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The possibility of stabilizing drift instabilities in an inhomogeneous plasma by means of a
uniform high-frequency electric field is investigated; the electric field is in the direction of
the magnetic field. It is shown that the collisionless drift instability can be stabilized by a
longitudinal electric field when k;vTj < w < k,vpe and when w > k,vre (w and k, are
respectively the frequency and projection of the wave vector associated with the drift insta-
bility in the direction of the magnetic field, while vre and vpj are the thermal velocities
of the electrons and ions). The values of the frequency and amplitude of the applied electric
field required for stabilization are determined. The possibility of high-frequency stabiliza-
tion of the drift-dissipative instability is also considered.

1. INTRODUCTION

IT is well known that confinement of a plasma by a
magnetic field is hindered by hydromagnetic in-
stabilities as well as a broad class of drift insta-
bilities that arise by virtue of drifts in an inhomo-
geneous plasma.“'sl These instabilities lead to
enhanced diffusion of the plasma across the mag-
netic field and for this reason any method of
stabilizing these instabilities would be of value in
connection with plasma confinement and heating.
At the present time, one class of methods for
stabilization has been examined in great detail:
these methods are based on the use of shear in the
magnetic lines of force, ‘‘corrugated’” magnetic
fields (bumpy fields) and so on.

Another possible method of stabilization of the
micro-instabilities associated with plasma drifts
has been suggested in '), This method is based on
the modification of the drift by an external high-
frequency field. Theoretical and experimental in-
vestigations [7-9] have verified the effectiveness of
this method for stabilization of two-stream insta-
bilities. Another possibility lies in the use of a
uniform high-frequency electric field in which the
electrons are constrained to execute forced oscil -
lations. The stabilization of the two-stream in-
stability due to the motion of electrons with re-
spect to the ions by virtue of the existence of a
field of this kind has been treated by Aliev and
Silin.[10) High-frequency stabilization of hydro-
magnetic instabilities has been considered by
Osovets.[“]

It is of interest to consider the possibility of
stabilizing drift instabilities by means of high-
frequency fields. In the present paper we investi-
gate the stabilization of drift instabilities in an
inhomogeneous plasma by the application of a
uniform high-frequency electric field in the same
direction as the magnetic field:

Ey(t) = &ocos Q. (1)

The possibility of stabilizing drift instabilities
by means of high-frequency fields can be under-
stood as follows. In a high-frequency field of suf-
ficient amplitude the oscillations of the electrons
in the wave field become important. If a drift
instability is excited in the plasma the plasma
electrons are subject to an additional force in the
direction of the magnetic field due to the high-
frequency electric field Ey(t) + E{(t*, r): this
force is given by

£z(Q)—1 8
~in o BoFBu

(€zyz is the longitudinal component of the dielec-
tric tensor and E, is the high-frequency part of
the wave field while the angle brackets denote
averages over the period of the high-frequency
oscillations).

When this additional force is in phase with the
force due to the gas-kinetic pressure the field in
the drift wave ( E) is increased, as is the fre-
quency w. As w increases, the growth rate for
the drift instability (here we are considering the
collisionless drift instability under the conditions
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VT/mj < w/k, <V T/mg) contains a stabilizing

term which increases, this term being propor-

tional to

afoe (0] me

0, (—IZ )z - Tk, fe?(0)
(Landau damping) and the instability can then
exist only if there are large gradients.

In the second section of the present work we
discuss the mechanism associated with high-fre-
quency stabilization of the collisionless drift in-
stability for the simple case in which the Larmor
radius of the plasma particles can be neglected.
In the third section we carry out a more general
analysis of this stabilization effect in which the
finite Larmor radius of the ions is taken into ac-
count. In the fourth section we investigate the
possibility of stabilization of the drift instability
in a plasma in which collisions are important
(drift-dissipative instability), this stabilization
being brought about by the high-frequency electric
field.

2. STABILIZATION MECHANISM FOR THE
COLLISIONLESS DRIFT INSTABILITY

Consider an inhomogeneous plasma in which
the density and temperature depend on the x co-
ordinate; the plasma is located in a magnetic field
and an alternating electric field (1) both of which
are along the z axis. We consider drift instabili-
ties in this plasma assuming that the frequency of
the external field 2 is large compared with the
frequency of the drift oscillations w.

