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A nonlinear theory of instability of a monoenergetic beam of electrons in a system with 
electrodes is considered in the paper for the case of small supercriticality. It is shown that 
when u0 > 0 ( u0 is defined by relation (35)), then the energy of the oscillations excited in the 
beam jumps suddenly, on going through the boundary of the stability zone, to values compar­
able with the initial beam energy. At such oscillation amplitudes, the trajectories in the beam 
can intersect and regions of multistream motion can arise. 

1. When an electron beam passes between two 
electrodes whose potential is maintained constant, 
an electrostatic instability can arise; this instabil­
ity, unlike the well known "two-stream" instabil­
ity [iJ, is not connected with the relative motions 
of the particles and therefore occurs even in a 
system which is not filled with plasma. As shown 
by Pierce [2], in order for this instability to arise 
in the absence of a plasma, it is necessary that 
the current density in the beam exceed a critical 
value defined by the relation 

fer = nmvo3 / 4el2 ( 1) 

( v0-velocity of the particles on the beam, l-dis­
tance between the electrodes) . Mikhallovski'i' [3) 

investigated similar instabilities when an electron 
beam moves in a two-electrode system filled with 
plasma. Experimental investigations of instabili­
ties in a plasma-beam discharge have confirmed 
that at large current there can occur in the beam, 
besides the "two-stream" instability whose de­
velopment leads to the appearance of a ''plateau'' 
on the beam-electron velocity distribution func­
tion [4, sJ, also an instability which is similar to that 
investigated by Pierce. This instability appears 
even in states with a "plateau" on the electron 
distribution function, and its development can lead 
to the blocking of the electron beam and to the oc­
currence of opposing particle streams [S). 

A linear theory of the instability of an electron 
beam in a two-electrode systemil was considered 

1 )Stationary nonlinear solutions in an electric beam pass­
ing between two electrodes were considered in a recent 
paper [7]. 

in [2, 3]. To determine the variation of the state of 
the beam due to excitation of the oscillations, it 
is necessary to consider the dynamics of the in­
stability at large amplitudes, when the linear ap­
proximation is not valid. 

We consider in this paper a nonlinear theory 
of the Pierce instability at small supercriticality. 
The analysis method is the same as in the paper 
by one of the authors [RJ, in which the instability 
of a beam with periodically varying parameters 
was investigated in a nonlinear approximation. 

A characteristic feature of the beam instability 
in a system with electrodes is that there always 
exist such initial perturbations of the density and 
of the velocity in the beam, for which the nonlinear 
effects cannot stabilize the instability at low am­
plitudes. In this case, even in the case of small 
supercriticality, the energy of the oscillations 
excited as a result of the instability is comparable 
with the initial beam energy, and crossing of the 
trajectories and regions of multistream motion 
can occur in the beam (the hard excitation 
mode [a-lo] ) . 

2. Let a monoenergetic electron beam of speci­
fied density and velocity be formed in the plane 
x = 0 (cathode) and absorbed in the plane x = l 
(anode). The potential of the two electrodes is 
maintained fixed, and the charge of the electron 
beam in the stationary state is compensated by 
the ions. 

We consider one-dimensional longitudinal os­
cillations occurring in the electron beam. Follow­
ing Pierce [2), we assume that the ions are infin­
itely heavy and do not take part in the oscillations. 
Then the system of hydrodynamic equations de­
scribing the oscillations is written in the form 

9') ,, 
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Equations (2) were solved simultaneously with the 
boundary conditions formulated by Pierce, which 
have the obvious meaning: 

n(t, 0) = n0, v(t, 0) = Vo, <p(t, 0) = <p(t, l) = 0. (3) 

Here n0 and v0 are the density and velocity of the 

beam in the stationary state, and q; = - Jx Edx' 
0 

is the potential of the wave. 
According to Kalman [H]. ( 2) it is convenient to 

go over in the investigation of the nonlinear sys­
tem from the customary variables t and x to the 
variables t and </!, where </! ( t, x) is defined by 
the equations 

n nv 
-=--

ax no at no 

</! ( t, x) is the stream function, and is conserved 
along the particle trajectory 

d1jJ = a..p + v 8¢ = 0. 
dt at ax 

(4) 

