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The possibility of stabilizing drift instabilities in an inhomogeneous plasma by means of a 
uniform high-frequency electric field is investigated; the electric field is in the direction of 
the magnetic field. It is shown that the collisionless drift instability can be stabilized by a 
longitudinal electric field when kzVTi « w « kzVTe and when w » kzVTe ( w and kz are 
respectively the frequency and projection of the wave vector associated with the drift insta­
bility in the direction of the magnetic field, while vTe and vTi are the thermal velocities 
of the electrons and ions). The values of the frequency and amplitude of the applied electric 
field required for stabilization are determined. The possibility of high-frequency stabiliza­
tion of the drift-dissipative instability is also considered. 

1. INTRODUCTION 

IT is well known that confinement of a plasma by a 
magnetic field is hindered by hydromagnetic in­
stabilities as well as a broad class of drift insta­
bilities that arise by virtue of drifts in an inhomo­
geneous plasma. [1- 5] These instabilities lead to 
enhanced diffusion of the plasma across the mag­
netic field and for this reason any method of 
stabilizing these instabilities would be of value in 
connection with plasma confinement and heating. 
At the present time, one class of methods for 
stabilization has been examined in great detail: 
these methods are based on the use of shear in the 
magnetic lines of force, "corrugated" magnetic 
fields (bumpy fields) and so on. 

Another possible method of stabilization of the 
micro-instabilities associated with plasma drifts 
has been suggested in [SJ. This method is based on 
the modification of the drift by an external high­
frequency field. Theoretical and experimental in­
vestigations [?-9] have verified the effectiveness of 
this method for stabilization of two-stream insta­
bilities. Another possibility lies in the use of a 
uniform high-frequency electric field in which the 
electrons are constrained to execute forced oscil­
lations. The stabilization of the two-stream in­
stability due to the motion of electrons with re­
spect to the ions by virtue of the existence of a 
field of this kind has been treated by Aliev and 
Silin. [1oJ High-frequency stabilization of hydro­
magnetic instabilities has been considered by 
Osovets. [iiJ 

It is of interest to consider the possibility of 
stabilizing drift instabilities by means of high­
frequency fields. In the present paper we investi­
gate the stabilization of drift instabilities in an 
inhomogeneous plasma by the application of a 
uniform high-frequency electric field in the same 
direction as the magnetic field: 

Eo(t) = ~ocosQt. ( 1) 

The possibility of stabilizing drift instabilities 
by means of high-frequency fields can be under­
stood as follows. In a high-frequency field of suf­
ficient amplitude the oscillations of the electrons 
in the wave field become important. If a drift 
instability is excited in the plasma the plasma 
electrons are subject to an additional force in the 
direction of the magnetic field due to the high­
frequency electric field E0 ( t) + E1 ( t *, r): this 
force is given by 

Ezz(Q)-1 a <E E > 
4n az 0 !z 

( E zz is the longitudinal component of the dielec­
tric tensor and E1 is the high-frequency part of 
the wave field while the angle brackets denote 
averages over the period of the high-frequency 
oscillations). 

When this additional force is in phase with the 
force due to the gas-kinetic pressure the field in 
the drift wave ( E) is increased, as is the fre­
quency w. As w increases, the growth rate for 
the drift instability (here we are considering the 
collisionless drift instability under the conditions 
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..f T/mi « w/kz « ../ T/me) contains a stabilizing 
term which increases, this term being propor­
tional to 

ofoe ( 'w ) mew - - ~ --toe(O) 
OVz kz Tkz 

(Landau damping) and the instability can then 
exist only if there are large gradients. 

In the second section of the present work we 
discuss the mechanism associated with high-fre­
quency stabilization of the collisionless drift in­
stability for the simple case in which the Larmor 
radius of the plasma particles can be neglected. 
In the third section we carry out a more general 
analysis of this stabilization effect in which the 
finite Larmor radius of the ions is taken into ac­
count. In the fourth section we investigate the 
possibility of stabilization of the drift instability 
in a plasma in which collisions are important 
(drift-dissipative instability), this stabilization 
being brought about by the high-frequency electric 
field. 

2. STABILIZATION MECHANISM FOR THE 
COLLISION LESS DRIFT INSTABILITY 

Consider an inhomogeneous plasma in which 
the density and temperature depend on the x co­
ordinate; the plasma is located in a magnetic field 
and an alternating electric field (1) both of which 
are along the z axis. We consider drift instabili­
ties in this plasma assuming that the frequency of 
the external field n is large compared with the 
frequency of the drift oscillations w. 

In the equilibrium state the electrons and ions 
in the plasma oscillate in the external electric 
field with velocities given by 

ua(t) = (eai£o/maQ) sin Qt, a= i, e. 

