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A set of equations is obtained describing the heat transfer in dielectrics at low temperatures 
when the characteristic time of the normal processes is small compared with the character­
istic time of the umklapp processes. A theory of second-sound absorption is developed by 
means of these equations, as well as theories of the interaction of ordinary sound with second 
sound and of the absorption of ordinary sound. 

1. INTRODUCTION 

IN recent years and in a number of theoretical 
papers, it has been established that temperature 
waves can exist in solids at sufficiently low tem­
peratures-the so-called second sound[t-sJ . Not 
long ago, they were discovered experimentally.[7J 
We would like to demonstrate a new method of 
investigation of second sound and phenomena re­
lated to it. This method is based on the interaction 
between second sound and ordinary sound. In the 
present paper it is shown that the measurement of 
the absorption coefficient (and velocity) of ordinary 
sound at sufficiently high frequencies serves as a 
means for the investigation of the region of exis­
tence of second sound and its different quantitative 
characteristics. 

As is well known, phonon collisions are of two 
types-N-processes, in which the phonon quasi­
momentum is conserved, and U-processes, which 
take place with non-conservation of the phonon 
quasi-momentum. Here we shall understand by 
U-processes not only the proper umklapp proces­
ses, but also any processes of scattering of phonons 
by lattice defects. 

At low temperatures, in sufficiently pure dielec­
trics, the characteristic time of N-processes TN is 
much less than the time of U-processes TN. How­
ever, the U-processes determine the finite thermal 
conductivity of a solid. On the other hand, the 
N-processes play a no less important role. Be­
cause of them, the distribution function of the 
phonons (with accuracy up to small terms propor­
tional to TN/Tu) take the form of a" Planck distri­
bution with drift'' 

Here wkj is the phonon frequency with quasi­
momentum tik, belonging to the vibration branch j; 
T is the temperature (in energy units), and V is the 
drift velocity of the phonon gas. Inasmuch as the 
relaxation of the drift velocity V because of 
U-processes occurs slowly, the state with distri­
bution (1.1) can be regarded as a state of incom­
plete thermodynamic equilibrium, while the quantity 
V can be regarded as a thermodynamic variable 
characterizing the state of the system. The transfer 
of energy is associated with the drift velocity; 
therefore, for drift velocity V different from zero, 
the energy flux density Q will also be different 
from zero. Still another thermodynamic variable 
is the volume of the system or, in a general case, 
the deformation tensor uik• 

In the present research, we want to obtain the 
macroscopic equations connecting these quantities. 

Usually the thermal and mechanical properties 
of a solid are described by means of a system of 
two coupled equations-the equation of motion of 
elasticity theory and the equation of heat conduc­
tivity (see the book of Landau and Lifshitz,[B] Part 
II, Sees. 6 and 27). The quantities uik and T play 
the role of variables in them. The derivation of 
these equations is based on an assumption that the 
energy flux density at the given point at a given 
instant of time is linearly related with the tempera­
ture gradient at that point and at that time: 

Q= -xVT, (1.2) 

where K is the thermal conductivity tensor. 
We now assume that VT is a function of time. If 

the gradient changes in a time ~ Tu, then the sim­
ple connection of the type (1.2) no longer occurs. 
In other words, for such variation frequencies, 
time dispersion of the tensor K begins. Similarly, 
for a sufficiently sharp spatial change of VT, a 
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spatial dispersion of the tensor K can appear. In 
order to describe these effects, we substitute the 
relation (1.2) by a differential equation for the 
quantity V, obtaining a system of three equations 
with three unknowns. Evidently the applicability of 
this system of equations is limited to frequencies 
which are small in comparison TiJ and to charac­
teristic scales of spatial change that are great in 
comparison with the free path of the phonon lN. 
However, there is a rather wide range of phenomena 
which are described by such a set of equations. 
These include a number of effects already consid­
ered earlier: second sound in a solid[t-s] and the 
theory of thermal conductivity of dielectric rods 
and plates)9J 

Our theory makes it possible to consider all 
these phenomena from a single viewpoint. The new 
results obtained by us are: a quantitative theory of 
the damping of second sound, a theory of interaction 
of first and second sound, and a. theory of damping 
of first sound in a region of frequencies where the 
already mentioned effects of thermal conductivity 
dispersion begin to appear. 