In the equilibrium state the electrons and ions
in the plasma oscillate in the external electric
field with velocities given by

Ug(t) = (e*&0 [ maR) sin Qt, a =1, e.

Small perturbations about the equilibrium
state are written in the form f(t) exp[i(kadx
+ kydy + kydz)]. Because of the perturbations the
motion of the electrons along the lines of force is
governed by the equation

v,

e
—— — ik,upeV,f sin Qt = — —E, — ik,
ot m,

ne. (2)
RoMme

Here, we =e&y/mef(e>0), T is the plasma
temperature and vg and ng are the deviations of
the electron velocity and density from the equili-
brium values. We now substitute in (2)

v, = W ee—ia,cost Ne = nee—iaecosnta

ka0 k ugo

meQ2  Q

and average over the high-frequency oscillations.
The inertia term can be neglected in the averaged

Agq =— —

equations if w < k,V T/mg. Thus we find
T

engy

CE,eieeco8Rty — ik,

{ne>. (3)

The field E,, as well as the other quantities
which characterize the perturbations from the
equilibrium state, can be written in the form of a
sum of fields: the first is a slowly varying (in
time) field (Eg) and the second is a rapidly vary-
ing field (frequency ) given by E,z. Substituting
E, = (E3) + Ey, in Eq. (3), for ag < 1 we have

T
{Mme> =0. 4
o n (4)

KE,> + ia.{cos QtEy,> + ik, p

Using the expression for the longitudinal com-
ponent of the dielectric tensor

Woe? 4me’ny

Q2 L] Mo, ’

£:(Q)=1—

we can write (4) in the form

noe SEp> + ik, T <med — ik, =

— 1 (EEy,> = 0. (5)
47

The relation in (5) describes the balance of
forces acting on the electrons in the direction of
the magnetic field. In the absence of the external
high-frequency field this equation contains only
the first two terms which, for electrostatic oscil-
lations, lead to the familiar Boltzmann distribu-
tion of the density in the field. The last term in
(5) is the pressure associated with the high-fre-
quency field Eg(t) + E;(t, r). In the general case
this force is given by F = (87) ! (€jk — 6ik) VE{Ek
(cf. for example [12]); in the case at hand, because
E; is uniform the higher order term ~ E} disap-
pears and we are left with the term E; - E;.

In what follows we limit our analysis to elec-
trostatic perturbations.l) Substituting n,,

-iay cos Ot . .
nge « in Poisson’s equation, when ag

<< 1 we obtain the following relation for Ej:
ik . e
Ei=— 4n~k—22 ea[— iaa cos Qt <ne> + N1al. (6)

The subscript 1 denotes the high-frequency part
of the density. Making use of (6) we now write (4)
in the form

DIf the limitation to electrostatic drift oscillations in the
high-frequency electric field is to hold, the following condi-
tion must be satisfied:

Melige? k22 woe? H?
T Q) )L —,
"( 2 )) 8

where the function ) is given by (11).
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2men,
> {1 + T an)
4rek
———k—zzae(coth(me—mi)>=O. (7)

Here we have used the fact that (ng) ~ (n;)
(quasi-neutrality of the high-frequency oscillations)
and in obtaining (7) we have neglected terms of
order mg/m; compared with unity.

If the conditions k3T/mgQ? <1 and kiT/ m;Q?
< 1 are satisfied, in finding ny¢ and 7y we can
use the conventional system of equations for two-
fluid hydrodynamics for a cold plasma. If wy;

K QK —wye (WHy = egHy/mye) this system of
equations written for the quantities W{ and n,,
becomes

oWyt e 0111, 6W1z"
= — ikW == = ——F z
ot m + kWit =0, =, me 2
Cc 1 6E1x
w 3 = — [E - ] )
! H, i + oge 0t
1 0E;
Wiye = — —[ E y ]
1” H = (l)He at !
0
’“’ OMie 4 Woeno + Wiee 2 dx =0. (8)

Invokmg the quasi-neutrality of the low-fre-
quency oscillations, on the right side of (8) we
have neglected terms of order a, cos Qt (E)
compared with E; ~ 47rek'2kae cos 2t (ng). In
conjunction with (6), which determines the field
E;, the equations in (8) form a complete system
for the description of forced plasma oscillations
of frequency £ in the inhomogeneous plasma.
Eliminating W{ and E; from this system we ob-
tain the following equations for 7n4¢ and 7y;:

0y
ot2

(’)Zn ie
e (1

+ 00Ny = 002 (N1e — ige cos QE {ne>),

Woe? kJ_z ) . Woe? kyx anie

— l —
(l)Hez kz / WHe kz 0t
Qwoe? kyK

WHe k2

k2
+ ((1)052 = + (001‘2) Ne = — a.{ne) [ sin Q1

®oc? kJ_ _ kq? >:|

, i o2
+icosQ (Q o 7

9
Here k =d In ny/dx. Solving these equations and
substituting the results in (6), we can now write
the latter in the form

2:r:e no (10)

a2p(Q) ) =0,

>(1+

where we have used the notation
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Q2NQ? — wotk2/k — il

Q) —
() [NQ2 — 00e?k:2/ k2 — 00?2 — Q2 (woet/ 0me?) (ky2x2/K4)
woe? k2
N=1 -— 1
_ + oni T2 (11)

The averaged equation of continuity for the ions
for the condition w > k,V T/mj (which means that
the motion along Hj in the low-frequency oscilla-
tions can be neglected) is then written in the form

zm(n,)—{-—(E >——=O (12)
Using the neutrality of the low-frequency oscilla-
tions (ng) = (Mj), which holds when ag < 1, and
invoking the electrostatic condition, using (10)

and (12) we obtain the following relation for the
frequency of the drift oscillations in the presence
of the high-frequency electric field 2

x(1+ (9)) (13)

0=—"r,

m;OH; 2162}\. 2

We note that by using (10) and Poisson’s equa-
tion for the field (E,) we can obtain a relation
which gives the deviation from neutrality in the
low-frequency oscillations:

}/T/l.me?no,
(14)

k.2
)

(1 + k2Ap2) <me> = N> (1 + 1/2a.29" (R) ), Ap =

fee? — .2] NQ2 2
%2 ®o; — Woe

4 f 22 k.2 >
Doe —”——}{[1\’92 — woe? % — 0)01‘2]

(_OHBZ k4

@ = {10 o

— Q2

4 2 y—1
200" K% } . (14")

[} HeZ k4

It follows from (14) that the deviation from neu-
trality in the low-frequency oscillations is im-
portant only when aé(p* (2) ~ 1.

The possibility of high-frequency stabilization
of the drift instability derives from the increase
in the frequency of the drift oscillations caused by
the application of the high-frequency electric field.
Under these conditions the growth rate for the
drift instability contains a stabilizing term asso-
ciated with Landau damping, this stabilization term

2)In the limiting case of high-frequencies for the external
field

1 k;? Y 1 woe? k
Q> _— (woe——+mo. Bl i
N'/z k2 N oy, k2
we find ¢ =~ 1/N. In this case (13) becomes the expression ob-
tained earlier in [*3].
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being given by
6f0€ ( ® )
o, \k, 1~
(f§ is the equilibrium distribution function for the
electrons).

It follows from (11) and (13) that the applica-
tion of the electric field increases the frequency
of the drift oscillations and thus increases the

Landau damping when the field frequency £ satis-
fies the condition

1 k.2 s
Q <Q< N ((1)09 kz —{'—(1)01'2> or Q>Q+ (15)

where Q4 is given by the expression

Woe* kyzxz
20 kl‘

Q.2 = —1 [N ((ﬂoe

k.2 bok2u2
i{[N<w0e2 zkz-}“ﬁ)m)‘f“ﬂo—e—l u]

2(,0 HeZ k[‘

2 2\
o)}
When (15) is satisfied the frequency increases be-
cause the pressure associated with the high-fre-
quency field is in phase with the gas kinetic pres-
sure and this increases the electric field associ-
ated with the drift wave (E). For all other values
of © the frequency of the drift wave is reduced
and the alternating field becomes a destabilizing
factor.

The increase of the Landau damping for the
drift oscillations means that the plasma can be-
come unstable only if the temperature gradients
become high enough. In order to be convinced of
this result we consider the work done by the drift
wave on the resonance electrons in the plasma:

+ wos? )

(15')

—Ne ( 00

Q = —e<Ep <S v.fie dv> .

Here, in the usual way the brackets denote aver-
ages over the high-frequency oscillations while
the bar denotes an average over the wavelength of
the drift wave; f§ is the deviation from equili-
brium of the electron distribution function.