When (4) is satisfied, the continuity equation is 
satisfied automatically, and the Poisson equation 
can be readily integrated and leads to the following 
relation for the electric field: 

E = -4neno(¢ + vot- x) + ES (t). (5) 

Here (? ( t) is the field at x = 0; in the derivation 
of (5) we have used the fact that, in accord with 
(3) and (4), 

t 

¢I x=o = - ~ nv dt' = - vot. 
0 no 

Recognizing that d<J;/dt = 0, we get 

av av ( av) av d¢ ( av ) ( 82x ) 
Tt + v ax= \ Tt .p + a..p dt = \ at .p = 7it2 J l'p • 

Therefore, in terms of the variables t and </!, the 
equation of motion is written as 

fJ2x e ( 4ne2no ) ( ) -. + roo2x = roo2 (¢ + vot)-- {g (t) roo2 = -- . 6 
atz m , m . 

From this we get for the displacement x ( t, </!) of 
the electrons in the beam, in the presence of os­
cillations, 

x(t, ¢) = ¢ + v0t +A (..p)ei"',t +A* (¢)e-iw,t + C(t). (7) 

In free motion of the electron beam x = </! + v0t, 
the last three terms of ( 7) determine the displace­
ment LlX ( t, </! ), due to the oscillations, of the 
beam electrons. C ( t) is a particular solution of 
the equation 

d2C e - + roo2C = -- {g ( 8) 
dt2 m 

with conditions C I t=O = 0 and dC/ dt I t= o = 0. 
Having a formula for the displacement of the 

electrons x ( t, </! ), we can obtain the density and 
velocity of the beam particles in terms of the vari­
ables t and </!: 

( ax )-1 ax 
n(t,¢)=no a..p , v(t,¢)=-at· (9) 

The electric field in the beam E ( t, </! ) is deter­
mined from (5). The connection between the vari­
able </! and the Euler coordinates x and t is de­
termined from (4), in which we must substitute the 
values of n ( t, </! ) and v ( t, </! ) from ( 9). Thus, the 
solution of the problem of the oscillations in a 
beam reduces to the determination of x ( t, </! ) • 

To determine the functions A ( </! ) , C ( t), and 
0' ( t), which enter in the solution, we must use the 
boundary conditions (3). Inasmuch as for x = 0 we 
have </! = -v0t, ax/a<J; = 1, and ax/at= v0, we ob­
tain, substituting x ( t, </!) from (7), the following 
equations: 

C(t) = -A(-vot)ei"''1 - c.c., (10) 
dA· 
dt (- v0t)eiw;t + c.c. = 0. (11) 

Similarly we get from the relation 
l 

<p(t,?) =- ~ E(t,x)dx = 0, 
0 

using formulas ( 5) and ( 7) and going over to inte­
gration with respect to the variable ~ = </! + v0t, 

~~ 

& (t) =- 4neno{ C(t)+ ~ [5 A(~- v0t)d£ eiw,t + c.c. J 
0 

+-~1[ (A (61- v0t) ei"'ot + c.c. )2- (A ( -v0t) eiw,t 

+c.c. )2) }, (12) 

where ~l ( t) is determined, in accord with ( 7) from 
the equation 

£z- l = (A ( -vot) -A (£z- vot)) eiw,t + c.c. ( 13) 

Finally, substituting in ( 8) the values of C ( t) 
from (10) and i£ ( t) from (12), we arrive at the 
following equation: 

!',I 

~(A (-v0t) eiwot + c.c.] + roo2 {\A("- v0t) d£ eiw,t 
dt2 l J " g 

+ c.c. + 1/2[(A (£.1 - v0t) eiw,t + c .c .) 2 

-(A(-v0t)eiw,t + c.c.} 2] }= 0. (14) 

Equations (11) and (14) make up together the 
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sought system for the determination of the com­
plex oscillation amplitude A ( 1./J ) • To solve the 
system we represent A ( 1./J) in the form 

A('f)=[u('IJ)+iw('IJ)]exp(i::'IJ )· (15) 

