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The role of plasma effects in antiferromagnetic resonance is elucidated. It is shown that in 
the case of a comparatively weak magnetic field, undamped waves cari be propagated in an 
antiferromagnetic metal; one of these is an auxiliary wave due to spatial dispersion. The 
frequency dependence of the surface impedance is found, and the character of the singularity 
is explained. Coupled spin-helicon waves in an antiferromagnetic metal are considered, and 
the appropriate expressions are obtained for the polarization of the waves and for the reflec­
tion coefficient. 

J. Consideration of the electrodynamics of ferro- The role of the magnetic field in the structure 
magnetic metals, at frequencies close to ferromag- of the ground state of a magnet and in the nature 
netic resonance, has shown that the frequency of the electrical conductjvity is determined by 
dependence of the magnetic susceptibility apprec- parameters of quite different nature. In the first 
iably changes the character of electromagnetic case, the magnetic field must be compared with the 
waves in the metal[1-4J. It is natural to carry over anisotropy field, the exchange field, etc.[sJ; in the 
a similar treatment to antiferromagnetic metals. second, the radius of the electron's orbit must be 
In this, the following things must be kept in mind. compared with the length of its free path. There-
First, the energy spectrum and, consequently, the fore very different situations are possible. We are 
frequency dependence of the magnetic susceptibility not presenting all the possible limiting cases but 
depend appreciably on the structure of the ground are limiting ourselves to a few examples. 
state of the antiferromagnet. That state can be In the case of weak fields (according to both 
modified, comparatively easily in fact, by an ex- criteria), the role of spatial dispersion in the var-
ternal magnetic field. This circumstance must be iation of the surface impedance, near the antiferro-
taken into account in any elucidation of the depen- magnetic resonance frequencies, is elucidated 
dence of the high-frequency characteristics of an (Sec. 2). In Sec. 3, the influence of the magnetic 
antiferromagnetic metal (the surface impedance field on the electrical conductivity is considered; 
Z(w)) on the magnetic field. Second, in a uniaxial here it is supposed that the resonance frequencies 
antiferromagnet with a positive anisotropy constant1> lie in the range where helicon waves exist (see, 
the resonance frequencies, even at not too high for ,example,[t,a]). In Sec. 4 it is explained how the 
magnetic fields, are shifted (in comparison with natUre of the ground state is reflected in the prop-
ferromagnets) into a shorter-wave region. In con- erties of electromagnetic waves (here spatial dis-
sequence, it is comparatively easy for a situation persian is neglected). Since the ground state is 
to arise in which the effect of the magnetic field on manifested most significantly in the polarization of 
the electrical conductivity can be neglected, yet the the waves, this question receives much attention. 
frequency (temporal) dispersion of this effect must The collapse of the magnetic moments in a strong 
be taken into account. magnetic field[sJ is accompanied by an approach to 

1 )In the present communication we discuss only such anti­
ferromagnets. We remark that an antiferromagnet of the type 
considered, in a magnetic field H > H8 = M[2a(.\ + 1J )] 11' (see be­

low), simulates a uniaxial antiferromagnet with negative an­
tisotropy constant, since at H _?He the magnetic moments of the 
sublattices are almost parallel to the plane perpendicular to the 
chosen axis. "Escape" of the magnetic moments from this 
plane is similar to weak ferromagnetism [5]. 

infinity of the relaxation time of the magnetic 
moments; the Appendix considers the effect of this 
on the frequency dependence of the absorption in 
antiferromagnetic metals and dielectrics. 

We shall suppose that the constant magnetic 
field is directed along the preferred axis of the 
uniaxial antiferromagnet (Fig. la), and that an elec­
tromagnetic wave is being propagated along this 
same axis. In the case of a half-space (see below), 
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FIG. 1 

this means that the axis of the antiferromagnet and 
the magnetic field are perpendicular to the surface, 
and that the electromagnetic wave is normally in­
cident on it. 

