ] 

2. The integral equation for the quasistationary 
condition in an alternating electric field F(t) 
= F cos wt is of the form[ 5] 

t 

'ljl (r, t) = - i ~ dt' ~ dr' G (r, t; r', t') V (r')'ljl (r', t'), (1) 
to 

where it is stipulated that the field was turned on 
adiabatically at t = t0• Here G(r, t; r', t') is the 
Green's function for the electron moving in the uni­
form field F(t), and V(r) is the intraatomic poten­
tial. Let us expand the function 1/J(r', t') in the in­
tegrand in (1) in terms of the eigenfunctions of the 
Hamiltonian - f '\72 + V(r): 

1jl(r',,t') = ~ ai(t')'ljlj0> (r')exp(iwit') (2) 
j 

(Wj is the energy of the jth level). Then1> 

V(r')'ljl(r', t') =- 2; ai(t') (w 5 + ~/2)\j!~o) (r'), 

p =- i'\1. (3) 

It is assumed that V(r') is a short-range poten­
tial, 2> and therefore the integration over r' in (1) 
is effectively taken over the region inside the atom, 
where the field F(t) can be regarded as a pertur-

1 )The atomic system of units with 11 = e = m = 1 is used. 
2 )0wing to this condition all of the results that will fol­

low are strictly applicable only to the ionization of negative 
ions. The main conclusions, however (at least for not too high 
frequencies of the external field), are also valid for the case 
of ionization of atoms, for which the potential V(r) has a 
Coulomb "tail" at infinity (see the discussion in Sec. 3). 
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bation. Then the coefficients aj(t') can be expanded 
in powers of the external field. 

In [ 51 the ionization of an atom from the ground 
level was considered, and the change of the wave 
function inside the atom owing to the electromag­
netic field was not taken into account. Generally 
speaking this is justified, since the corrections 
depend on the parameter F /Fo « 1. In this case 
lj!(r', t') in (1) is replaced by the wave function of 
the ground state of the free atom, lj!~ 0 >(r') exp (iw0t'). 
If, however, there is a level with energy Wk whose 
distance from the ground state is a multiple of the 
frequency of the external field, i.e., if I w0 - wkl 
~ Nw (Nan integer), then the coefficient ak(t') in 
the expansion (2) which corresponds to this level 
is large and the perturbation theory does not apply. 

Accordingly, in the immediate neighborhood of 
the resonance the states lj!~0 > and lj!~ > are strongly 
intermixed, and lj!(r', t') is a superposition of the 
two functions, namely: 

¢(r,t')= a~J\-)(t')1j1~0> (r')exp(i<.lot') 

(4) 

The index N corresponds to the resonance transi­
tion with the absorption of N photons. For exam­
ple, for resonance at the frequency w (w0 - Wk 
= w + E<1l, E(1)- 0), with the initial condition at 
t =to the amplitudes ~1> and a~> are given by [Sl 

(!J 1 (tD • (!) 
ao (t,to)=--e-'"''1'{Xt exp[!x2 (t-to)] 

2Q(l) 

[ . (i)t . (ilt}] - exp - ZXt - lX2 , 

where 

(6) 

:1.. 1<~~ = _ tj28(tJ ± Q<l), Q(!J = [ (tj28(tl)2 + ltf2(Fr)h, 012]';,, 

The wave function (4) with the coefficients ~1> 
and ag> given by (5) and (6) takes the effect of the 
external field on the motion of the electron in the 
atom into account correctly (to accuracy "' F /F0) 

only for times t « t1s tr (t1 is the characteristic 
time for ionization, and tr = 1/r r• where r r is 
the radiative width of the level). For large times 
it is necessary to take into account the damping of 
lj!(r', t') inside the atom, associated with the radia­
tive width and the probability of ionization. But tr, 
and even more so ti, is much larger than the char­
acteristic atomic times (....., 1/ w0) and the time for 
transitions between levels under the influence of 

the external field F(t) (for more detailed esti­
mates see Sec. 3). The subsequent passage to the 
limit t0 - -co is of course to be understood in a 
special sense. We require only that t- to be in 
the interval 

This is the region in which there is meaning to the 
concept of a time-independent probability of ioniza­
tion per unit time. In first approximation the level 
widths owing to radiative decay and ionization can 
be taken into account phenomenologically in the 
final result. 