Small perturbations about the equilibrium 
state are written in the form f ( t) exp [ i ( f kxdx 
+ kydy + kzdz)]. Because of the perturbations the 
motion of the electrons along the lines of force is 
governed by the equation 

ovz" e T 
--- ikzUoeVl sin Qt = -- Ez - ik, -- ne. ( 2) at me nome 

Here, uoe=el£o/me!2(e>O), T istheplasma 
temperature and v~ and ne are the deviations of 
the electron velocity and density from the equili­
brium values. We now substitute in (2) 

vl = Wle-ia.cosot, ne = T)ee-ia.cosCt• 

kzeat£ o kzUoa 
aa=----=--

mciQ2 Q 

and average over the high-frequency oscillations. 
The inertia term can be neglected in the averaged 

equations if w « kz ../Time. Thus we find 

<Ezeia6 cosOt) = _ ikz _!__ <TJe>. 
eno 

(3) 

The field Ez, as well as the other quantities 
which characterize the perturbations from the 
equilibrium state, can be written in the form of a 
sum of fields: the first is a slowly varying (in 
time) field ( E z) and the second is a rapidly vary­
ing field (frequency Q) given by E1z. Substituting 
Ez = (Ez) + E 1z in Eq. (3), for ae « 1 we have 

T 
<Ez) + iae <cos QtEiz) + ikz- < T)e> = 0. ( 4) eno 

Using the expression for the longitudinal com­
ponent of the dielectric tensor 

wae2 
ezz(Q) = 1--­

QZ ' 

we can write ( 4) in the form 

4ne2no 
Woa2 =--­

mrx. 

< > . < ) . ezz- 1 ) n0e Ez + tkzT TJe - tkz --- <EoEtz = 0. (5) 
4n 

The relation in (5) describes the balance of 
forces acting on the electrons in the direction of 
the magnetic field. In the absence of the external 
high-frequency field this equation contains only 
the first two terms which, for electrostatic oscil­
lations, lead to the familiar Boltzmann distribu­
tion of the density in the field. The last term in 
(5) is the pressure associated with the high-fre­
quency field Eo ( t) + E 1 ( t, r). In the general case 
this force is given by F = ( 81r) - 1 ( Eik- Oik) Y'EiEk 
(cf. for example [12]); in the case at hand, because 
E0 is uniform the higher order term ~ E~ disap­
pears and we are left with the term Eo · E1. 

In what follows we limit our analysis to elec­
trostatic perturbations .0 Substituting na 

-iaa cos nt . . 
TJ ae m POisson's equation, when aa 
« 1 we obtain the following relation for E 1: 

ik 
Et=-4:rtk2~ ea[-iarx.cosfJ.t<T)a>+'IJta]. (6) 

a 

The subscript 1 denotes the high-frequency part 
of the density. Making use of (6) we now write (4) 

in the form 

l)lf the limitation to electrostatic drift oscillations in the 
high-frequency electric field is to hold, the following condi­
tion must be satisfied: 

( 
meUoe2 k? Woe2 ) H2 

n T+------.<p(Q) ~-
, 2 k 2 Q 2 81t , 

where the function cp(O) is given by (11). 
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T { 2:n:e 2no ) (Ez> + ikz- ( T)e> 1 + --- ai 
en0 \ k2T 

4:n:ek. 
-~a.(cosQt(TJie-'I'Jii)>=O. (7) 

Here we have used the fact that (17e) R:: (1'/i) 
(quasi-neutrality of the high-frequency oscillations) 
and in obtaining (7) we have neglected terms of 
order melmi compared with unity. 

If the conditions kiT I meQ 2 « 1 and kiT I mi Q 2 

« 1 are satisfied, in finding Tlte and Tlti we can 
use the conventional system of equations for two­
fluid hydrodynamics for a cold plasma. If wHi 
« Q « -wHe (WHa = eaH01mac) this system of 
equations written for the quantities wr and Tlta 

becomes 

Wix• = __.::. [Eiy + _1_ aEtx ] , 
Ho WHe at 

Wty" =- _:_[ Eix- _1_ aEtu] ' 
Ho WHe at 

a'I'Jie dno --+ ikWt•no+ Wtx"- = 0. at dx 
( 8) 

Invoking the quasi-neutrality of the low-fre­
quency oscillations, on the right side of ( 8) we 
have neglected terms of order aa cos Qt (E) 
compared with E 1 ~ 47Tek- 2kae cos Qt (Tie>· In 
conjunction with ( 6), which determines the field 
E 1, the equations in (8) form a complete system 
for the description of forced plasma oscillations 
of frequency Q in the inhomogeneous plasma. 
Eliminating W~ and E 1 from this system we ob­
tain the following equations for Tlte and Tlti: 

+ icosQt Q 2-· -· -- wo 2~ • ( wo 2 kj_2 k 2 )] 