The magnetic-susceptibility tensor was calcula­
ted in[s]; there it was shown that at fields 

H < Ha = M[2a(A. + TJ) fi', 
where M is the magnetic moment of a sublattice 
and i\ and TJ are the anisotropy constants (we re­
mark that i\, TJ ~ 1), and where a is the constant of 
exchange interaction between the sublattices 
(a = ®/J.L0M » 1, ® = a quantity of the order of the 
Curie-Neel temperature of the antiferromagnet, 
J.Lo = the Bohr magneton), it is convenient to define 
the magnetic susceptibility through quantities J.L±: 

b± = f.t±h±, ba = ha, 

where b± = b 1 ± ib2 and~ = h1 ± ih2 are, respec­
tively, the high-frequency components of the mag­
netic induction and of the magnetic field. Axis 3 is 
directed along the constant magnetic field. If we 
neglect dissipative terms, the expression for the 
circular components J.L± can be written in the form 

w + gH +(Q2 + 4:rtQ12)'" w- wa± 
f-l± = (1) 

w+gH+Q w-wp± ' 

where 

wa± = [Q2 + 4:rtQt 2] •;, + gH, wp± = Q + gH, 

Q = gHa, Q! = l"2(A. + TJ) gM 

(g is the gyromagnetic ratio, and ng = J.Lo). 
For H > Ha, turnover of the spins occurs (Fig. 

1b), and the magnetic susceptibility takes the form 

!-l;k = (- ;:12 ~~2 ~ ) ; Ill = 1 + 4:rtw12 coo2 e (2) 
0 0 !la wo2 - w2 

4:rt wo2 
1 4:rt v2 + ivw 

!12 = 1 +- fl3 = 1 ~-----
a wo2 - w2 ' a v2 + w2 

8:rtgMwcos 9 
!112 = (3) 

Wo2 - w2 

The characteristic frequencies that follow from the 
formula (3) can be expressed in the following form: 

Wo2 = g2M2{4a2 cos2 8- 2(A + TJ) a sin2 8], w12 = 4ag2M2; 
cosH= H /2aM ~ H /He (He= 2aM). (4) 

In the expression for the longitudinal component of 
the magnetic susceptibility, we have kept the dissi­
pative term J) = 2ay sin2 e, where 'Y is the relaxation 
constant (of the dimensions of frequency) that oc­
curs in the Landau- Lifshitz equation[s]. The 
reciprocal of v is called the magnetic relaxation 
time and is denoted by TM (TM = v-1). 

When H ~ He = 2a M, the magnetic moments of 
the sublattices set themselves parallel to one an­
other; and when H > He, the magnetic structure 
becomes insensitive to the size of the magnetic 
field. 

To construct the electrodynamics of an anti­
ferromagnetic metal, it is still necessary to give 
the relation between the current density and the 
electric field-the electrical conductivity tensor aik" 

2. We consider first the case of comparatively 
weak magnetic fields (rH » l, where rH is the 
radius of the electron orbit in the magnetic field 
and where l is the length of the free path). In this 
case we can neglect altogether the effect of the 
magnetic field on the motion of the electrons and 
can set 

where T is the time of free travel. When wT » 1, 

cr (w) ~ icro / w-r. 

.In the case of a quadratic, isotropic dispersion law, 
the static electrical conductivity a0 is equal to 
Ne2T/m* (N =density of electrons, m* =effective­
mass coefficient). The inequality wT » 1, for suffi­
ciently pure specimens at a low temperature 
(l ;::., 10-3 em), is satisfied when w > 1011 sec-1; that 
is, already in the centimeter range. 

When the electrical conductivity is imaginary, it 
is more convenient to describe the metal by its 
dielectric permittivity 

( 5) 

where wi, = 47rNe2/m* is the square of the plasma 
(Langmuir) frequency of the electrons. For an 
arbitrary dispersion law, the expression for the 
permittivity is actually not changed, but the square 
of the plasma frequency is related in a more com­
plicated way to the microscopic characteristics of 
the conduction electrons [7 •8 J. 

In weak magnetic fields, it is natural to go over 
to circularly polarized waves (E 1 ± iE2 etc.). Then 
the dispersion equation, which relates the frequency 
w to the wave vector k of a plane monochromatic 
wave, splits up and takes the very simple form 
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(6) 

where 11-± is defined by Eqs. ( 1) . Figure 2 depicts 
the dependence of the index of refraction n2 = c2ko/w 2 

on frequency according to Eq. (6). There are reg­
ions of transparency for both polarizations. We 
recall that in an ordinary metal at w T » 1, waves 
cannot propagate at all [s]. 

w; Wij w 

FIG. 2 

At a frequency close to the resonance frequency 
(for example, when w Rj Q + gH for "plus" polar­
ization), account must be taken of the spatial dis­
persion of the magnetic susceptibility tensor. If 
we restrict ourselves to the leading terms in the 
expansion of the magnetic susceptibility in powers 
of the square of the wave vector, and if we replace 
the frequency by w~ everywhere except in the 
resonance denominator, we get an equation for the 
index of refraction that is useful for both polariza­
tions: 

(7) 

Here 
e a2(rop±)2 (I)- <Op± 

~±=~ c2 6= ± , 
"<Oa <Oa 

a is the lattice constant. The relation of the con­
stante to the exchange integral can be found in[7J. 