Using Eqs. (1), (4)-(6) and the expression for 
the Green's function G(r, t; r', t') [see Eq. (17) 
of [ 51 ], we get the expression for the current vec­
tor for t0 --co: 

00 

j= 8~ ~ -~ ~aptdP2(n:t(t> 
n~, n2=-oo Ja=O, k. 

j,=O,k 

-t n:2 (t) )F nhPt)F ::· (p2) 1;,n'·(pt)l;•,"'&(P2) 

(7) 

Here 7r(t) = p - A(t) is the generalized momentum, 
and 

t 

s(t) =- ~ A(,;)d,;, 
-oo 

A(T) being the vector potential of the external elec­
tromagnetic field; 

1 T 

Fn3(p) = 2T h; 
-T 

X(n:(,;))exp{i[nw,;- pFcosw't"-~sin2w,;]}a't, (8) 
w2 8w3 

where 

T= 2n/w, 

and lj!J0> ('11") is the Fourier transform of the func­
tion lj!~ 0 >(r); and 

J 

(!) • (1) 
-x2 exp [zxt t] 
---·-----

2Q(I)- i{) 
for j = 0 

1/2 (Fr) h, o exp [ -ixJ1>t] 
for j = k (10) 

2Q<1l-i{) 

The ionization probability W is calculated as the 
flux at infinity through a plane perpendicular to 
the direction of the field F(t): 
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( 
p2 F2 8(1) ) 

X 6 -+wo+-+Q<1>·----n(J) 
2 4w2 2 , 

I ( (1) ) 1 12 
X \QCI)+; F~0)(P)+z(Fr)~t,oP::-t(P) · 

The integrals F~>(p) and F~- 1 (p) come in only 
for 

(11) 

p2 F2 1 . 
nw =-+wo+-+-el1l- Q<1> (12) 

2 4w2 2 · 

Using this condition, we get from (8) 

·n " 

F n°(p) = ;n ~ Xo(:rtW)) 
-n 

ll 
{ wo[l( n2(a)) tj28<t>-Q<t> ]} Xexp -i- J 1+-.- da+-----~ d~, 

w 0 Xo2 Wo 

(13) 

k in-1 " 

Fn-t(P)= 2;- ~ X~t(:rt(M) 
-n 

(14) 

where 1!' ({3) = p + Fw-1 cos {3. 

The presence of rapidly oscillating exponen­
tials in (14) and (13) allows us to apply the method 
of steepest descents. In both cases the position of 
the saddle point is given approximately by the con­
dition 1r 2 = -K8. At this same point lf!J0 >(11'), which 
occurs in (13), has a pole. Accordingly, the value 
of the integral F~>(p) is determined by the behav­
ior of 1/J~ 0 > in the neighborhood of the pole. This 
means that for the explicit calculation of F~>(p) 
we need to know only the asymptotic behavior of 
the function 1/JJ0 > (r), which is known. The result of 
the integration is 

{ QC1>- e<1>/2 } 
Fr, 0 (p)=Fn(P)exp <D arshv , (15) 

where y = Ko w/F, and the expression for F n (p) is 
given in [ 5J [Eq. (53)]. 

The essential feature of the integral Fg_1 (p), 
Eq. (15), is that in general the saddle point 1r 2 

= - K 5 and the pole ( 1r2 = - 2wk) of the function 
1/!~>(11') do not coincide. The variation of 1/!~>(11') 
occurs over ranges ~ wk = K ~/2, and the differ­
ence between the positions of the saddle point and 
the pole is of the order of Wk(w0 - Wk)/wk 
« wk (sic). Therefore in the approximation con-

sidered the integral (14) is determined by the be­
havior of ~>(11') in the neighborhood of the pole 
and is given by 

F~-t(P)=Fn'(p)exp{[1+ (Q<1l-+e<1>) ~ J arshv}. 