Then (11) and (14) can be rewritten in the form 

du Wo ~ 
----=--w('IJ) = 0, (16) 
d'IJ Vo 

~I 

d2u Wo2 { \ ( ~ WoS - WoS ) -=+- J u(¢+s)c:os--w(¢+s)sin-- d£ 
d¢2 v02l 0 Vo Vo 

[ ~ wo£z ~ wost ] 2 + u(¢ + 1;t)cos--- w(¢ +sz)sin--
vo Vo 

In these equations, if = 1./J I x= o = -vot, and ~ z is 
related to u and w by 

(17) 

wo£z . wosz SJ = l- 2u(¢ + sz)cos- + 2w('IJ +sz)sm- + 2u(\jl). 
Vc Vo 

(18) 

Equations (16)-(18) determine the functions 
u ( 1./J) and w ( 1./J) on all the trajectories crossing 
the cathode, i.e., when 1./J < 0. When 1./J > 0 the 
functions u l 1./J ) and w ( 1./J ) are determined from 
the initial conditions. Assume that at t = 0 the 
density and velocity distributions along the beam 
are 

n(O, x) = no(1 + s(x) ), v(O, x) = vo(1 + g(x) ). (19) 

From a comparison of (19) with (3) it follows that 
s ( O) = 0 and g( 0) = 0. On the other hand, using 
(7) and (15), and taking into account the fact that 
dC/ dt I t= 0 = 0, we obtain for t = 0: 

( fJx )-1 [ d ( wo\jl n = n0 -- = n0 1 + 2- u(¢)cos-
'Y11' 1 d¢ v0 

(!) 'iJ )]-1 - w('IJ)sin~ , 

fJx ( Wo\jl . Wo'IJ ) v = - = Vo- 2wo w ( \jJ) cos- + u ( \jJ) sm-m ~ ~ 
(20) 

The connection between 1./J and x at t = 0 is given 
by the relation 

X 

\jJ = x + ~ sdx'. 
0 

Comparing (19) and (20), and assuming that the 
initial amplitudes of the oscillations are suffic­
iently small, so that we can confine ourselves to 
first-order terms in s « 1 and g « 1, we obtain 
for u ( 1./J) and w ( 1./J) when 1./J > 0: 

¢ 

u ( 1J;) = - _! [ ~ s dx cos wo¢ + Vo g ( \jJ) sin Wo\jl J , 
2 0 Vo Wo v0 

"' w(tjl)= _ _!_[ ~ sdxsin Wo'IJ -~g(\jl)coswo¢]. (21) 
2 0 Vo Wo v0 

In the derivation of (21) we used the fact that, in 
accord with (10), we have u ( 0) = C ( 0) = 0. It 
follows in particular from ( 21) that du ( 0 )/ di./J 
=w(O)=O. 

3. In the case of linearization with respect to 
u and w, the system (16) and (17) simplifies 
greatly. In this case we have for u the following 
integra-differential equations~ 

-¢ 
d2u Wo2 \ - WoS 
---==-'"" + 2-J u(£ + ¢)cos-d£ 
d¢2 Vo2l 0 vo 

l ~ 

= Wo2 
[ \ w(s +-:;j,)sin WoS ds- ~ U(S +¢)cOS WoS as] 

Vo2l ~ Vo ~ Vo 
-11> -11> 

for -l < "¢ < 0, (22) 

d2u . Wo2 r - roos roo - . wol 
~+2-J u(£+¢)cos-dS--u(l+'IJ)sm- = 0 
d~,z v02l 0 Vo Vol Vo 

for 'iJ < -l. 
In these equations we have eliminated w ( 1./J) with 
1./J < 0 with the aid of (16), and separated in the in­
tegrals with respect to ~ the region of positive 
arguments of the functions u and w, in which 
these functions are known. The corresponding 
functions, which in accord with (21) are expressed 
in terms of the initial perturbations of the density 
and velocity in the beam, will be denoted in this 
section by u and w. 