2. DERIVATION OF THE MACROSCOPIC EQUA­
TIONS WITHOUT ACCOUNT OF DISPERSION 
AND THERMAL EXPANSION OF THE BODY 

If the N-processes take place significantly more 
frequently than the U-processes, then the state of 
the phonon gas having a drift velocity V different 
from zero can be considered as a state of incom­
plete thermodynamic equilibrium. It can be char­
acterized by giving the drift velocity V and the 
temperature Tat each point of the medium. We 
obtain a basic thermodynamic identity which char­
acterizes this state. Here we shall neglect deforma­
tions of the body resulting from thermal expansion. 

In addition to the velocity V, let us consider also 
the value of the quasi-momentum per unit volume. 

P = ~ ~ d-r:"fikN"-i ( d-r" =. ask ) . (2.1) 
i (2n) 3 -

The internal energy E per unit volume is defined in 
the following fashion: 

(2.2) 

By using an explicit form for the distribution func­
tion (1.1), one can obtain 

dE= TdS + VdP, (2.3) 

where S is the entropy per unit volume. 
We now obtain a closed system of equations for 

these quantities. We limit ourselves to the linear 
approximation, assuming the value of V to be small. 

Then a linear relation exists between P and V, of 
the form 

P; = p;~<Vh, (2.4) 

where (p-1)ik = B2E/BPiBPk is a symmetric tensor. 
In this section, we shall generally not take into 

account dispersion processes, including U-proces­
ses. In this approximation, the quasi-momentum 
is a conserved quantity and 

aP; aF;" 
----=0 

at axh , 
(2.5) 

where Fik is the quasi-momentum flux density ten­
sor. 

We shall show that without account of dispersion 

(2.6) 

where F is the density of free energy of the phonon 
gas. Actually, F~r is, by definition, 

<o> " (' arohi ( ) F il = - LJ J d-r:"fik; ---a/; N hi· 2 • 7 
j I 

In our approximation, 

Nh; =[ exp tiro;; -1 r1
, 

since F~~> does not contain terms linear in V. After 
some tfansformations, one can obtain 

(Ol " 5. F;i =- T LJ d-r" ln (1 + N~<;) ·6u = F6il. (2.8) 

j 

By taking into account that BF / BT = - S, one can put 
(2.5) in the form 

ap I dt + SV T = 0. (2.9) 

Another equation establishing a connection be­
tween the quantities we have introduced is the law 
of conservation of energy: 

dE I dt + div Q = 0. (2.10) 

In the state of incomplete equilibrium under dis­
cussion, 

Q=LV. (2.11) 

We shall show that L = TS. For this purpose, we 
make use of the fact that the derivative as;at must 
equal the divergence of some vector (since we 
neglect dissipation processes). We have from (2.3) 

as 1 aE aP 
-=---V-. at T at at 

(2.12) 

Taking into account (2.4) and (2.9)-(2.11), we get 

as divLV 1 
-=- STVV-T. 
at T 

(2.13) 
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In order that the expression on the right hand side 
reduce to a divergence, it is necessary that 

L = TS, Q = TSV. (2.14) 

Then asj at+ div SV = 0. 
Thus, in the linear approximation, the following 

set of equations is obtained: 

aP; 1 at + saT 1 ax; = o, 

CvaT I at+ ST div V = 0, 

(2.15a) 

(2.15b) 

where Cv = Tas;aT is the heat capacity at constant 
volume. 

The system (2.15) has, in particular, a solution 
of the form of undamped waves with dispersion 
loss [S] 

(2 .16) 

where q is a wave vector. These indeed are the 
temperature waves, which have been named second 
sound in a solid. The wave vector in this wave is 
directed along P, while the group velocity a w 1 aqi 
is directed along vi, that is, along the direction of 
energy flow. 