In order to find this deviation we use the
kinetic equation in the drift approximation. Intro-
ducing the quantity w, =v, + (e&y/meQ) sin Qt
as the independent variable in this equation we
write it in the form

of

eé’o . e ' Of¢
t)fe—— E,
egsm Q ) fio e w,

1—|—k(

(16)

and V. D, SHAPIRO

In solving (16) it will be found convenient to intro-
duce the function e (t, x, wy) = f§ elaecost
which can be easily shown to satisfy the equation
61pe ky 1 0fee )

__c o, cos at [ 210 0fef oy
+lk Watpe Eel Vow, + k, oge 0x

(17)

When Q > k,V T/mg, the quantity (¥g) > ¥4e
where the subscript 1 denotes the high-frequency
part of the function . Thus

18> = {Pped(eite COs 1) — Jy(a,) {1e>.
Determining (¥¢) from (17)
(we =_i<E eia, cos @t} afo

me i(0 — kw,;) \6wz

ky 1 0fe
kz WHe ax

). a®)

and substituting the result in the expression for
Q, when ag, < 1 we have

Q=—

ne? ® <af0e kll 1 afee >‘
me kzlkzl' ow, k Wge 0 w,=0/k,

XE,> {E,exp {iae cos Qt} >

1 T o? k2 ( ag?

dinT \
= (E, D2
16 ane (DHez kzzl kz I kz;"Dz \ Z> ’

*()+ )

(19)

where the equilibrium electron distribution func-
tion has been written in the form

fof (2, w;) = no () V p{—— Mew,?

2nT (x 2T (z)

and we have used (13) for the frequency of the
drift oscillations.

In the absence of the high-frequency field for
the case being considered here Vv T/mj < w/ky

<V T/me the drift oscillations are unstable in
the zero-Larmor-radius approximation when
d1ln T/d1Inn < 0. In accordance with (19), the
high-frequency field brings about stabilization in
the range given by

a2 dlnT

dln (19)

The applied field amplitudes for which stabili-
zation becomes important are determined from
the condition

ag? Meloe?
Q) =
R ?(Q) T

(ooezk 2f— Z[NQ.Z — (l)()ezk z/kz —_ (1)012]
[NQz_ﬁ)Oezk 2/ k2 —@o2]f — Q2 (0oet/ 0 1e?) (ky 2%2/]{4)
(20)

,_m

For the high-frequencies
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k2
k2

1+ o )1/, __1 woe? kyx
A N ope k°

Q > 'Tl,/; ((\)Oe2
considered in (1) this condition can only be satis-
fied in strong electric fields in which the velocity
associated with the electron excursions is appre-
ciably greater than the electron thermal velocity
meuge /T >» 1.9 However, it follows from (19) that
stabilization obtains for all external field frequen-
cies that satisfy one of the conditions in (15) (for
these frequencies ¢ () > 0). Then (20) can be
satisfied for lower field amplitudes when
meuge /T X 1. As resonance is approached
Q =4 there is a further reduction in the field
strength required for stabilization. However, the
formulas obtained here do not apply at exact reso-
nance.

At high field amplitudes, for which meuge/T > 1,
the presence of the field can lead to a new insta-
bility associated with the relative oscillations of
the electrons and ions in the electric field,!14:15]
The plasma diffusion coefficients associated with
these instabilities have not been calculated; how-
ever, it will be evident that these instabilities,
which cause oscillations at rather high frequen-
cies, will not be as important in terms of plasma
confinement as the slow drift instabilities. In the
experiments described in 1) the high-frequency
modulation of a beam traversing a plasma led to
the suppression of the drift instabilities and to a
considerable reduction of plasma diffusion across
the magnetic field. Nevertheless in this case the
plasma exhibited high-frequency oscillations at
harmonics of the modulating frequency.

3. KINETIC THEORY FOR DRIFT INSTABILITIES
IN THE PRESENCE OF A HIGH-FREQUENCY
ELECTRIC FIELD

In this section we consider high-frequency
stabilization of drift instabilities in the kinetic
approximation, taking account of the finite Larmor
radius of the ions.

The equilibrium distribution function for an
inhomogeneous plasma subject to an alternating
electric field (1) is given by

o= fie o+

(¢4
oy ,UJ_Z,vz—eé;; smer]. (2D

OH« Mo

3)Under these conditions the energy of the stabilizing fields
can be somewhat smaller than the themal energy of the plasma
since
Q2 m,lie?