The solution of the equations in ( 22) can be ob­
tained with the aid of a Laplace transformation. 
However, when using the Laplace transformation 
it is more convenient to consider the region of 
positive values of the variable if. It is conse­
quently advantageous to continue in even fashion 
the function u (if), defined by (22), into the region 
of positive values of if and to consider the equa­
tions obtained from (22) by the substitutions 
if- -if and u( -if)- u(if'). We then multiply 
these equations additionally by exp ( -p if"), inte­
grate the first of them with respect to 1./J from 0 
to l and the second from l to oo, and add the re­
sultant relations. After simple transformations 
we get for the Laplace transform of the function 
u (if) 

00 

Up=~ U (~) e-P-;p d'¢, 
0 
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the following formula 

Up= IV(p) I D(p), (23) 

where 

2roo2~ 1 wi!S w0 • wol D(p)=p2+- e-P;cos-d£--e-P1sm-, 
· v02l Vo Vol vo 

0 

( 24) 

l l f: 
Wo2 \ r \ Wo;, 

N(p)=-J e~Pw J w(£-'ljl)sin-ds 
v02l 0 L ljJ Vo 

1 wo£ ] - ~ u(6-¢)cos-;;;-ds d¢. 

"' 
(24') 

Knowing up, we 3an, using the inverse Laplace 
transform, find u (if;): 

_ 1 a+ioo -IV(p) 
u(1~) = -. ~ e.P"'--dp, 

2m cr-ioo D (p) 
(25) 

where the integration is carried out along the 
straight line Re p = u, which lies to the right of 
all the singularities of the integrand function. At 
large values of if" the significant residue of the 
integrals with respect to p is at the point p = PZ, 
where pz is that root of the equation D ( p) = 0 
which has the largest real part. In this case, re­
turning to negative if" with the aid of the condition 
u (-if") = u ( ljJ ), we obtain the following asymptotic 
formula 

u ( ~) _..:_ IV (pz) e-P;¢. 
dD/dpz 

(26) 

It follows from (24) that pz is determined by solv-
ing the equation 

i {8o-El ] 82+-Elo ~-(expi(e+eo)-1 
2 Elo+8 

We have used here the notation ipzl = ® and 
w0llvo = ®o. 

(27) 

The dispersion equation (27) coincides with that 
obtained in [2]. Inasmuch as if"= -vot, the instabil­
ity in the electron beam arises when Eq. (27) has 
roots with Re PZ > 0. When ®0 - 0, all the roots 
of (27), with the exception of the real roots 
® = ±® 0, lie below the real axis, Im ® < 0, corre­
sponding to Re p z < 0. With increasing ® 0, these 
roots approach the real axis and when ®0 = rr there 
is a root ® crossing the real axis. The condition 
® 0 = rr, as can be readily seen, corresponds to a 
critical value of the current density in the beam 
j = en0v0, defined by relation (1). 

In the case of small supercriticality ®o = rr + 6, 
6 « 1, we have approximately from ( 27) 

8 ;::::, i:n6 I 4. (28) 

In this case, too, the expression for the pre­
exponential factor in (26) becomes much simpler. 
From (24) we have dD ( 0 )/ dp = 4/l. We can cal­
culate in similar fashion N ( 0 ), integrating in 
(24') by parts and substituting u and w from (21). 
We thus obtain for u ( ljJ) at low supercriticality 

u(~)=~~~ (s(x)-g(x))( 1+oosw:)dx·exp( -F6t)· 
0 

(29) 

Equations (26) and (29) determine the growth of 
the amplitude of the oscillations at the cathode 
with time, and inasmuch as the amplitude u of the 
oscillations is conserved along the trajectories of 
the particles ljJ = const, they determine by the 
same token the function u ( ljJ ) on all the trajector­
ies crossing the cathode. Knowing u (if;), we can 
easily obtain with the aid of ( 7) the displacement 
of the electrons in the presence of oscillations. 
The connection between the functions A ( 1/J ) , C ( t) 
and u ( ljJ ), w ( ljJ) which enter in this relation is 
given by formulas ( 15) and ( 10). Substituting u ( 1/J) 
from (26) and w ( ljJ) from ( 16), we obtain from 
(7) the following formula for the beam-electron 
displacement due to the oscillations: 2> 

j.x ( t 'ljJ) = IV (Pzl { e-P,>P [(1 +ipzvo ) exp( iwo \( t +!)) 
' dD/dp1 wo ' Vo 