3. MACROSCOPIC EQUATIONS WITH ACCOUNT 
OF DISSIPATION 

The dissipation of energy can take place for two 
reasons. The first are U-processes. At small P, 
their role can be taken into account by changing 
Eq. (2.9) in the following way: 

aP; I at+ SaT I ax;+ D;hPh = 0, (3.1) 

where Dik ~ TlJ. In the static case, this equation 
should give the usual expression for the heat flow, 
Qi = -KikaTjaKk, where K is the thermal conduc­
tivity tensor. Then, with account of (2.4) and (2.14), 
we get 

(3.2) 

For much higher frequencies, if the quantities 
P, V, and Q change with time like e-iwt, Eq. (3.11) 
gives the following connection between the tempera­
ture gradient and Q: 

VT= -~-1Q, (3.3) 

This expression describes the time dispersion 
of the thermal conductivity. 

The second reason for dissipation is connected 
with N-processes and takes place if P and T depend 
on the coordinates. If the density of the quasi­
momentum depends on the coordinates, then the 
irreversible process of its diffusion takes place, 

brought about by the normal collisions. This proc­
ess can be described by an additional component in 
Fik' which has the form 

(3.4) 

Moreover, the expression for the energy flux den­
sity has a dissipation contribution proportional to 
V'T: 

(3.5) 

We now write down the complete system of 
equations with account of dissipative terms: 

aP- oT azvl 
-' +S-- Yihlm + TS2 (x- 1);hVh = 0, 
at ax; axkaxm 

CvaT I at+ div Q = 0, Q; = TSV;- Xi~taT I ax", 
(3.6) 

We now obtain the Onsager relations for the tensors 
y and X· For this purpose, it is necessary to com­
pute the derivative as; at just as in Sec. 2, but by 
using Eq. (3.6). As a result, we get 

Yi!tlm = Ylmik, Xi!t = Xki· (3.7) 

We now determine the absorption coefficient of 
second sound r in the anisotropic case. For this 
purpose, it is necessary to find a solution of the 
set (3.6) proportional to ei(q · r-wt), in which the 
terms describing the damping can be regarded as 
a small perturbation. After simple calculations, 
we obtain 

(3.8) 

where w2 is connected with q by Eq. (2.16), and 
wg = I awjaq I is the group velocity of second sound. 

It is also of interest to explain what form the 
set (3.6) takes in the static case. We obtain 

aT azv1 
S-a -yiklm +TS2 (x-1};kVh=0, 

X; axkaXm 
(3.9) 

divQ = 0. 
In the isotropic case, these equations have a 

very simple form 
aT TSZ 

S--y6.V; +-V; = 0, 
OX; X (3.10) 

divQ = 0. 
In Eq. (3.5) for Q, one can in this case neglect 

the term with Xil• since it makes a small correc­
tion to the thermal conductivity, lying outside the 
limits of accuracy of our present calculation. 

Equations (3.10) were first obtained and inves­
tigated by Gurzhi, Sussman and Thellung[9] and a 
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theory of thermal conductivity of thin rods and 
plates was based on them. It is seen, however, 
that the time of umklapp processes which figure in 
these equations is expressed in terms of the 
thermal conductivity and the thermodynamic char­
acteristics of the system, while the coefficient'}' 
is connected with the absorption coefficient of 
second sound. 

As a conclusion to this section, we shall enum­
erate all the conditions of applicability of the given 
theory. As has already been noted, one of these 
takes the form of the inequality Tu » TN. Further­
more, the characteristic lengths and times of 
change of the drift velocity V must be much greater 
than the corresponding lengths and times of the 
free flight of phonons relative to the normal proc­
esses. Finally, the given theory is a linear theory 
and is therefore applicable when the drift velocity 
Vis not too large. In particular, it is necessary 
(but, generally speaking, not sufficient) that it be 
much smaller than the velocity of sound w. 