Ey2/nT = 4n ,
’ woe2 T

and Q can be small compared with wg..
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We consider small perturbations about the
equilibrium state. It is assumed that the spatial
gradients in the equilibrium state are small and
that the WKB approximation can be used in con-
sidering perturbations., Writing these perturba-
tions of the distribution function in the form

0f% = f1%(t, %, V) exp [i ( S kodx 4 kyy + k,z)] ,
[ k210 1n f1%/0z | << 1

and linearizing the kinetic equation, we have

ofy | . e“Ey(t) 0fr> 0fr*

o +t(kJ_7)_LS1n’ﬂ‘+lszz)f1“+T—E—(DHa?ﬁT
o O0fo® 0fo® 1 9f>

—{—E—{EJ_sinﬁ——io——]—Ez-—f?——l—Ey———'—ﬁ)—}=O. (22)
Mo, v, v, W 0z

In this equation we have introduced cylindrical
coordinates in velocity space v|, v, and 0,
$=1/2+60 —¢; kj, k, and ¢ are the cylindrical
coordinates of the vector k. In writing (22) we
have made use of the fact, as follows from (21),
that

0f* . Ofe* 1 0fo*

vy s 0. ome 0z
where the derivative with respect to v is com-
puted for x + vy/wHy = const; we have also
neglected terms which contain magnetic field per-
turbations since we shall be interested in electro-
static perturbations since we shall be interested
in electrostatic perturbations only.

The solution of (22) can be obtained by means
of a procedure similar to that used by Aliev and
Silin.[m In (22) we transform to the independent
variables t, w, = v, — (e*&)/m,Q) sin €t and
w| =v]. In terms of these variables the function
P (t, X, W), which is defined by the relation
bo = f?l exp (iay cos Qt), can then be obtained
from (22):

Opo | . . 0 e% .
- i(hst0. 5in 0+ ko) o — on oot Byeivacon
ofe  ky, A 0f® ki . 0fe® )
L =0.
X ( o T E ome 92 Tk S50

(23)

Determining the field E, from Poisson’s equation
and averaging (23) over the high-frequency oscil-
lations we have

0<Ye>
i(kywy sin® + kw; — @) Yo’ — Oxa a‘ga
l_mikzz e“eﬂ[ Ofo® ky, 1 0f®
T ke » Ma Jw, k, oge O0x
ky . Of* ]
+ E—smﬁaw_L
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X[ ovas) § Cow> dw - 37y (yas) Ceatsmiameg | = 0.
80 (24)

We now substitute (9, )~ e 1t and YaB = 3y
— ag in this equation. As in the preceding section
Mo = / 1o dw denotes the high-frequency part of
the density.

The solution of (24) is

iw

etlmn/2

4ﬂkz e—ibg cO8 © z

k2

3 7 1)

kw,— o — loga o Me

<\pa>=
1
x[ 0f  ky 1 Of® 1

ow, szHG 0z ba

ki 9f* ]

X [JO(YaB) S (pp> dw + D5 (vap) nip eis(“'+“/2)>] ,(25)

50
where we have used the notation by, =kjw; /wy,.
Integrating with respect to w we then have

§ <opud aw —-Dazﬁ Zﬁ— [ 7o(ven) § <opm> aw

+ E Ts (Yap) <nap eis(@t+2)) ] = 0. (26)

§£0

When the equilibrium distribution function is
Mo, A ma(wzz + w_L2) 1
( J— ————
Jof=m \ZnT) eXp{ 2T J

the quantity D, is determined from the relation

1 4nezkz(k,, 1 0 Mo m)
T k2p2 ' me K2\ k, ona 0z T k,
o ey B imesn
¥2n o kw, — o0 — loga
e maw 2
delw_l_]lz(ba)exp<— ;TL). (27)

0

For the case w < wpgj, which is the one being
treated here, in the summation over I that ap-
pears in D; we need only consider the I =0
term.m