WHe2 k2 c k2 
( 9) 

Here K = d ln n0 I dx. Solving these equations and 
substituting the results in ( 6), we can now write 
the latter in the form 

T ( 2:n:e2no \ 
(E.>+ ikz eno <TJe> 1 + ~a.2q>(Q)} = 0, (10) 

where we have used the notation 

(Q) = . Q2[NQ2- wo.2k.z/k2- wo;2] 
q> (NQ2 - 'woikilk2- Wo;2)2- Q2 (wo.4/WHe2} (k..lY,2/k4)' 

(11) 

The averaged equation of continuity for the ions 
for the condition w » kz .Y Tlmi (which means that 
the motion along H0 in the low-frequency oscilla­
tions can be neglected) is then written in the form 

-iw(TJ;>+_:_<Ey> dno =0. (12) 
Ho dx 

Using the neutrality of the low-frequency oscilla­
tions ( 1'/e) R:: (1'/i), which holds when ae « 1, and 
invoking the electrostatic condition, using (10) 
and ( 12) we obtain the following relation for the 
frequency of the drift oscillations in the presence 
of the high-frequency electric field: 2> 

T ( a.z ) w=-k11--x 1+--cp(Q) . 
m;wHi 2k2'An2 , 

( 13) 

We note that by using (10) and Poisson's equa­
tion for the field ( Ez) we can obtain a relation 
which gives the deviation from neutrality in the 
low-frequency oscillations: 

( 1 + k2'An2} <TJe> = ( 'I'Ji) ( 1 + 1/2ae2cp* (Q)), }.n = 1/T / 4ne2no, 

(14) 

{[ k 2 ][ k 2 ] cp* (Q) = NQ2 - Woe2 ~2 - Wo;2 NQ2 - Woe2 ~2 

(14') 

It follows from (14) that the deviation from neu­
trality in the low-frequency oscillations is im­
portant only when a~ cp * ( Q) ~ 1. 

The possibility of high-frequency stabilization 
of the drift instability derives from the increase 
in the frequency of the drift oscillations caused by 
the application of the high-frequency electric field. 
Under these conditions the growth rate for the 
drift instability contains a stabilizing term asso­
ciated with Landau damping, this stabilization term 

2)In the limiting case of high-frequencies for the external 
field 

we find cp ~ 1/N. In this case (13) becomes the expression ob­
tained earlier in [13]. 
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being given by 

atoe ( (J)) m.m - - ~ --fo•(O) 
avz kz Tkz 

( f~ is the equilibrium distribution function for the 
electrons ) . 

It follows from ( 11) and ( 13) that the applica­
tion of the electric field increases the frequency 
of the drift oscillations and thus increases the 
Landau damping when the field frequency Q satis­
fies the condition 

( 15) 

where Q± is given by the expression 

1 [ ( kz2 ) ffioe4 ky%-Jl} 
" 2 =- N roo 2 - + mo·2 + __ ..______ 
~'± N2 e k2 ! . ·zmHi k4 

( 15 ') 

When (15) is satisfied the frequency increases be­
cause the pressure associated with the high-fre­
quency field is in phase with the gas kinetic pres­
sure and this increases the electric field associ­
ated with the drift wave (E). For all other values 
of Q the frequency of the drift wave is reduced 
and the alternating field becomes a destabilizing 
factor. 

The increase of the Landau damping for the 
drift oscillations means that the plasma can be­
come unstable only if the temperature gradients 
become high enough. In order to be convinced of 
this result we consider the work done by the drift 
wave on the resonance electrons in the plasma: 

Q = -e (Ez> < ~ Vzft" dv) . 
Here, in the usual way the brackets denote aver­
ages over the high-frequency oscillations while 
the bar denotes an average over the wavelength of 
the drift wave; if is the deviation from equili­
brium of the electron distribution function. 

In order to find this deviation we use the 
kinetic equation in the drift approximation. Intro­
ducing the quantity Wz = Vz + ( e&fo/meQ) Sin Qt 

as the independent variable in this equation we 
write it in the form 

aN ( e& o ) e ' a to• 
-+ikz w,--sinW /!"-- Ez-a 

at meQ me Wz 

1 atoe ) 
+-Ey- =0. 

ffiHe ax I 

( 16) 

In solving ( 16) it will be found convenient to intro­
duce the function lf!e ( t, x, Wz) = f~ eiae cos Qt 

which can be easily shown to satisfy the equation 

a¢. . e . ( a toe ky 1 a /o" ) --+ ~kzWz\jle-- Eze'a• cos Qt \-+---- = 0. 
at me awz kz ffiHe ax 

(17) 

When Q » kzv' T/me, the quantity (1/!e) » l/!1e 
where the subscript 1 denotes the high-frequency 
part of the function 1/!e. Thus 

<N> = <¢.)(eia. cos Qt) = fo(a.)<¢.). 