The nonlinear effects reduce, first, to a change 
in Eq. (2.15), which does not take into account 
dissipation, and in the second place to the appear­
ance of a dependence of the coefficients for the 
dissipation terms on the drift velocity. A number 
of interesting and important effects can be consid­
ered only on the basis of the nonlinear theory. 
Thus, these effects could lead to the generation of 
shock waves in the propagation of second sound. 
Furthermore, the process of the stationary trans­
fer of heat into dielectric plates or rods can be 
shown (for sufficiently large V) to be unstable, and 
in this case a situation can arise similar to turbu­
lence in ordinary hydrodynamics. In experiments, 
this should appear as an increase in the coefficient 
of the thermal conductivity upon increase in the 
temperature gradient. 

4. THEORY OF DISSIPATIVE PROCESSES WITH 
ACCOUNT OF DEFORMATION OF THE CRYs­
TAL 

The equations derived in the preceding sections 
are valid if the thermal expansion of the body is 
neglected. Allowance for thermal expansion leads 
to some new effects. For example, the temperature 
wave is accompanied by a deformation wave. Con­
versely, in the propagation of a deformation wave, 
that is, ordinary sound, a temperature wave is 
generated. Its presence leads to a specific absorp­
tion of the sound because of the effects of thermal 
conductivity. The theory constructed in the prev­
ious sections can be regarded as the theory of 
spatial and temporal dissipation of the therma:l 

conductivity, in which the temporal dispersion 
begins to play a role at frequencies w ""' Tl}. Evi­
dently, the frequency dependence of the thermal­
conductivity absorption coefficient of ordinary 
sound must change at such frequencies. 

We obtain a set of macroscopic equations by 
means of which we can consider this effect as well 
as other similar effects. These include the equa­
tions expressing the law of energy conservation 

aE 1 at + div Q = o (4.1) 

and conservation of the quasi-momentum 

aP; aF;z (4.2) 
----+D;zPz=O. 
at axz 

To these it is necessary to add the equation of mo­
tion of the continuous medium 

a2u; acril 
PL fit2 = ---a;;· (4.3) 

Here p L is the density of the crystal, u the displace­
ment vector at the continuous medium, and G'i[ the 
stress tensor. 

We shall first show in what system of coordin­
ates these equations are written. Let us consider 
some point of a continuous medium. Before 
deformation, its coordinates were xi; after 
deformation, this point takes the position xi = xi 
+ ui(xz, t). 

We shall assume that Eqs. (4.1)-(4.3) are 
written in the coordinates xi and t, that is, in a 
frame connected with the moving lattice. This 
means, for example, that E is the internal energy 
of the amount of material which, before deforma­
tion, was included in a unit volume (and after 
deformation can naturally take a somewhat differ­
ent volume). 

For the determination of the tensor G'il in the 
absence of dissipation (we shall denote this by G'1~>), 
we write down an expression for the free energy 
of the deformed body with account of thermal ex­
pansion:[BJ 

F =·Fo(T) + 1/2AilmnU;zUmn- AilmnUi!Umn(T- To), (4.4) 

where F0(T) is the free energy of the body in the 
absence of deformation, i\ilmn is the tensor of the 
isothermal elastic moduli, a i z the tensor of the 
coefficients of thermal expansion, T0 the tempera­
ture of the undeformed crystal, and uil the deforma­
tion tensor. Then, 

CJ;~O) = (aFjauil)T = AilmnUmn- Ai!mnUmn(T- To), (4.5) 

while the equation of motion (4.3) takes the form 
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Equation (4.6) is the ordinary equation of motion 
of a medium in the presence of thermal expansion.E8J 
I 

In Eq. (4.1) BE/Bt can be expressed in terms of 
the time derivative of the entropy: BE/Bt = T BS/Bt 

(this equation is va_lid in the linear approximation 
since the term P ·Vis of second order of small­
ness). The entropy S can be obtained from (4.4): 

s = -(oF I oT)uwP = So (T) + 'Aumn ailumn• ( 4. 7) 

where S0(T) = -(8F0/8T)P. Transforming (4.1) with 
account of ( 4. 7), we get 

c~,f)T I f)t + T'Aumna;(Umn + div Q = 0. (4.8) 

If it is assumed that 

Q= -xVT, (4.9) 

then Eqs. (4.6) and (4.8) form a closed system 
which describes the motion of a continuous medium 
and the propagation of heat in it.[BJ However, in the 
general case, the relation ( 4. 9) does not hold but 
(neglecting dispersion associated with N processes) 
is replaced by the differential equation (3.1) and 
the equations (2.4) and (2.14). As we have seen in 
Sec. 3, they describe the dispersion of the thermal 
conductivity. This indeed is the basic feature of the 
set of equations obtained in the present work. 