In this case Dj is given by

. 1 4ne2 ( ky O m; )
Y= g T o 0z T @) 1A (R
)
m; )/z ( m;w;2 1
d J—
X(Z:n;T _Sm Wz eXP | 2T )kzwz—u) ’ (28)

where

_ m;w 2 i
A(pr) = Lﬂj_f_ S dlUJ_w_J_]OZ(bi)eXp<— ;TJ— )_—_e—p,&/zlo ( F; )
0

k,1/2T

Wy; © M

pi =

and V., D. SHAPIRO

In similar fashion, in obtaining Dg, in which
we need not consider the finite Larmor radius of
the electrons, from (27) we have

< me >’/2
“’)n“ 25T

(28")

D.=

1 4ne? ( ky, 0 m,
k2 p? mek? \wpe 07 T

on

% S dw, exp (— mw;2/2T) '

kw,— o

—o0

Using (23) and assuming that Q > k,V T/m4,
w, we can show that the following inequality holds:

{ pradw < § <pa> dw.

However, by virtue of the neutrality of the low-
frequency oscillations, when ae < 1

S ped dw =~ S ;> dw,

and terms containing the quantity 7yq = [ Pygdw
must be retained in (26). Using (9) to express
My in terms of (7, ) and substituting the result
in (26), we obtain the dispersion relation for the
low-frequency oscillations for the case

D.+D;— “;2 ?(Q)De D =0,
where the function ¢ () is given by (11). In the
case at hand | Dy | > 1 and the effect of the high-
frequency field is important even when ae < 1.

At large amplitudes of the external field, in

which case ag ~ 1, if the condition Q > w is
satisfied® the relation in (29) is replaced by the
following dispersion equation:

De+D; — (1 — Ji?(ae)) DeD; = 0.

(29)

(30)
A. We first consider the low-frequency case
o< kYT [ m;. (31)

In this case the quantity D, that appears in the
dispersion equation is given by the following
formulas:

D, = —1 [ E*Ap?,

o 1 ky A(pi)[ © ( al )’/2 ]}
D, = /czxuz{1+E o er(\ o) i}
(32)

where we have used the notation

4)The authors are indebted to B. B. Kadomtsev for this ob-
servation.

S)When a, ~ 1 the deviation from quasi-neutrality becomes
important and the frequency w for this case is of the order of
the characteristic frequency of the plasma oscillations for a
plasma with ‘“magnetized’’ electrons.
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x(i—

dinT ) dlnT 1496
2 —=x(1— /=
dlnn ( + 2)) I ”( dlnn 2

2 .2
5= p (1—1i (%)10-1(?5 )) .

Substituting D, in (29) we have

= [%}%Zi—(zfy%&%]

ky r . J‘[mi>l/2]_i
X[k,.mm--i_L(\—z—T :
In this equation we have used the notation

2
B =72 *(2)-
In the case at hand the instability condition

(Im w > 0) assumes the form

[+ =i ()= 2]
+

(33)

(33)

2+ﬁ kzz 1 mi(l)Hiz
1+p k2 A =T

> 0. (34)

For values of © that satisfy one of the conditions
in (15), we find ¢ (2) > 0 and as the amplitude of
the high-frequency field increases the second
term in the inequality in (34) is reduced. How-
ever, under the conditions for which (33) applies
this term is small and the instability region ac-
tually is the same as in the absence of the high-
frequency field:

dinT/dlnn>2/(1+9). (34")
B. We now consider the intermediate-fre-
quency case, for which
k[VT/ m; <(D <kz-VT/me- (35)

This case has been considered in the second sec-
tion in the limit of zero ion-Larmor radius
pi— 0. In the present section we shall take ac-
count of the finite ion Larmor radius.

Computing the integrals that appear in Dy in
the approximation given by (35) we have

1

k2).p?

. 4me2/m. © ky 1 6) ( Me >'/’
i - — — )| o=,
mek?2 \ T |k, | k2| g0z 2aT

é dlnT)
2 dlan /°

1—4(p) _
k2)\p?