Determining (If! e ) from ( 1 7) 

e <Ezeia. cos Qt) (a toe ky 1 a toe ) 
<¢.> =--. -+----- ' (18) 

me ~ ( (J) - kzWz) \ awz kz ffiHe ax 

and substituting the result in the expression for 
Q, when ae « 1 we have 

Q = _ ne2 __ m_ (aN +~-1 ajo•) I 
me kz I kz I I awz kz ffiHe ax w,•=Wik, 

X(Ez> (Ez exp {iae cos Qt}) 

where the equilibrium electron distribution func­
tion has been written in the form 

---
1/ me { m.w.2} fo•(x,wz)=no(x) v,---exp ----

·2nT (x) 2T (x) 

and we have used ( 13) for the frequency of the 
drift oscillations. 

In the absence of the high-frev'quency field for 
the case being considered here T/mi « w/kz 
« ..J T/me the drift oscillations are unstable in 
the zero-Larmor-radius approximation when 
d ln T/d ln n < 0. In accordance with (19), the 
high-frequency field brings about stabilization in 
the range given by 

a.2 d ln T 
---cp(Q) < --< 0. (19') 

k2J...D2 d ln n 

The applied field amplitudes for which stabili­
zation becomes important are determined from 
the condition 

For the high-frequencies 
(20) 
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1 Woe2 k 11x ------. 
N WHe k2 

considered in [131 this condition can only be satis­
fied in strong electric fields in which the velocity 
associated with the electron excursions is appre­
ciably greater than the electron thermal velocity 
meuNe /T » 1. 3> However, it follows from ( 19) that 
stabilization obtains for all external field frequen­
cies that satisfy one of the conditions in (15) (for 
these frequencies qJ ( n) > 0). Then (20) can be 
satisfied for lower field amplitudes when 
meuge/T ~ 1. As resonance is approached 
n = n± there is a further reduction in the field 
strength required for stabilization. However, the 
formulas obtained here do not apply at exact reso­
nance. 

At high field amplitudes, for which meUffe/T > 1, 
the presence of the field can lead to a new insta­
bility associated with the relative oscillations of 
the electrons and ions in the electric field. [14, 15] 

The plasma diffusion coefficients associated with 
these instabilities have not been calculated; how­
ever, it will be evident that these instabilities, 
which cause oscillations at rather high frequen­
cies, will not be as important in terms of plasma 
confinement as the slow drift instabilities. In the 
experiments described in [9] the high-frequency 
modulation of a beam traversing a plasma led to 
the suppression of the drift instabilities and to a 
considerable reduction of plasma diffusion across 
the magnetic field. Nevertheless in this case the 
plasma exhibited high-frequency oscillations at 
harmonics of the modulating frequency. 

3. KINETIC THEORY FOR DRIFT INSTABILITIES 
IN THE PRESENCE OF A HIGH-FREQUENCY 
ELECTRIC FIELD 

In this section we consider high-frequency 
stabilization of drift instabilities in the kinetic 
approximation, taking account of the finite Larmor 
radius of the ions. 

The equilibrium distribution function for an 
inhomogeneous plasma subject to an alternating 
electric field (1) is given by 

(21) 

3)Under these conditions the energy of the stabilizing fields 
can be somewhat smaller than the thermal energy_ of the plasma 
since 

Q 2 meuoe2 

E02/nT = 4n----, 
<iloe2 T 

and 0 can be small compared with Woe· 

We consider small perturbations about the 
equilibrium state. It is assumed that the spatial 
gradients in the equilibrium state are small and 
that the WKB approximation can be used in con­
sidering perturbations. Writing these perturba­
tions of the distribution function in the form 

6jC• = ft'• (t, .x~ v) exp [ i ( ~ k.,dx + k 11y + k.z) J , 
lk.,- 18lnft"/ax I~ 1 

and linearizing the kinetic equation, we have 

a/fa. ea.Eo(t) atta. ajia. --+ i(k.L"V_LSintJ-+ kzVz)fta. + -,-- WHa. ""-
at ma. av. uv 

ea. { . atoa. 8/oa. 1 atoa.} +- E.Lsm'fr-+E.-+E!.'--: - =0. (22) 
~ ~.L a~ w~ b 

In this equation we have introduced cylindrical 
coordinates in velocity space v 1• v z and 0, 
J. = 1r/2 + (} - qJ; k1, kz and qJ are the cylindrical 
coordinates of the vector k. In writing (22) we 
have made use of the fact, as follows from (21), 
that 

aur. . atoa. 1 atoa. 
-.-= sme-+--. 
OVy av .L WHa. ax 

where the derivative with respect to v 1 is com­
puted for x + vylwHa = const; we have also 
neglected terms which contain magnetic field per­
turbations since we shall be interested in electro­
static perturbations since we shall be interested 
in electrostatic perturbations only. 