(16) 
The integral F~(p) is the same as F n<P), if we re­
place the factor C Ko z0 [the coefficient in the 
asymptotic formula for 1/J~o> (r)] by the factor CK!Jk 

[the coefficient in the asymptotic formula for 1/J~ >(r)] 
and replace the orbital angular momentum lo of 
the electron in the level w0 by the angular momen­
tum lk corresponding to the level wk (We take 
the magnetic quantum number m to be zero for 
the levels w0 and wk, since for unpolarized atoms 
the ionization occurs mainly from levels with 
m = 0 (cf. [ 5J). 

Substituting the values of the integrals F~>(p) 
and F~'-1 (p) into (11) and integrating over the mo­
menta, we get 

W = I ( e(l) + Q(l)) + (Fr)k, 0 Cxklk ~ /2lk + 1 
2 2 C ><olo V 2l0 + 1 

X (V + fi +V2) r (eClJ)2 ~tFr)~t,ol2 • (17) 

where W0 is the probability of ionization from the 
ground level, as calculated, for example, in [ 5J. 

In the region far from resonance, where E<ll 

= w0 - Wk - w ~ w0 » (F • r)k, 0 , we transform 
( 17) to the form 

W = Wo [i + Cxklk 1 /2lk + 1 (Fr)k.o 
Cx,l0 V 2l0 + 1 (J)o - Wk - (J) 

x <v + Vi+ y2) J (18) 

In this case the correction to W0 is small, and 
is determined by the parameter F /Fo « 1 for 
y « 1 and (F /F 0)y « 1 for y > 1. 

In the immediate neighborhood of resonance 
[ E<1l ~ (F • r)k 0 « w] the second term in (17) 

' gives the main contribution. In this case the prob-
ability of ionization is 

W =A rN4 (2v) 2Wo; 
(wo- 'Wk- w) 2+ft2/4 

A-_!_ 2lk + 1 I Cxklk 12 rl = 2 (Fr)k,O• (19) 
- 2 2l 0 + 1 Cx,/0 ' 

If there are two levels in the atom with separa­
tion 2w, a two-photon transition to the excited 
state is possible. In this case, far from resonance, 
the correction to the probability W0 is given by 
second-order perturbation theory. Near resonance 
(wo - Wk) I w ::::; 2, and therefore in (11) the integral 
F~_ 1 (p) is replaced by Frf.-2 (p). Furthermore, as 
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will be shown in the Appendix, in this case the ma­
trix element f (F • r)k, 0 must everywhere be re­
placed by the matrix element for the transition 
with absorption of two quanta, i.e., 

(F'r),.,~-+ j~>o = ~ ~ (Fr)k, ;(Fr) ;,o. (20) 
2 ' 22 . Wo - w; - w 

J 

Besides this there is a shift of the levels in the 
electromagnetic field (if one photon is absorbed 
and the other is emitted); for example, the shift of 
the ground level w0 is given by (see Appendix) 

(2)_ ~ ~ I (Fr) ·1 2 (---
1--+ --~--) · Awo - ?2 .,;.;J o. J Wo- w. - w Wo- w; + ul 

- j J (21) 

Then in (17) the quantity €<1> = w0 - Wk- w is re­
placed by 

e<2l = (w + Aw<2l)- (w,. + Aw~>) -2w. (22) 

The meaning of these replacements can be 
easily understood from diagrams. The diagrams 
for the shift (21) are shown in Fig. 1, and those 
for the absorption of two photons and transition 
from level w0 to level Wk in Fig. 2. 