(l)0i2 kyu ( 1—
oog; k2

D; = — (36)
Substituting the result in (29) and solving the re-
sulting dispersion equation we obtain at the follow-
ing formulas for the frequency and growth rate:
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T 6§ dlnT
)" 0= _kym (1)}11'%14(1 + B)[i__Z dlnn ]
X 2—A+p(1—A)], (37)
w/ T\3k22 A 8§ dinT
Y=V 3 (’E) [:] one [ ) dlnn]
X {2—A+3(1—A)]—3?{2(1—A)+3(1—2A)
; dlnT[2—A(1+6)+3(1—A+6A)]} (37)

It is evident from the expression for the growth
rate that in the case at hand, as in the absence of
the high-frequency field, (3] there are two insta-
bility regions. The first

dinT/dlnrn > 2/, (38)

arises only when the finite ion Larmor radius is
taken into account (6 —-0 when pj—0) and is not
changed by the high-frequency field. The second
is determined by the relation

dlnT 2(1—A)+ p(1—24)
dlnn 2—A(1+8)+p(1—A+od)

(39)

Thus, when pj—0, in which case A = 1 and
6 = 0, we obtain the same boundary for the in-
stability region d In T/d In n = — 28 as is obtained
from (19). As pj increases this boundary is dis-
placed toward larger values of d In T/d In n and
when pj—~ © (A =0, 6 1) it approaches
dIn T/d In n = 2. Thus, the range of values of the
parameter d In T/d In n in which high-frequency
stabilization occurs is a maximum for pj— 0 and
approaches zero when pj — < (as in the case
above, we limit our analysis to the case g > 0).
It should also be noted that when pj# 0 (in
which case A < 1) and for sufficiently large
values of B, the growth rate as given by (37) is
reduced with increasing 8 (y ~ /3‘2 when
B > 1). Thus, the stabilizing effect of the high-
frequency field appears in an expansion of the
stability region which is a maximum for small
pi and in a reduction of the growth rate for oscil-
lations characteristic of finite pj.
C. Finally we consider the high-frequency
region

o> kYT / m.. (40)

We assume that the following condition is satis-
fied:

T 1 d
2. = —— (n,T 4
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and obtain the following relations for D;:

D, — wo? kyx ol k2ky 1 d ( noT ) )
T o k2 omew? k2 nodzx \ me /’
002 kyx 6 dinT
D;=— A (o; (1 - —————) 42
oo k2 (pi) 2 dlnn (42)

For small values of pj (the instability bein% con-
sidered corresponds to precisely this case 3J) in
the sum Dj + Dg, which appears in the dispersion
equation (29), the term in Dg is almost com-
pletely balanced by Dj and the second term must
be taken into account. For this reason the last
term in (29) is important even when ag is small.
Using (42) we write the dispersion equation in the
form

6 dinT T\ % dlnT
m2(1—A+A— - )+(0£_A%pi(—) (1— 25 dn

2dlnn Y2 m;
T dlnT )
2 =
Tk me <1 + dlnn 0 (43)

It follows from (43) that the condition in (40) is
satisfied only when pj < 1. In this case w is
given by

By T %
=TV am T dmT/dlnn

+[ pz T %2 2 kZT]'/z 14
1202 m; (1+dInT/dlnn)z  pz ~ med ° (44)

When B =0 the instability arises for all values of
the parameter d In T/d In n (the validity of (44)
requires only that the parameter not be close to
- 1).[3] In accordance with (44), the high-fre-
quency field stabilizes this oscillation when

dinT )
dlnn /°

It follows from a comparison of (41) and (40) that
k, < kypiV me/mj; thus, in the case being con-
sidered stabilization can be achieved with modest
field amplitudes for which the condition

B <pi(1+dInT/dlnn)?<«1 is satisfied.

4. DRIFT-DISSIPATIVE INSTABILITY IN THE
PRESENCE OF A HIGH-FREQUENCY
ELECTRIC FIELD

It is well known that electron-ion collisions in
an inhomogeneous plasma can lead to the excita-
tion of drift oscillations (drift-dissipative insta-
bility).“’sl In the present section we consider the
effect of a uniform high-frequency electric field
on the drift-dissipative instability.

The dispersion relation is derived on the basis

" 2 dlnn
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of the usual hydrodynamic equations. The friction
term due to electron-ion collisions must be taken
into account in the equation for the electron mo-
tion along Hj. This term is given by mgvov,
where ve is the effective electron-ion collision
frequency. In this equation we then write the non-
equilibrium deviations for the velocity and
density of the electrons in the form

V2 = ere—iae cos Qt, Ne = nee——iae cos Qt

and average over the period of the high-frequency
oscillation. Then, as before, neglecting the inertia
term in the averaged equations, when ag < 1 we
have

We)=— T

eny

e

{<Bo> + th.—— o> + ta, Coos QB> }.
(45)
In similar fashion, substituting in the equation
of electron motion across the magnetic field
vi=Ww felae cos It ;g averaging over the high-
frequency oscillations, to higher order in the
parameter w/wye We find

