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The propagation of a spatially-bounded light beam in a medium with random inhomogeneities 
is considered. The space-angle intensity-distribution function in the aperture plane of a de
tector arbitrarily oriented relative to the unperturbed beam is obtained. Some statistical 
characteristics of the beam parameters are calculated. The possibility of taking regular re
fraction into account in this problem is indicated. 

THE rapid development of quantum electronics X o(qoz- ko)' is specified on the boundary of the 
makes it possible to use laser techniques both for inhomogeneous medium. The small diffraction an-
communication purposes and to investigate the gles Box• Boy ~ 1/k0a0 « 1 are connected with the 
properties of the medium in which the propagation components of the vector q0 by the relations[t] 
takes place. Since the mean value of the refractive 
index is frequently subject to random deviations, 
great interest attaches to the influence of these 
deviations on the fluctuations of the parameters of 
the propagating light beam. In this communication 
we propose to determine the statistical character
istics of the beam parameters by using the space
angle distribution function of the intensity. This 
function is obtained by solving a transport equation 
of the same type as the Fokker-Planck diffusion 
equation. We present the results of some of the 
calculations. 

We assume that the refractive index in an in
homogeneous half-space z > 0 is n = ( n) + a /l( r) , 
where a/).(r) are small random deviations from the 
mean value (a « 1, (n) = 1). Assume that plane 
wave, with initial field distribution U0(x0, y0) in the 
plane z = 0, is formed at the output of the optical 
system that focuses a laser beam and propagates 
in the positive z direction1> (see the figure; they 
axis is directed perpendicular to the plane of the 
figure; a0 and ad characterize the dimensions of the 
apertures at the output of the system and of the de
tector). However, a wave with bounded transverse 
cross section cannot be strictly plane. Its spatial 
Fourier expansion contains components with wave 
vectors of different directions. It can then be as-
sumed that an initial intensity distribution with 
respect to the directions and in space, I0(p0, q0x, q0y) 

1)The time factor e-iwt is omitted throughout. 

qo:x; = ko8o:x;, (1) 

Here k0 = w I c0 is the wave number in the homogene
ous medium. 

The final intensity distribution function can be 
obtained from the initial one if one knows the 
probability of the transition from the initial state 
p 0, q0 to a certain interval of final states. The equa
tion for the transition probability can be derived in 
the following manner: 

Assuming that the conditions for the validity of 
the quasistatic approach and geometrical optics are 
satisfied[2], we write out in first approximation in 
a the following system of differential equations for 
the ray[3J: 

z' 
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X' 
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dr/da = S + O(a2), dS/da = aV j_fl + O(a2). (2) 

r(O) = r0, S (0) =So. (3) 

Here "i7 1 is the component perpendicular to S0 of 
the vector "i7, S0 is a unit vector tangent to the ray, 
and u is the path along the ray. 

The problem (2)-(3) has stochastically the same 
form as the problem of motion of a Brownian par
ticle. [4] The role of the time is assumed by the 
path u, and the role of the velocity by the vector S. 
As is well known, processes such as Brownian mo
tion are Markoff processes. Thus, the rays are 
regarded as trajectories of a Markoff process and 
we can obtain the probability of the transition from 
the state r 0, S0 to some interval of final states after 
the ray traverses a path u which is large compared 
with the correlation radius of the refractive-index 
fluctuations. 

In accordance with (2) -(3), assuming that the 
random process M(r) is homogeneous and isotropic, 
we obtain for the transition probability the equation 

aw s~·n w D . ,, 82S;SkW . k 
&+ Vr = ~sW-~k as;a.S\ ' ~. =x,y,z, 

t. ( 4) 

under the condition W == o(S- S0)o(r- r0) at u == 0. 
Here Dis the diffusion coefficient of the raysJ2•3J 

Inasmuch as we have in the experiment an aver
aging over the phase volume of a detector whose 
aperture plane can be inclined at a certain angle ~ 
to the plane z == const, we are interested in the in
tensity distribution functions I~(p', q', z) in the 
aperture plane (see the figure). We therefore in
troduce in lieu of the path u the distance Z to the 
aperture plane, in accordance with the formula 

Z cos it - xo sin it Z cos it 
(J = . "-' - ( 5) 

Sox sin·(}+ So: cos it ~ Sox sin it+ Soz cos ft· . 