In the general case of a resonance that arises 
from the absorption of N photons the integral 
F~_1 (p) in (11) is replaced by F~-N (p) [it being 
assumed that Nw/w0 « 1, since otherwise it is 
impossible to calculate the integral F~-N(P) by 
the method of steepest descents]. The matrix ele­
ment t (F · r)k, 0 is replaced by f~~ which corre­
sponds to the diagram shown in Fig. 3, a: 

e<1>-+ e(N> = (wo + Awo) - (wk + Awk) - Nw, 

[N/2] 

"" (2p) Awo; h = L.J Awo: h , [N /2] - integer part of N /2, 
.r-=1 

where, for example, the level shift t.w~2 P> is de­
scribed by the set of all diagrams with absorption 
of p photons and emission of p photons. The ex­
pression for the probability of ionization near the 
resonance from absorption of N photons takes the 
form (for justification of this formula see Appen­
dix) 

fN2/4 W-A - ·---·---.;_....~~-----:-:-
- (((•lo + Aw0)-(w,, + Aw~<.) -Nw]2 + r;,., to/4 

X (2y)2NJJ'o, (23) 

where rN = 4f<kN>; rN tot= rN + rr + ri; and the 
'0 ' constant A is defined in (19). 

~+Hw /w0 w~ w0 w0 

FIG. 1 

FIG. 2 FIG. 3 

In the general case, when the condition Nw/wo 
« 1 is not satisfied (but w I wk « 1), the probabil­
ity of ionization is 

1 r~/4 - rv 
W = -2f{w0 =t--ti~0)-(w~<. + Aw~<.)- Nw]2 + f~v. to/4 h, 

(24) 

where wk is the probability of ionization from the 
level Wk· 

In Eq. (23) we have included in the resonance 
width rN, tot the terms r r and ri which are du.e 
to the radiative and ionization widths of the atomic 
levels (for not too large N we always have rN 
» rr. ri>· 

If the electric field F(t) is not strictly mono­
chromatic, but contains a small admixture of 
higher harmonics (this is often the situation in a 
laser beam), the resonance transition of the elec­
tron to the state k can occur with absorption of a 
single quantum of frequency N w. 3 > In this case the 
matrix element fk~~ in (23) must contain an addi­
tional term f (aNF • r)k, 0 (where O'N is the frac­
tional admixture of the harmonic of frequency Nw), 
corresponding to the diagram with absorption of 
one quantum of frequency Nw. Similarly, the en­
ergy shifts in each order of perturbation theory 
must contain terms corresponding to diagrams 
with the absorption and emission of quanta of fre­
quency Nw. For example, the term added to t.w~2 > 
is of the form 

1 ( 1 1 \ -~l(aNFr)o;;l 2 N + +N }·(25) 
22 . Wo- Wj - W 'WO- Wj W 

J 

If the light beam contains an admixture of higher 
harmonics, then besides the indicated change in 
the resonance factor we must take into account the 
change of the probability of ionization from the 
ground level, W0• The formula for W0 in this case 
has been derived by Perelomov and Popov;£ 91 they 

3)Strictly speaking, if the corresponding harmonics are 
present in the beam, there can be second order transitions [ab­
sorption of two quanta: [(N-l)w and w, or (N-2)w and 2w, 
etc.], third-order transitions, and so on. We shall not analyze 
all of the possibilities in the general case here. For small N 
the number of such possibilities is small, and the contribu­
tion or" each of them to the probability of ionization can be 
found easily by adding to fk<~> in (23) the contributions of 
the diagrams which correspo~d to the transition in question. 
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showed that the corrections to W0 owing to higher 
harmonics are important. 4> 

3. Let us discuss the physical meaning of (23). 
We see that if a resonance electronic transition 
occurs with the absorption of N photons of fre­
quency w, for y » 1 a large factor (2y )2N ap­
pears. This is due to the fact that after the elec­
tronic transition the ionization effectively occurs 
from a higher level, where the barrier is nar­
rower. The factor 

is proportional to the probability of the transition 
to the state k. 