As example of application, let us consider the 
interaction of ordinary longitudinal sound and sec­
ond sound propagating along any symmetry axis of 
the crystal (the x axis). We shall assume that the 
sound frequency is wTu » 1 and neglect the last 
term in (3.1) (that is, we shall not take the damping 
of the sound into account). 

By assuming that all the quantities in the wave 
change with time like e-iwt+iqx and setting w = wq, 
we obtain the following dispersion equation: 

[ 'A TS2 (/..a)2T] 'ATS2 
w4-w2 -+--+ +--=0, (4.10) 

PL pCv CvpL PLPCv 

where A. = A.xxxx, p = Pxx' and A. a = A.xxi za il• 
It is easy to obtain the tensor of the adiabatic 

moduli A. s, which is connected with the tensor of 
the isothermal elastic modulus A. by the relation: 

s -1 
Ailmn = Ailmn + TC v AilpqArsmnapqars. ( 4.11) 

Therefore, in our case, 

(4.11a) 

where the second term as a rule is small in com­
parison with the first. Then (4.10) takes the form 

( 
/..,8 TS2 \ A.TS2 

w4 -w2 -+--!+---=0 
PL pCv ' PLPCv · 

( 4.12) 

This equation is identical in accuracy with the dis­
persion equation of superfluid helium at very low 

temperatures, when all the excitations in it are 
phonons and the density of the superfluid compon­
ent Ps is virtually identical with the total density of 
the liquid. If we neglect thermal expansion, that is, 
assume that A. S =A., then, as is seen from (4.12), 
the first and second sound do not interact. 

We now take into account the dispersion which is 
connected with the normal processes. For this 
purpose, we first need to replace the relation 
Q = TSV by Eq. (3.5). Next, we must write down 
the dissipation parts for the tensor F and a: 

(4.13) 

(4.14) 

Here the tensor 7) is the ordinary tensor of viscos­
ity coefficients of a solid.[B] We have discussed 
the meaning of the tensor y above. The tensors f.1. 

and v describe the "crossing" viscosity. 
To establish their symmetry, we write down the 

time derivative of the entropy. The thermodynamic 
identity now has the form 

dE= TdS +a~~) du;1 + VdP. 

We now take it into account that 

Then 

!IS 
- ' divS = at ' 

a ( poi2 )' - E+-- = -divQ. at ,z 

(!) . 
a;z uil 

T 

1 (!) ;;v 
+-Fil --

T oxz 

1 fiT AT 
+ -T xa-,--,-+ S2Y-;z"'V; Vz. 

uX; uX,z 

( 4.15) 

(4.16) 

( 4.17) 

Hence, in addition to the well-known relations for 
7J and the relations for y and x obtained above, it 
follows that 

Vilmn = 1-tmnil· (4.18) 

Moreover, it is obviously true that 

1-lilmn = 1-t'ilnm. (4.19) 

The condition for positive definitiveness of the 
dissipation function reduces to a certain inequality 
which must be satisfied by the components of the 
tensors 7), y, and f.J.. We shall not investigate this 
problem any further. 