It is assumed that tan~ « Z/a0 and Z/a0 » 1. Then, 
for small deviations from the initial propagation 
direction (Du « 1) we get for the transition proba
bility 

W 3 { (1-Sol) r 2 3(x-Xo)£1 
=4· 2D2 •S 2exp --D-S 2 6t-:n: (J oz (J oz (J 

_ 3 S2(x-Xo)+st(Y-Xo) + 6 ~-Xo)(y-Yo) ]} 
cr cr2 

( Soy Sox) ( ,.. Soy Sox\ x o, 63 + 62 -s + s1 -s b 6s + ss c;-- + £,, -s ; ; 
\ Oz Oz OQz Oz 

R S Z cos it - Xo sin it 
o==ro+ o------

So, sin it + Soz cos tl'' 

6s = z - ~3cr - Zo. ( 6) 

We change to new coordinate systems r', S', ro
tated through an angle a relative to the old ones 
(see the figure), and integrate W(r', S') with respect 
to the variables z' and S~. We denote the result of 
the integration by W(p', S', p0, S0). We can now find 
the distribution 

l;r ( p',k0S', Z) = ~ Io ( po. koSo) W ( p', S'. po, So) dpo dSo. ( 7) 

If U0(p 0) == exp { -pijj2a5} and tan3~ « k0a0, then 

/;r === ---~~1st __ exp{ _ A 0y2 - 2H0yqy + B 0qi 

cos2 it i ~o~tt ~o 

A;rx'2- 2H;rx' (q"' + k sin it)+ B;r(qx• + k sin it) 2 } 
~{) ' 

(8) 

where 

ko2 DZ 1 DZ3 a02 

A()==--+ , B()=--+--
cos2 [• 4a02 cos2 tl 3 cos2 it 4 cos6 ft 

Z2 DZ2 k 0 Z 
+...,---.,..---,-· H{)=--+---

4k02a02 cos6 {} • 2 cos2 it 4koao2 cos• it 

~{) == 4 cos• it (AltB{)- H{)2). 

It is interesting to note that in the particular 
case~ == 0 formula (8) coincides (after some trans
formations) with the distribution function describing 
the multiple scattering of a beam of charged parti
cles as a function of the deflection angle and the 
transverse particle displacement, obtained in[ 5J by 
solving Schrodinger' s equation. 

With the aid of (8) we can find the different sta
tistical characteristics of the beam parameters. 
Thus, the width of the beam in the aperture plane 
can be characterized by the quantities 

ao2 zz <x'2 ) = 2B{) cos• it = ----- + -----
2 cos2 it 2ko~ ao2 cos2 it 

( 9) 

In these formulas, the first terms characterize the 
major and minor axes of the ellipse formed when 
the unperturbed beam intersects the observation 
plane. As to the third terms, which predominate at 
sufficiently large distances, they determine the 
broadening due to the fluctuations of the refractive 
index of the medium. The fact that the last term 
decreases with increasing angle ~ is connected with 
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the character of the action of these fluctuations. In 
fact, as follows from (2), random "jolts" perturb
ing the beam act in a plane perpendicular to the 
initial propagation direction, which in our case co
incides essentially with the z axis. 

We can also obtain, by integrating (8) over the 
area of the detector aperture, the experimentally 
observed brightness coefficient, we can calculate 
the rms beam divergence angle (fluctuations of the 
arrival angle), etc. 

Further, using the procedure described ear
lier[3], we can take into account the influence of 
regular refraction on the statistics of the rays and 
obtain, under certain assumptions, the intensity 
distribution function in a beam propagating in a 
medium with variable ( n) . 

The author is grateful to L. A. Chernov for a 
number of useful discussions. 
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