It is convenient to rewrite Eq. (7), by solving 
for ~ (see Fig. 3), 

(8) 

From this it is evident that in an antiferromagnetic 
metal (when wr » 1), auxiliary waves can always 

~----------------" 
FIG. 3 

propagate when w > w~ = w~(l + ~). The limit­

ing frequency w~ should under these conditions be 
regarded as a resonance frequency, since just at 
w = w~ there is observed a singularity of the sur-
face impedance Z±. As was shown in[3J, near this 
frequency the surface impedance is very sensitive 
to the nature of the behavior of the magnetic 
moment at the boundary. This is due to the fact 
that when w = w:, the field in the metal forms a 

standing wave with wave vector k = w±gc-lu± ·n· 
± 11 mi 

where ~in= (/E:I/fJ±) 4 is the value of the index of 
refraction at w = w~ (see Eq. (8)). The surface 
impedance under these conditions is determined by 
the phase of the standing wave; the phase in turn 
is determined by the relation between the magnetic 
moment and its derivative along the normal at the 
boundary. If we start from the assumption that at 
the boundary the magnetic moment induced by the 
external magnetic field vanishes, then it is easy to 
obtain the following expression for the impedance 
(Z± = ie±(0)/~(0)): 

1 1 
Z±= 

~± n1n2 ( n1 + n2) 
(9) 

Here n1 and n2 are the roots of Eq. (7); the signs 
of the roots must be so chosen that with allowance 
for dissipation, the field would attenuate with pene­
tration into the metal (as z- co). When w > w~, so 
that n1 and n2 are real numbers, n1 < 0, whereas 
n2 > 0. This choice of signs is connected with the 
fact that the left branch of the curve in Fig. 3 des­
cribes anomalous dispersion, whereas the right 
describes normal dispersion. 

On substituting the values of n1 and n2 in formula 
(9), we get the explicit dependence of the surface 
impedance on the frequency near resonance: 

a) for w > w:, 
R± = _ ji@ {[6 + l'62 - 4lel ~±l'" 

l'£2- 4lel ~± 

+ [6 - l's2 - 4lel ~±1'1'}, 

b) for w < w±, 
g 

R± = 0, X±= -(lel)-'"[2l'lel~±- £]-'''· (11) 

It is seen from the last formulas that on approach 
to resonance from the higher-frequency side, the 
real part of the impedance has a root-type singu­
larity (R ~ 1/Jw- wg); whereas on approach from 
the lower-frequency side, the imaginary part has 
one (X~ 1/Vw- wg). 

It is natural that allowance for dissipative proc­
esses should somewhat blur this picture. In par-
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ticular, the root-type singularity can be detected 
only in case the total line width t:J.w is smaller than 
the shift of resonance due to spatial dispersion, 
wg- wp· When spatial dispersion is taken into ac­
count, the complex nature of the dielectric permit­
tivity leads to an additional widening t:J.w 7 of the 
resonance line; it is therefore natural to compare 
the size of t:J.w 7 with w - w± = 2v'/E/{3±w±. 

g p p 
By expanding u(w) in powers of 1/wrand k:eeping 

the first term, it is easy to show that t:J.w 7 

« /wg- wp/. In fact, on putting 

e(w) = -wL2w-2(1- i I un), 

we find from the dispersion equation ( 6) 

~£g = 2l'/el~±• ~£< = l'/e/~±1 WT. 