At exact resonance the characteristic time for 
the transition between the levels 0 and k is ttr 
"' w0 - 1(F0/F)N. In a ruby laser w ~ 1. 79 eV and 
F ~ 2. 7 x 107 V /em. Then for w0 "' 12 eV we have 
ttr "' 103N - 14 sec. The increase of the probability 
of ionization near resonance is given by the ratio 
W/W0 "' (wF0/w0F) 2N. The width of the resonance 
is proportional to the matrix element 

In spite of the fact that the formula (23) for the 
probability of resonance ionization has been de­
rived for the case of a short-range potential V(r) 
in (1), it is also suitable for the description of the 
resonance ionization of atoms. [In an atom the po­
tential V(r) has a Coulomb "tail" at infinity.] For 
not too large y (1 « y « Yc; for the definition of 
Yc see [ 9J) it has been shown in [ 9J that inclusion 
of the Coulomb "tail" can be accomplished with 
perturbation theory applied to the action function, 
and the result reduces to the appearance of an ad­
ditional factor (2F0/F)2A in the expression for W0 

(71. is the Coulomb parameter[ 5J). For large y 
(y » Yc) there is unfortunately no formula for W0 

with the Coulomb effect included. Therefore in 
this region we have no rigorous arguments for the 
justification of (23) and (24). There are, however, 
some qualitative considerations that favor the cor­
rectness of (24). 

4 lThe essential difference between the expression (23) 
for the probability of resonance ionization and the correspond­
ing formula in the paper by Keldysh ['] is that in our case the 
width ['N of the resonance arises owing to nonlinear effects 
in the interaction with the external field F(t), whereas in ['] 
the broadening of the resonance line is due only to the radia­
tive C1r) and ionization (ii) widths of the atomic levels. 
Moreover, in our approach the level shift 1'1w 0 ;k in the elec­
tric field arises automatically. 

Let us break the true atomic potential up into 
two terms, V = V s + Vz, where V s contains only 
the short-range part and Vz the Coulomb "tail." 
In this case there is an equation for l/J(r, t) analo­
gous to (1), with V replaced by V s• and the con­
tribution of Vz is referred to the Green's function 
G(r, t; r', t') (but now the explicit form of G is of 
course unknown). Then in the integrand in (1) the 
function l/J(r', t') can be put in the form (4), which 
is obviously sufficient for a foundation for (24), 
since the explicit form of Wk is not fixed in (24). 

In conclusion the authors express their sincere 
gratitude to I. V. Obreimov for his interest in the 
work, and to B. L. Livshitz, A. M. Perelomov, and 
V. S. Popov for many discussions and helpful com­
ments. 

APPENDIX 

We here present the justification of Eq. (24) in 
the text. For this it is necessary to know the wave 
function of the electron when the distance between 
the levels in the atom is a multiple of the frequency 
of the external electromagnetic field. To solve the 
problem we consider the equation for the coeffi­
cients bn(t) = an(t)eiwnt [for the definition of an(t) 
see (2)]: 

We look for the solution of (A.1) in the form 

1 00 

bn(t) =- \ bn(E)eiEtdE. (A.2) 
2rt .l 

-00 

Initially (at time t = t0) the electron was in the 
state with energy w0• Using the initial condition, 
we get from (A.1) a system of coupled equations in 
the energy representation: 

1 
(E- lun) bn (E)- 2 ~ (Fr) n, j[bj (E- W) + bj (E + w)] 

j 

= -iOnoe--tEto. (A. 3) 

Let us consider the general case in which the 
distance between levels is close to Nw. In there­
gion far from resonance the N -photon process is 
determined by N-th order perturbation theory. In 
particular, the correction to the ground-state wave 
function contains a term "'[w0 - Wk- N w]- 1 1/! ~- If, 
however, the difference between the levels is equal 
to Nw, this term becomes large. Under these con­
ditions an actual transition between the levels 0 and 
k is possible, with the absorption (or emission) of 
N photons. For times larger than the characteris-
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tic time of the transition there is strong mixing of 
the states 0 and k, so that on the average the 
probabilities of finding the electron in these two 
levels are about equal. Thus near resonance the 
coefficients b0(t) and bk(t) are of the order of 
unity, and are large in comparison with bn (t) 
(n 1- k, 0). 