The solution of (22) can be obtained by means 
of a procedure similar to that used by Aliev and 
Silin. [10] In (22) we transform to the independent 
variables t, Wz = Vz- (eO! S'o/maQ) Sin Qt and 
w 1 = v 1· In terms of these variables the function 
l/Ja ( t, x, w ), which is defined by the relation 
l/Ja = f? exp ( iaa cos nt), can then be obtained 
from (22): 

a\j)a. + · (k · .<>. + k ) .1, 0\j)a. + ea. E ia cos at - l _LW_LSlnv zWz ..,a.-·WHa.-,;- -- ze " 
at u'l'l' ma. 

X ( 8j0a. + .!:.Y_ ___!__, atoa. + k.L sin 'fr ajoa. ) = O. 
aw. kz WHa. ax kz iJw .L 

(23) 

Determining the field Ez from Poisson's equation 
and averaging (23) over the high-frequency oscil­
lations we have 

a<¢a.> 
i(k.LW_LSin'fr + kzWz- w)(\j)a.)-WHa.~ 

- 4:nikz ~ ea.e~ [ atoa. + !!.!._ _1_ atoa. 
k2 ma. aw. kz WHa. ax 

ll 

k.L . 8/oa. J +-sm'fr--
kz aw.L 
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><{Jo(ya~) ~ <'!J~)dw+ ~ls('\'a~)<eis(Ot+n/2)'111~>] = 0. 
.,.o 

(24) 

We now substitute (1/Ja) ~ e-iwt and Yaf3 = aa 
- a/3 in this equation. As in the preceding section 
1Jw = f lf!w dw denotes the high-frequency part of 
the density. 

The solution of (24) is 

X [lo('\'a~) ~ < ¢~) dw + ~ls (ya~) < 'YJ1~ eis(Ot+n/2)) J , (25) 
.,.o 

where we have used the notation ba = k1w 1/wHa. 
Integrating with respect to w we then have 

~ <'1i'a>dw-Da~ -:: [Jo('\'afl) ~ <w~>dw 
~ 

+ ~' J.(ya~)<'llt~ eis(Qt+n/2)) J = 0. 
.,.o 

(26) 

When the equilibrium distribution function is 

( ma )''• { ma(w.z + w.L2) "\ 
fo" = no , 2:n:T exp - 2T j , 

the quantity Da is determined from the relation 

D 1 4:n:e2 k. ( ky 1 a ma w ) 
a=- -k2').D2 + ma ~ k. WHa ax-Tk; 

(27) 

For the case w « wHi, which is the one being 
treated here, in the summation over l that ap­
pears in Di we need only consider the l = 0 
term. [3] 

In this case Di is given by 

1 4:n:e2 ( ky a m; ) 
D;=---+-(----w noA(p;) 

k2A.D2 m;k2. \ WHi ox T 

+oo 
( m; )'I• 1 ( m;w.Z \ 1 x -- .) dw.exp ----) , 

2:n:T . 2T . kzWz - w 
(28) 

-oo 

where 

In similar fashion, in obtaining De, in which 
we need not consider the finite Larmor radius of 
the electrons, from (27) we have 

1 4:n:e2 ( ky a me ) ( me )''' 
De = - k2').D2 + mek2 WH~ ax - T w nl 2:n:T 

(28') 

Using ( 23) and assuming that Q » kz V TIme, 
w, we can show that the following inequality holds: 

However, by virtue of the neutrality of the low­
frequency oscillations, when ae « 1 

~ <'!J.>dw ~ ~ <w;>dw, 

and terms containing the quantity 1J let = f 1/J 1a dw 
must be retained in (26).4> Using (9) to express 
1Jw in terms of ( 1Ja) and substituting the result 
in (26), we obtain the dispersion relation for the 
low-frequency oscillations for the cas.e 

a.z 
De+ D;- 2 cp(Q)D.D; = 0, (29) 

where the function cp ( U) is given by ( 11). In the 
case at hand I Da I » 1 and the effect of the high­
frequency field is important even when ae « 1. 

At large amplitudes of the external field, in 
which case ae ~ 1, if the condition 0 » w is 
satisfied5> the relation in (29) is replaced by the 
following dispersion equation: 

De+ D;- (1- lo2 (ae) )DeDi= 0. (30) 

A. We first consider the low-frequency case 

(31) 

In this case the quantity Da that appears in the 
dispersion equation is given by the following 
formulas: 

where we have used the notation 

4 lThe authors are indebted to B. B. Kadomtsev for this ob­
servation. 