Thus the skin effect in certain cases gives a possi­
bility of observing not only spatial dispersion of 
the magnetic susceptibility, but also auxiliary un­
damped waves due to the spatial dispersion. The 
existence of auxiliary waves is directly connected 
with the negative sign of the permittivity. We re­
call that in the optical range, an auxiliary wave 
can be propagated only if an exciton possesses a 
negative effective mass (see, for example, [1oJ) 
(under our conditions, when {3 < 0). But a spin wave 
("magnetic exciton") has a positive effective mass. 
Therefore undamped auxiliary waves can exist 
only when the dielectric permittivity is negative. 
Furthermore, in metals (when 1/T « w « w L), 
/E/ » 1. This appreciably increases the index of 
refraction and facilitates observation of spatial 
dispersion. 

We remark that observation of spatial dispersion 
in magnets is favored by the circumstance that the 
coefficient associated with k2 is connected with the 
exchange energy ( ~ ® /ti) , while the resonance and 
other frequencies in J.lik(w) are connected with the 
anisotropy energy. Because of this, in dimension­
less variables the coefficient associated with n2 in 
the denominator contains an additional large fac­
tor ®/tiwp· For observation of spatial dispersion 
it is of course necessary that the antiferromag­
netic resonance line shall be narrow. The treat­
ment carried out here shows only that the broaden­
ing of the antiferromagnetic resonance line by 
spatial dispersion is appreciably smaller than the 
shift of the resonance frequency. 

3. We now consider the opposite limiting case. 
Let wr « 1, but l » rH. This is possible if 

1 I u)If ~ T ~ 1 /w, ( 12) 

where wH is the Larmor precession frequency of 
the electrons. When estimates are made specific, 
it is necessary to remember that in what follows, 

still one more condition must be satisfied: wTM 
» 1, where TM is the magnetic relaxation time, 
determined by the width of the magnetic resonance 
line (t:J.w ~ 1/TM). We suppose further that normal 
skin effect prevails2>; that is, kZ « 1. 

When this condition and conditions ( 12) are satis­
fied, the form of the effective permittivity is ap­
preciably dependent on the energy spectrum of the 
electrons. If N 1 ""' N2 ( N 1 = electron density, 
N2 = "hole" density) and the Fermi surface is 
closed, then 

± 4:rt<J!2 
Eeff = +---, 

(!) 

( 13) 

where u 12 is the Hall component of the electrical 
conductivity, and where the signs correspond to 
waves with right and left circular polarization [ 11 • 12 J. 
On substituting the expression (13) in the disper­
sion equation ( 6), we find the relation between the 
index of refraction n and the frequency w (see Fig. 
3). The impedance in this case also is described 
by formula (9), where now n 1 and n2 are the roots of 
the dispersion equation 

(14) 

We notice that undamped auxiliary waves occur 
for only one of the two polarizations: for left circu­
lar polarization if u 12 > 0, for right if u 12 < 0. The 
change of the law of dispersion for a polarization 
for which no auxiliary wave occurs is shown in 
Fig. 4. In this case the surface impedance has no 
singularity at all. The possibility of such a (macro­
scopic) treatment, however, is limited to those 
frequencies at which the index of refraction is not 
too large. 

1-------(- 1< 

FIG. 4 

4. The transition to large magnetic fields is 
accompanied by a rearrangement of the ground 

2 >1n the previous case (wr >> 1), there was no necessity to 
be more precise about the nature of the skin effect, because 
when wr >> 1 the nature of the skin effect determines only the 
dissipative part of the effective dielectric permittivity, which 
we are omitting. 



THEORY OF ANT IF ERROMAGNE TIC RESONANCE IN METALS 1157 

state of the antiferromagnet. For H > Ha the 
equilibrium structure is that pictured in Fig. 1b; 
the magnetic susceptibility tensor is determined 
by the expressions (2) and (3). The change of the 
magnetic susceptibility, naturally, expresses itself 
in the dispersion law of the waves that propagate 
in the metal and in the character of the reflection 
of waves from a metallic half-space. We investi­
gate the role of the structure of the ground state of 
an antiferromagnet, omitting comparatively fine 
effects that are due to allowance for spatial dis­
persion. 