5. ABSORPTION OF ORDINARY SOUND UNDER 
CONDITIONS OF THERMAL-CONDUCTIVITY 
DISPERSION 

The phenomenological theory of the absorption 
of a low-frequency sound wave in solids has been 
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Continuous curve-schematic dependence of the absorp­
tion coefficient of ordinary sound on the frequency. Dashed 
curve !-dependence of r K on the frequency according to the 
usual theory. Dashed line II-dependence of r 1) on the fre­
quency according to the usual theory 

developed in the book of Landau and Lifshitz.[B] 
The total absorption coefficient r is made up of the 
absorption coefficient due to the viscosity r !I and 
that due to the thermal conductivity r K. Both these 
coefficients depend on the frequency as w 2; how­
ever, in the situation under consideration, when 
TN« Tu and r7) « rK' inasmuch as the viscosity 
is proportional to TN, while the thermal conductiv­
ity is proportional to Tv· This theory is applicable 
when w « TiJ. The set of phenomenological equa­
tions obtained in Sec. 4 permit us to calculate the 
absorption coefficient in a significantly greater 
range of frequencies, satisfying the condition 

-1 w «TN. 
When w becomes comparable with Tl_}, the dis­

persion of the thermal conductivity begins to play 
a role and, as will be pointed out below, for w » TTJ 
the quantity r K ceases to depend on the frequency. 
This result is natural and general for all mechan­
isms of sound absorption of the Mandel'shtam­
Leontovich type when there is a large relaxation 
time in the system (in the given case, this relaxa­
tion time is Tu). On the other hand, inasmuch as 
the viscosity coefficient is determined by the time 
TN, it does not have dispersion at these frequencies 
and r 77 continues to increase as w 2• Therefore, for 
frequencies w ""(TNTU)- 112 , the coefficients r 77 and 
rK are seen to be of the same order, and at higher 
frequencies r 7) predominates and the total absorp­
tion coefficient r again increases as w 2• The ob­
tained dependence of r on w is shown in the draw­
ing. 

We now proceed to construct the quantitative 
theory. We consider the propagation of the longi­
tudinal wave along a symmetry axis of the crystal 
(the x axis). We begin with the case of frequencies 
satisfying the condition w2TNTV « 1. Direct esti­
mates show that in this case all the viscosity terms 
can be neglected. Then one can use Eqs. (4.6) and 
(4.8) while one must use (3.3) as relations estab-

lishing the connection between Q and VT. For the 
phase velocity of sound and the absorption coeffi­
cient (with respect to amplitude) one can obtain 
the following expressions: 

w . (1-wn2/wr2)+(w'tx)-2 
- = Wr + llw • (5 1) 

q ( 1- Wn2/Wr2) 2 + (cD'tx) -z • 

r = ~~ uhx (5.2) 
wrz Wr2 1 + ( 1- wn2/wr2) 2w2'tx2 ' 

where wi = (AjpL) 112 ; wn = (TS2/pCv) 112 is the 
velocity of second sound; D. w = (A.a) 2T/2pLwiCv 
is the difference between the adiabatic and the iso­
thermal velocity of ordinary sound; and 
T K = K /whcv = 1/Dxx is a time which is the same 
as Tv in order of magnitude. It is seen that at low 
frequencies r increases in proportion to w2 and in 
this region is determined by well known expressions 
(see the book of Landau and Lifshitz [a J). At high 
frequencies, dispersion of the thermal conduction 
arises and r ceases to depend on the frequency. 

In the region of frequencies TiJ « w « TiJ, the 
following formula is valid: 

r = -~+ !lwr [ Wn2 ( vw2 +~) 
2pLwr3 wr2 ( 1 - Wn2/wr~) 2 Wr2 pwr2 'tx 

wzx J wnz 'A a ~wz ( 5. 3) 
+ Cvwr2 - Wr3(1- Wn2/wr2) -SpL -;;;y· 
It is then seen that for w > (TuTN)- 112, the losses 

due to the viscosity become important and r in­
creases in proportion to the square of the fre­
quency. The regions of applicability of Eqs. (5.2) 
and (5.3) overlap in the interval TT} « w 
« (TuTN)-112 , and in this interval they clearly give 
identical results. As is seen from (5.3), the vis­
cous losses in the region w » (TuTN) 112 are deter­
mined not only by the tensor computed by 
Akhiezer,U0J but also by the three tensors y, x. 
and !J., which give a contribution of the same order. 

In conclusion, we express our deep gratitude to 
A. M. D'yakonov and to the inestimable help in the 
process of research on the paper and L. P. Pitaev­
skil' for very interesting discussions. 
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