5lWhen ae - 1 the deviation from quasi-neutrality becomes 
important and the frequency w for this case is of the order of 
the characteristic frequency of the plasma oscillations for a 
plasma with "magnetized" electrons. 
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f=x(1 - dlnT( 1 +~)), ft=x(1 - dlnT 1+6)! 
' dlnn 2 dlnn 2 ' 

6 = p;2 ( 1- / 1 ( p;
2 
)/0-1 ( p~ 2 

) ) . 

Substituting Da in (29) we have 

w _ ~ 2+~ 1 . ( nT )';, ky 1'1 ] 

kz--L1+~A-~ 2m; kzwHi 

[ ky r . ( nm;) •;,J-1 
X---+~- . 

kz Wn; '2T 
(33) 

In this equation we have used the notation 
a.2 

~ = 2k2J,.D2 rp(Q). (33 ') 

In the case at hand the instability condition 
( Im w > 0) assumes the form 

[ 1 _ dlnT( 1 +~)][ 1 - dlnT 1+6] 
d~n 2 d~n 2 

+ 2+ ~ ki 1 m;wHi2 
1+~ klA~> o. (34) 

For values of Q that satisfy one of the conditions 
in (15), we find cp ( Q) > 0 and as the amplitude of 
the high-frequency field increases the second 
term in the inequality in (34) is reduced. How­
ever, under the conditions for which (33) applies 
this term is small and the instability region ac­
tually is the same as in the absence of the high­
frequency field: 

dinT I dlnn > 2 I (1 + 6). (34') 

B. We now consider the intermediate-fre­
quency case, for which 

k;yT I m; ~ w <,kzVT I me. (35) 

This case has been considered in the second sec­
tion in the limit of zero ion-Larmor radius 
Pi-- 0. In the present section we shall take ac­
count of the finite ion Larmor radius. 

Computing the integrals that appear in Da in 
the approximation given by (35) we have 

1 
D.=---

k2'An2 

_ ni 4ne2 (me__!!!__ ~-1_!_) no( me )'1• 
mek2 \ T lkzl lkzl WHe ox 2nT ' 

D;=- 1-A(p;) _ wo;2 kyx( 1 -~ dinT). (36) 
k2'An2 WWH; k 2 2 dIn n 

Substituting the result in (29) and solving the re­
sulting dispersion equation we obtain at the follow­
ing formulas for the frequency and growth rate: 

T [ 6dlnT] w = -ky--xA(1 + ~) 1----
m;wH; 2 dlnn 

X {2-A+~(i-A)]-t, (37) 

V = v -~ ( _! )3 klx2 ~ [ 1 _ ~ dIn T J 
2 \ mel I kz I WHe2 2 dIn n 

X (2 - A+~ ( 1 - A) ]-3 ~ { 2 ( 1-A) + ~ ( 1-2A) 

1 dinT } - "2 dlnn [2-A(1+6)+ ~(1-A+M)] . (37') 

It is evident from the expression for the growth 
rate that in the case at hand, as in the absence of 
the high-frequency field, [3] there are two insta­
bility regions. The first 

d In T I d In n > 2 I b, (38) 

arises only when the finite ion Larmor radius is 
taken into account ( o -- 0 when Pi --0 ) and is not 
changed by the high-frequency field. The second 
is determined by the relation 

dinT < 2 2(1-A)+~(1-2A) (39) 
dIn n 2 - A ( 1 + 6) + ~ ( 1 - A + M) 

Thus, when Pi-- 0, in which case A ~ 1 and 
o ~ 0, we obtain the same boundary for the in­
stability region d In T/ d In n = - 2j3 as is obtained 
from (19). As Pi increases this boundary is dis­
placed toward larger values of d In TId In n and 
when Pi-- 00 (A ~ 0, o ~ 1) it approaches 
d In T/ d In n = 2. Thus, the range of values of the 
parameter dInT/dIn n in which high-frequency 
stabilization occurs is a maximum for Pi-- 0 and 
approaches zero when Pi- oo (as in the case 
above, we limit our analysis to the case {3 > 0 ) . 

It should also be noted that when Pi~ 0 (in 
which case A< 1) and for sufficiently large 
values of j3, the growth rate as given by (37') is 
reduced with increasing j3 ( y ~ j3 - 2 when 
j3 » 1). Thus, the stabilizing effect of the high­
frequency field appears in an expansion of the 
stability region which is a maximum for small 
Pi and in a reduction of the growth rate for oscil­
lations characteristic of finite Pi· 

C. Finally we consider the high-frequency 
region 

(40) 

We assume that the following condition is satis­
fied: 

1 d 
ke =--(noT), 

noTdx 
(41) 
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and obtain the following relations for Da: 

D; = _ wo;2 kyx A (p,·) ( 1 _ ~ dln T) . 
WHiW k 2 2 d ln n (42) 