MeVe

(W> = ——KE, >+ iae {cos QtEy,>],
H,

(Wye> = — —;1—[<Ex> + ig,cos QtEs:d].  (46)
0

In (45) and (46) the term containing the high-
frequency part of the field oscillation E; can be

written

ia.e{cos QtE> = &z — 1

ik {EoEy,), (47)

tno
where we have substituted ag and taken account
of the electrostatic nature of the oscillations. The
right side of this relation contains the pressure
due to the high-frequency field computed per
plasma electron. Thus, in contrast with the
analysis in, 4,5 in the present work the equations
for electron motion along the magnetic field and
across the field take account of the pressure term
due to the high-frequency field.

If @ > vg, the field E; can be found from (6)
and (8) in the second section of this paper. Using
these equations to express E; in terms of
(N4 and neglecting terms of order mg/m; com-
pared with unity, we have

c .. 2me
(er>=ﬁ[(Ey>+ka = aech(Q)<ne>],
(Wye> = _HL[<Ex>+ikx 2}’:: azg(@)<ne]
0 .
Wy = — 2 [<EZ>+ikZ T ne
MeVe eny
., 2me o
ik a (@) <ned | (48)
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Substituting in the averaged equation of continuity

for the electrons
d
— i (N> + (W) 20

+ik<Wedng =0 (49)

where we have taken ¢ We) from (48), we have

k2T [ ag? kyn woe? 7,
— )
[ io +meve\ Sk (p(Q)) i % a’p(R2) o ]\ne>
k d
— <E>—|——<E> T 0. (50)
MeVe

In considering the drift-dissipative instability
the inertia term must be retained in the averaged
equations of motion for the ions across the mag-
netic field. The averaged equation of continuity
for the ions, as averaged over the high-frequency
field, is then given by

R

—io{n? +— (ky<Ey>

OH;

+ ke CE>) =0 (51)

(the ion motion along H; can be neglected for the
low-frequency oscillations characterized by
w > k,V T/mj).

Making use of the electrostatic nature of the
low-frequency oscillations and the fact that these
oscillations are quasi-neutral® (neg) =~ (ny),
from the condition that must be satisfied in order
that (50) and (51) yield a non-trivial solution, we
obtain the following dispersion equation:

mz_i_m[ims— We 1+ﬁ<1+—pl )]—i—imgms

g1ty ) =0

In this equation we have used the following nota-

(52)

tion
I‘:z2 (0} 2100 ;¢ ﬁ
s — — 1 - i2) )
© k2 ve ( TP
T 1+8
We = % ,
U mon: 1+ 1/2poi?
2
W13 _ (Dm e ?ho?,
2 UJHz

and the quantity 8 is determined by (33’). When
B — 0 (52) becomes the dispersion equation for
the drift-dissipative instability in the absence of
a high-frequency field which has been obtained
inl9. When ve— 0, we find from (52) w = —wg

6)In the presence of a high-frequency field quasi-neutrality
obtains when a2q* << 1, where ¢*(Q) is given by (14").
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which, in turn, coincides with (37) for the drift
frequency in the case pj < 1.
We shall limit our analysis to the solution of

(52) for large values of B lying in the range

1< Pt << pi™ (53)
For these values of 8
a2 (Q) > oud / o2 (53")

(the condition in (53’) can also be satisfied when
ag < 1 since wyj/wyj is a small parameter). In
this case, expanding the solution in powers of the
parameter 1/ Bp% we obtain the following expres-
sion for the imaginary root of the dispersion
equation

2 iwg
Imow_=—1i 2 4
e 0s F Boi? o+ wlp2pit/4 (54)
. .
Im oy = — 2—2 10s (547)

2 Boi? @+ w2B2p:4/4
When Bp% >> 1 the second term in (54) is small
and if B is positive (that is to say, for values of

Q that satisfy one of the conditions in (15)) we
find that both roots yield Im w < 0, corresponding
to stability.

Thus, the drift-dissipative instability can also
be stabilized by a high-frequency field; however,
the field amplitude required for this case is
higher than for the collisionless drift instability.

The authors are indebted to B. B. Kadomstev,
V. P, Silin and A. B. Mikhailovskiil for valuable
comments and to V. I. Shevchenko for assistance.
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