+ ( 1 - i::o) exp (- iwo( t + ~)) J - 2 exp (pzvot)} · 

(30) 

(If Im pz ~ 0, then (27) has two roots with identi­
cal real parts, pz and p*z. In this case it is neces­
sary to add to formulas (26) and (30) terms that 
differ from those given here by the substitution 
pz - p*z.) The wavelength of the excited oscilla­
tions is ~vofw 0, and the amplitude buildup time 
is ~ 1/ w06. A characteristic feature of the obtained 
solution, which was noted already by Pierce, is 
that in a two-electrode system the oscillations are 
inhomogeneous along the system axis. It follows 
from (30) that in the presence of instability the 
amplitude of the oscillations decreases in the 
direction from the cathode to the anode. 

4. In this section we shall consider the insta­
bility of a beam at large oscillation amplitudes, 
when linearization no longer holds. In this case 
it is sufficient to confine oneself to large t, for 

2)T0 transform in this formula to Euler coordinates x and t 
in the approximation that is linear in the oscillation amplitude, 
it is sufficient to use the relation tjJ = x - vot. 
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which lP « -l. Eliminating then w ( ljJ) from (17) 

and (18) with the aid of (16), we obtain the follow­
ing nonlinear system of equations for u ( lP) and 
~z(lP): 

Vo - Wo~l [ - 6l- l Jz - } - -u(¢+~1)sin-+ u(\jl)-:....____:_j 1 -uZ(¢) , 
Wo Vo , 2 

(31) 

- Wo~l Do du - WosL S! = l- 2u(¢ + s1)cos- + 2---=f¢ +~)sin_:-
Do Wo d'¢ Do 

+ 2u(¢). (32) 

Let us consider the solution of Eqs. (31) and 
(32) at low supercriticality, when w0llv0 = n + 6. 
In this case the characteristic length of the vari­
ation of u (if) is large compared with l and it is 
possible to expand in these equations u (if + ~ ) 
with ~ « ~ z ~ l in powers of ~, and retain the 
first two terms. At not too large oscillation am­
plitudes, u < v0 ~ w0, it is possible to retain in the 
equation for u ( ljJ) the higher-order nonlinear 
terms ~ u2• Eliminating ~ z from this equation 
with the aid of (32) and neglecting terms of the 
order of 62u ( d2u/dif2, 6 ( duldif)) and 6u2, we 
obtain 

du 6 wo - woz -
-=-+--u(¢)+-u2 (¢)= 0. (33) 
d1p 4 Vo v02 

For small values of u, when the nonlinear term 
can be neglected, the amplitude increases exponen­
tially with decreasing if: 

-

u (¢) = Uo exp (-% 6 t) , (34) 

and from a comparison of (34) with the asymptotic 
formula (29) it follows that 

l 

no=~~ (s(x)-g(x))(i+cos:~)ax. (35) 

At large values oft, when the nonlinear term 
of (33) becomes significant, the character of the 
solution depends on the sign of u0• When u0 < 0, 
the nonlinear term leads to saturation at small 
oscillation amplitudes proportional to the super­
criticality parameter 

Uoo = -6vo/ 4wo. (36) 

The mean value of the energy density of the elec­
tric field in the space between electrodes, corre­
sponding to these amplitudes. 

is small compared with the energy density in the 
beam. 

When u0 > 0, the nonlinear term in (33) has the 
same sign as the linear one, and leads to an in­
crease in I duldifl ( duldif remains less than zero 
all the time). In this case u increases with in­
creasing t within the limits of applicability of Eq. 
(33), i.e., up to u ~ v01 w0, which corresponds to 
E"Z"Isn ~ n0mv5. 

Our result admits of the following illustrative 
interpretation3). The perturbations with u0 < 0 
lead, in accord with (35) and (19), to an increase 
in the mean value of the velocity in the beam and 
to a decrease in the mean value of the density, i.e., 
they bring the system closer to the borderline of 
the stability zone. In this case the nonlinear ef­
fects stabilize the instability at sufficiently small 
amplitudes ~6. Perturbations for which u0 > 0, 
and which increase the deviation of the system 
from the borderline of the stability zone, lead to 
excitation of oscillations of large amplitudes. 