Using a standard method, we obtain 

2 4:rtcr12 --
n± = + --- 0' J.111-t2 + 1-112), 

(I) 

z± = ( _w_)''' [!-112 + l' J.l.Jftd'''· 
' 4:rta12 

(15) 

(16) 

To the indices of refraction n+ and n_ correspond 
different polarizations of the waves that propagate 
in the metal: 

At those frequencies at which JJ. 2/JJ. 1 > 0, these are 
elliptically polarized waves; at those for which 
JJ. 2/JJ. 1 < 0, plane-polarized. It is easy to see that the 
last condition, JJ. 2/JJ. 1 < 0, is satisfied in the narrow 
frequency interval 

Wa ( 1 + 2:rt) < W < Wa ( 1 + 21t) + 4ngM (A.+ TJ) sin2 9. 
' a , a 

When JJ. 2/JJ. 1 < 0, the principal directions are not 
orthogonal to each other; and when Jl.t = 0 or JJ. 2 = 0, 
they fuse (a similar phenomenon was described 
in[t2]). 

The nature of the polarization of the waves that 
propagate in the material depends considerably on 
the symmetry of the tensors Eik and Jl.ik· If the ef­
fective dielectric permittivity possesses no gyro­
tropy, the dispersion equation and the surface 
impedance are described as follows: 

1 
n±2 =- e (J.tt- 'Y±I-112), 

'\'± 

where 

Z - [ J.t! + 'Y±I-112 ]''• ±-'\'± , 
e 

(18) 

Formulas (18) are correct for an antiferromagnetic 
dielectric. In this case the dielectric constant is of 
order unity and is positive. Formula (18) can also 
be applied, however, to an antiferromagnetic metal, 
by setting Eeff = -wiJw2• The choice between 
formulas (18) and formulas (15) and (16) is tied up 
with the satisfaction of the corresponding conditions. 
Formulas (18) are applicable if wr » 1 but l « rH. 

For isotropic dielectric permittivity, 

( 19) 

that is, in this case the electromagnetic waves are 
always elliptically polarized. 

Knowledge of the surface impedance, of course, 
permits us to find the amplitudes E' of the waves 
reflected from a half-space. The general formulas 
are very cumbersome. We write out only limiting 
cases. On a metal, even near resonance, I Zl « 1, 
and 

E/=-E1[1- 'Y2
2y 1 (Z+-z-)]+iEz(Z++Z-), 

E2'=-Ez[1+ 'Y2
2y 1 (Z+-z..:.)]-iEt(Z++Z-).(20) 

For a dielectric near resonance, I Zl » 1 and 

( '\'2 -1 z_-z+ l- iE2 
Z_+Z+ 

E/=Et 1+---
Z+Z- Z~-2y I 

( v2 -1 z_-z+ 
) + iE1 

Z_+Z+ 
E2' = Ez 1 - ----z:y-

Z+Z- Z+Z-
(21) 

The last formulas enable us to calculate all the 
optical properties of the reflected wave-the rota­
tion of the plane of polarization, or the ellipticity 
and amplitude. 

APPENDIX 

It was shown in [S] that collapse of the magnetic 
moments of the sublattices, which sets in at H = He, 
is accompanied by increase to infinity of the re­
laxation time TM, which enters into the expression 
for the longitudinal component of the magnetic sus­
ceptibility (see formula (3)). In fact, according to 
formula (8') of[S] 

v=vo(f-H2/He2), H<Ife, vo=vHe/M. 

Observation of this effect can be carried out 
through the volume; absorption of the energy of the 
magnetic field. As a characteristic of this absorp­
tion we may take the absorption coefficient K of an 
electromagnetic wave: 

4:rte V(l) 
X=-----

a. w2 + vz · 
(22) 

We consider propagation of an electromagnetic 
wave through an antiferromagnetic dielectric in a 
direction perpendicular to the static magnetic field. 

Of interest is the dependence of K on the size of 
the magnetic field near H = He (at fixed frequency). 
If we construct the curve K = K(H), the form of this 
curve depends appreciably on the relation between 
the frequency w and the value of v0. If w < v0, the 
function K = K(H) has a maximum; but if w > v0 , K 
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I 

b ~ 
H He H 

FIG. 5 

approaches zero monotonically as H approaches 
He (see Fig. 5). 

The infinity in TM can also be observed through 
the change of the nature of the reflection. It is easy 
to show that at H = He the imaginary part X of the 
impedance should decrease abruptly (for real 
dielectric permittivity, X vanishes). Since the 
effective dielectric permittivity of a metal is nega­
tive, the infinity in TM leads to an abrupt decrease 
of the real part R of the impedance. 

We take this occasion to thank A. Ya. Blank for 
helpful discussions. 
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