For small values of Pi (the instability being con­
sidered corresponds to precisely this case [3]) in 
the sum Di + De, which appears in the dispersion 
equation (29), the term in De is almost com­
pletely balanced by Di and the second term must 
be taken into account. For this reason the last 
term in (29) is important even when ae is small. 
Using (42) we write the dispersion equation in the 
form 

( 6 d ln T ) p ( T ) If, ( b d ln T ) w2 1-A+A--- +w---=Axp; - 1----
2 d ln n '}'2 m; 2 d ln n ' 

T( dlnT) + kz2 - 1 +.-d-1- = 0. 
me nn 

(43) 

It follows from (43) that the condition in (40) is 
satisfied only when Pi « 1. In this case w is 
given by 

PV T X 
w = - ~ 2m; 1 + d ln T / d ln n 

+ [1_'!_ x2. __ 2_k 2 T ]If, 
- 2p;2 m; (1+.dlnT/dlnn)2 p;2 z me 

(44) 

When {3 = 0 the instability arises for all values of 
the parameter d ln T/d ln n (the validity of (44) 
requires only that the parameter not be close to 
-1). [3] In accordance with (44), the high-fre­
quency field stabilizes this oscillation when 

Vm; kz ( dinT) p>2 -- 1+-- . 
me X dlnn 

It follows from a comparison of (41) and (40) that 
kz « ko Pi v' me I mi; thus, in the case being con­
sidered stabilization can be achieved with modest 
field amplitudes for which the condition 
{3 «Pi( 1 + d ln T/d ln n) 2 « 1 is satisfied. 

4. DRIFT-DISSIPATIVE INSTABILITY IN THE 
PRESENCE OF A HIGH-FREQUENCY 
ELECTRIC FIELD 

It is well known that electron-ion collisions in 
an inhomogeneous plasma can lead to the excita­
tion of drift oscillations (drift-dissipative insta­
bility). [4, 5] In the present section we consider the 
effect of a uniform high-frequency electric field 
on the drift-dissipative instability. 

The dispersion relation is derived on the basis 

of the usual hydrodynamic equations. The friction 
term due to electron-ion collisions must be taken 
into account in the equation for the electron mo­
tion along H0• This term is given by mev e v ~ 
where ve is the effective electron-ion collision 
frequency. In this equation we then write the non­
equilibrium deviations for the velocity and 
density of the electrons in the form 

and average over the period of the high-frequency 
oscillation. Then, as before, neglecting the inertia 
term in the averaged equations, when ae « 1 we 
have 

<W!> =- _e_{<Ez> + ikz__!__ ('l']e> + iae (cos WE1z> )J'· 
meVe eno 

(45) 
In similar fashion, substituting in the equation 

of electron motion across the magnetic field 
v r = w reiae cos nt and averaging over the high­
frequency oscillations, to higher order in the 
parameter w! wHe we find 

<Wxe) = ;
0 

[(Ey>-+ iae (cos QtE!y)], 

c 
<Wye) =--[<Ex>+ iae (cos QtE!x>]. (46) 

Ho 
In ( 45) and ( 46) the term containing the high­

frequency part of the field oscillation E 1 can be 
written 

. ( E) Ezz -1 
Wee cos Qt 1 = --- ik (EoE!z>, 

4nno 
(47) 

where we have substituted ae and taken account 
of the electrostatic nature of the oscillations. The 
right side of this relation contains the pressure 
due to the high-frequency field computed per 
plasma electron. Thus, in contrast with the 
analysis in, [4, 5] in the present work the equations 
for electron motion along the magnetic field and 
across the field take account of the pressure term 
due to the high-frequency field. 

If n » Ve, the field E1 can be found from ( 6) 
and ( 8) in the second section of this paper. Using 
these equations to express E1 in terms of 
( TJa) and neglecting terms of order me/mi com­
pared with unity, we have 

'k 2ne 2 (Q / >] + ~ z --a" <p ) 'I'Je • k2 . (48) 
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Substituting in the averaged equation of continuity 
for the electrons 

dno 
- iw <TJe> + <Wx•> --+ ik \W•)no = 0 (49) 

dx 

where we have taken (we) from (48), we have 

. kzeno < ) c <E ) dno 
-L--- Ez +- y --=0. 

meve Ho dx 
(50) 

In considering the drift-dissipative instability 
the inertia term must be retained in the averaged 
equations of motion for the ions across the mag­
netic field. The averaged equation of continuity 
for the ions, as averaged over the high-frequency 
field, is then given by 

+ kx<Ex>) = 0 (51) 

(the ion motion along H0 can be neglected for the 
low-fre;uency oscillations characterized by 
w » kz T/mi). 