Since it is natural to assume that the initial 
perturbations of the density and velocity of the 
beam always include some for which u0 > 0, it can 
be assumed that the system under consideration 
has hard excitation. On passing through the bor­
der of the stability zone, oscillations, whose en­
ergy is comparable with the initial energy of the 
beam, should become excited in the beam. At such 
amplitudes, the displacement of the electrons in 
the oscillations is comparable with the wavelength 
u ~ vofw 0, and the oscillations can lead to a 
crossing of the trajectories in the beam and to the 
occurrence of regions of multistream motion. A 
criterion for the crossing is the vanishing of the 
derivative dxl dljJ. At the same time, the distance 
dx between two trajectories with different values 
of ljJ vanishes. Using (7), (10), and (15) we find 
that in order for the trajectories to cross the 
function u ( ljJ) defined by (31) and (32) should 
satisfy in the interval 0 < ~ < ~ z the condition 

~ = sin~[u(¢)+ vo2 az~ ]. (37) 
2wo vo w02 d¢2 

At greater oscillation amplitudes, regions of 
multistream motion arise in the beam and the 
analysis of our paper is no longer valid. 

We consider also the possible existence of 
stationary solutions at large amplitudes, when 
u ~ v01 w0• A stationary solution corresponds to 
the case when u does not depend on ljJ. In this 

3 )The authors are grateful to B. B. Kadomtsev who pointed 
this circumstance out. 
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case the displacement x of the beam electrons, 
defined by (7), depends only on the quantity~ = 1/! 

+ v0t: 

x = s + 2u (cos ·::s ~ 1) . (38) 

Then the velocity of the beam electrons 
v = v0dx/dL their density n = n0 [ dx/d~ r1, and 
the electric field also depend only on ~, and in 
terms of Euler coordinates, only on x. 

Putting in (31) and (32) u = const = U 00 and ~ z 
= const = ~ z, we obtain the following system of 
equations for determining the amplitude U 00 at 
which saturation sets in, and for the value of ~ '[': 

.~sin rJ(1- ·~sin 1J) = 0, 11 = :rt + 6 + 2~(1- cos TJJ., 
(39) 

where we put TJ = wo~ilvo and t = wouoolvo. 
Besides the root ?; = 0, TJ = 1r + 6, which is un­

stable in accordance with the linear theory, and 
the root t = -6/4, TJ = 1r, which was considered 
earlier (see (36)) and which is significant only for 
perturbations with u < 0, these equations have 
also roots at t ~ 1: 

11r=:rt{2n+1), ~r=:rtn/2, n= 1, 2 ... , 

~II= __ f __ 
sin "ln 

(The smallest of the roots 1111 is equal to TJ~in 
~ 37r - 0. 7, the corresponding to ?;II ~ 1.58.) 

Let us consider the stability of the obtained 
stationary solutions. Linearizing Eqs. (31) and 

(40) 

(32) with respect to deflection from the stationary 
solution b.~ z = ~ z - ~ [, b..u = u - u 00 , and substi­
tuting b..~z, b..u ~ exp (Kif/~[), we obtain the follow­
ing equation for the determination of K: 

p :rt 2 2 [ ( x ( 1 - cos 11) - 1J sin 1J 
'(Y.,rJ,~)=2x -"1 e" 1J "12+x2 

+sin11)+~(1-cos1J)J. (41) 

When K = 0 we have F = TJ 2 t ( 1 - cos) < 0, and 
when K- - 00 we get F ~ 1r K2/2- + oo. There-

fore Eq. (41) has at least one root at K < 0. Since 
if = - v0t, the presence of this root denotes insta­
bility of the stationary solutions defined by (40). 
Thus, when u > 0, Eqs. (31) and (32) have no 
stationary solutions correspondinlf to saturation 
of the oscillations, and, just as in a], the ampli­
tude of the oscillations oscillates in time. 

We are grateful to Ya. B. Fa'lnberg who called 
our attention to this set of problems, for great 
help in the work, and to B. B. Kadomtsev and 
G. Ya. Lyubarskil for valuable advice during a 
discussion of the work. 
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