Using the system (A.3), we express by means of 
recurrence relations the coefficients bo (E) and 
bk(E - Nw) in terms of all the others. We then 
get a system of two equations: 

[ ~ (2p) J E- Wo- LJ ~Wo (E) bo(E) 
]'=1 

~ tf'il+il (E) bk (E- Nw) = - ie-iEto +£(E) ,,(A.4) 
j=O, 2, ... ' 

co 

" (N+j) [ , ~ (2p) J -_,6/P.,o (E)bo(E)+ E-1\w-wh-,w~WP. (E) 
)=0, 2 p=1 

where, for example, for N = 2 

(" - 1 'V Fr . 2 ( 1 1 ) ~wo (E)- 2" LJ!( )o,JI E-wr-w + E-wi+w ' 
.I 

(2) . 1 "V 1 
fo '(E)=- LJ (Fr)o ·(Fr) · k------. (A 5) ' ' 22 ' 1 1' • E- w ·- w • 

j J 

The functions ~ (E) and 7J (E) which occur in the 
right members of the system (A.4) contain b0 and 
bk with other arguments, but still they occur with 
factors ~ F /Fo « 1. Their contribution to b0(E) 
and bk(E - N w) near resonance is small, and we 
shall not take them into account in what follows. 

The determinant of the system (A.4) is (when we 
take into account the main terms with respect to 
F /F0): 

[N/2] 

D = [ E- w0 - 2; ~w0<2Pl(E)- x/Nl(E) J 
p=l 

[N/2] 

[ "Q (2p) (N) J X E- Wo- LJ ~wo (E)- X2 (E) , 
p=l 

(A.6) 

where [N/2] is the integer part of the number N/2, 
and 

. r\~~l (E)= - 1/2e<Nl(E) + QCNJ (E), 

QU'l(E) = [(1/2e<Nl)2+ iftk(E) j 2J'1', 
[N/2] 

e(Nl(E') = ( Wo + ~ ~w62P) (E)) 
\ I 

p==i 

[N/2] 

( " (2p) ) ~· - Cv~>. + L.J ~Wh (E) - Lvw. 
p=l 

(A. 7) 

The dependence on E in the functions 
[N/2] 

(N)(E) 
Xt; 2 .J , QCNl(E), 8<Nl(E), ~ ~w~~~) (E) 

p=l 

can be neglected, and we can consider them at the 
points E = w0 = Wk + Nw, since in the region of a 
resonance that occurs with the absorption of N 
photons all of these functions are very small in 
comparison with w0, Wk, w, and they change ap­
preciably in ranges of the order of w0, Wk, w. 
Then the matrix elements f~Nk (E = w0) and 
~wc 2pl (E = w0) are equal to the f<NJ and ~w< 2p> 

o,k o,k o,k 
defined in the text of this paper. 

From the system (A. 4) we find 
[N/2] 

bo(E) =- _!_ e-iEto(E- Nw- Wk- ~ ~w~P)), 
D p=i 

bh (E-N oo) = -iD-te-iEto/f2o. (A. 8) 

Integrating over the energy in (A.2), we get the 
expressions for the amplitudes: 

aaN\t, to)= 2 Q~Nj exp{i{~wot-(wo+~wo)to]} 
(N) . (N) (N) . (N) 

X{xt exp{tx2 (t-to)}-x2 exp{1x1 (t-t0)}1, 

iN) ar) (t, to)= ;~(~) exp{i{~wht- (wo + ~wo) to]} 

(A. 9) 

[ { • (N)t • (N)t} { . (Nt' . (N} }] X exp -!Xt 0 - !X2 - exp -!Xt - zx2 to . 

The expressions (A. 9) are valid only in the neigh­
borhood of the resonance, when a~N> ~ akN> ~ 1. 
Using (A.9) and the formula (4) for lj;(r, t) andre­
peating the arguments given in the text for the 
derivation of (19) for N = 1, we can in an analo­
gous way derive the general expression (23). 
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