Making use of the electrostatic nature of the 
low-frequency oscillations and the fact that these 
oscillations are quasi-neutral 6\ ( 7Je) ~ ( 7Ji), 
from the condition that must be satisfied in order 
that (50) and (51) yield a non-trivial solution, we 
obtain the following dispersion equation: 

- ~ wi ( 1 + l_ .2)2 = 0 
p;2 ( 1 + ~) 2 2 p, . 

(52) 

In this equation we have used the following nota-
tion 

= _ !!.!.__ WHeW Hi ( f +! ·2) 
Ws k 2 2 p, ' 

j_ Ve 

T 1 + ~ 
We=ky--X , 

miWHi 1 + 1 /2~Pi2 

__P_{ =- liJOi2 kj_2)...D2, 

2 liJHi2 

and the quantity {3 is determined by (33'). When 
{3- 0 (52) becomes the dispersion equation for 
the drift-dissipative instability in the absence of 
a high-frequency field which has been obtained 
in[4J. When ve- 0, we find from (52) w =-we 

6)In the presence of a high-frequency field quasi-neutrality 
obtains when ae2 cp* « 1, where cp*(O) is given by (14 '). 

which, in turn, coincides with (37) for the drift 
frequency in the case Pi « 1. 

We shall limit our analysis to the solution of 
(52) for large values of {3 lying in the range 

(53) 

(53') 

(the condition in (53') can also be satisfied when 
ae « 1 since WHi/ w0i is a small parameter). In 
this case, expanding the solution in powers of the 
parameter 1/f3pf we obtain the following expres­
sion for the imaginary root of the dispersion 
equation 

. We2 iO>s 
lm liJ_ = - LW8 + 2 ~ (54) 

Bp;2 Ws2+we2B2p;•/4 

·w.2 iws 
Im w+ =-2--------

B p;2 Ws2 + We2B2pi'•/ 4 • 
(54') 

When f3PI » 1 the second term in (54) is small 
and if {3 is positive (that is to say, for values of 
Q that satisfy one of the conditions in (15)) we 
find that both roots yield Im w < 0, corresponding 
to stability. 

Thus, the drift-dissipative instability can also 
be stabilized by a high-frequency field; however, 
the field amplitude required for this case is 
higher than for the collisionless drift instability. 

The authors are indebted to B. B. Kadomstev, 
V. P. Silin and A. B. Mikhallovskil for valuable 
comments and to V. I. Shevchenko for assistance. 

1 L. I. Rudakov and R. Z. Sagdeev, DAN SSSR 
138, 581 (1961), Soviet Phys. Doklady 6, 415 (1961). 
Nuclear Fusion, Supplement 2, 1962, p. 481. 

2 B. B. Kadomtsev and A. V. Timofeev, DAN 
SSSR 146, 581 (1962), Soviet Phys. Doklady 7, 826 
(1963). 

3 A. A. Galeev, V. N. Oraevskil and R. Z. 
Sagdeev, JETP 44, 903 (1963), Soviet Phys. JETP 
17, 615 (1963). 

4 A. A. Galeev, S. S. Moiseev and R. Z. Sagdeev, 
Atomnaya Emergiya (Atomic Energy) 16, 451 (1963). 

5 B. B. Kadomtsev, Reviews of Plasma Physics 
Consultants Bureau, New York, 1966, Vol. 4. 

6 Ya. B. Fal'nberg, Atomnaya energiya (Atomic 
Energy) 11, 313 (1961). 

7Ya. B. Fa'inberg and V. D. Shapiro, Atomnaya 
energiya (Atomic Energy) 19, 336 (1965); V. D. 
Shapiro, ZhTF 37, #3 (1967), Soviet Phys. Tech. 
Phys. 12, in press. 

8 A. K. Berezin et al, Atomnaya tmergiya 
(Atomic Energy) 18, 315 (1965). 



198 Ya. B. FAINBERG and V. D. SHAPIRO 

9 E. A. Kornilov, Ya. B. Fa!nberg and 0. Kovpik 
JETP Letters 3, 354 (1966), transl p. 229. 

10 Yu. M. Aliev and V. P. Silin, JETP 48, 901 
(1965), Soviet Phys. JETP 21, 601 (1965). 

11 S.M. Osovets, JETP 39, 311 (1960), Soviet 
Phys. JETP 12, 221 (1961). 

12 L. D. Landau and E. M. Lifshitz, Electrody­
namics of Continuous Media, Addison-Wesley, 
Reading, Mass., 1960. 

13 Ya. B. Fa'Lnberg and V. D. Shapiro, JETP 
Letters 4, 32 (1966), transl. p. 20. 

14 V. P. Silin, JETP 48, 1679 (1965), Soviet 
Phys. JETP 21, 1127 (1965). 

1. 5 L. M. Gorbunov and V. P. Silin, JETP 49, 
1973 (1965), Soviet Phys. JETP 22, 1347 (1966). 

Translated by H. Lashinsky 
36 


