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It is shown that in systems with a large interaction radius collective excitations with a small 
and strongly temperature dependent gap in the energy spectrum can exist near points of 
second-order phase transitions. The self-consistent field method is applied for determining 
the spectrum of these excitations and the dispersion of the dielectric permittivity in ferro­
electric transitions. The anomalies in the excitation spectrum and the dispersion of E near T c 
are found to depend on the type and symmetry of the transition. A diagram technique is pro­
posed for calculating successive approximations of the self-consistent field. The technique is 
used to find the damping of the excitations. 

1. INTRODUCTION 

IT is commonly accepted that the presence of 
weakly damped phonons in a solid is connected with 
the smallness of the anharmonicity of the atomic 
vibrations near the equilibrium positions. Actually 
the requirement that the anharmonicity be small is 
not essential. It is shown in this paper that, for a 
large interaction radius R0, weakly-damped excita­
tions can exist in crystals, even though the vibra­
tions of the atoms are not harmonic. The damping 
of these excitations is inversely proportional to the 
interaction volume R3 and is small for large R0• 

The large radius of interaction insures the appli­
cability of Landau's phenomenological theory of 
phase transitions. [1] The correctness of this theory 
for a number of systems in a broad temperature 
range about Tc is an experimental indication of 
the possibility of such vibrations. 

Unlike in the case of the usual optical phonons, 
the frequency of these excitations depends on the 
temperature. The appearance at the phase transi­
tion point T c of spontaneous deformation indicates 
a decrease in the rigidity of the system with res­
pect to this deformation near T c. Therefore the 
frequency of the corresponding vibrations will tend 
to zero on approaching the transition point. We 
shall refer to such vibrations as critical. If no 
phase transition were to occur, then the frequency 
of these excitations would become imaginary below 
T c, which would indicate the instability of the sym­
metric state. 

Ginzburg,rzJ Anderson,[3) and Cochran[4J pointed 
out the possibility of the existence of vibrations 
with decreasing frequency. However, these studies 
are phenomenological or qualitative. This paper 
presents a microscopic treatment of critical exci-

tations. This makes it possible to determine the 
region of the existence of the vibrations and the 
physical meaning of the phenomonological parame­
ters. Simple models, unconnected with any specific 
substance, which include, however, all the essential 
properties of real crystals are considered. The 
interaction radius is assumed to be large, which 
makes it possible to apply the self-consistent field 
method. The small parameter in the self-consistent 
field method is the ratio of the volume of a unit cell 
to the interaction volume T cR(i6 « IT - T c I « T c 
where R0 is the ratio of the interaction radius and 
the mean distance between the particles. It is 
shown that the special features in the critical ex­
citation spectrum near T c are of a different form 
for triaxial and uniaxial ferroelectrics. The dis­
persion of the dielectric permittivity is also con­
sidered. A diagram technique which makes it 
possible to calculate further approximations of the 
self-consistent field method is developed. The 
damping of the excitations is found with the aid of 
this method. In the region IT- T cl :S R06T c the 
damping is comparable with the frequency so that 
the concept of vibrations loses its meaning. The 
critical vibrations are thus described in the entire 
region of their existence in the self-consistent 
field approximation. 

2. DESCRIPTION OF THE MODEL. CLASSICAL 
TREATMENT 

In considering the collective vibrations we shall 
adopt a previously used model. [1] In this model 
the phase transition consists in the appearance for 
T < T c of a mean displacement of a given kind of 
atom in the unit cell which leads to a reduction of 
the symmetry. The potential which acts on such an 
atom in the i-th unit cell consists of a potential 
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produced by atoms of other kinds U( ri) and of an 
interaction with atoms of the same kind in other 
unit cells-VR(ri, rj) where ri is the coordinate of 
the atom in the i-th unit cell relative to the center 
of the unit cell, and R = Rij is the distance between 
the i-th and j-th unit cell. For the sake of graphic 
and easy presentation, we assume that the potential 
VR(ri, rj) is of the form (ri · rj)VR, the potential 
U(r) is centrally symmetric: U(r) = U(- r), and the 
phase transition consists in the appearance of a 
mean displacement ( r) from the center. Let the 
unit cell, at the center of which the atom is located 
up to the transition, be tetragonal with a distin­
guished x axis along which the atom is displaced in· 
the transition. The results will be generalized for 
the case of arbitrary V and U in Sec. 7. 

We shall assume the interaction radius R0 of 
the potential VR to be large compared with the 
dimensions of the unit cell. This allows one to 
make use of the self-consistent field method, 
whose zeroth approximation is equivalent in statis­
tics to the phenomenological theory of second-order 
Landau phase transitions_[ 1] 

Two very simple types of phase transitionsl 5l 
are possible in the model under consideration. In 
the first of these the potential U(r) has one mini­
mum (Fig. 1a), so that an atom has only a single 
most probable position in the unit cell. Below the 
Curie temperature this minimum is shifted by an 
additional field (rV) due to the displacement of the 
other atoms. In this case the phase transition is 
of the "displacement type." In the other case, the 
potential U has several, for instance two, minima 
(Fig. 1b). Above the transition, the atom is located 
with equal probability near each of these minima. 
Below T c the field ( rV) makes one of these loca­
tions more probable. Such a phase transition is an 
''order-disorder'' transition. There are no qualita­
tive differences in the thermodynamic properties 
of the two types of transitions. However, a differ­
ence appears in investigations of vibrations in such 
systems if the penetrability of the barrier is suffi­
ciently small. 

The physical picture of the collective vibrations 
will be followed in the example of the classical 
treatment. For simplicity we assume that the 
potential U(r) can be split into a sum of potentials 
which depend only on one of the coordinates: 
U(r) = U(r) + U 1(y) + U2(z). Then the motion along 
different axes is independent and can be considered 
separately. 

The distribution function of the system 
F(x1, ... ,xN, Pt• ... , PN• t) is governed by the equa­
tion 

FIG 1 
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In the zeroth self-consistent field approximation 
Eq. (1) reduces to the one-particle function fi, and 
the interaction with other particles is replaced by 
an average field determined from the condition of 
self-consistency: 

flf; + j~ _ _'}__/_j_ + ( _ _'}fl _ _j_ F-) :,If; = 0 
a/. Ill- f)X \ UX ' 1 (/ p ' 

(2) 

In this approximation the function F is split into 
products of one-particle functions fi. 

The equilibrium function f~o> = f0(x, p) is of the 
form fM(p)n(x) where fM(P) is the Maxwell function, 
and the density n(x) is given by the equations 

n (X) = e-f.F(x)-HlxE, I ~ dx e-BU(x)+BxEo, 

E 0 = Vos = Fo ~· xn(x)dx. (3) 

Here {3 = 1/T, V0 = I:R VR is the zeroth component 
of the Fourier potential VR, and s is the average 
displacement. 

The phase transition point is determined from 
(3) as the temperature at which there appears a 
solution of the equations with s ;>! ol1) : 

Tc = Vo_;:(Tc) = V0 ~ x 2n(x, Tc)dx. (4) 

The vibrations in the system represent small 
deviations of the distribution function from its 
equilibrium form. Therefore we seek the function 
fi in (2) in the form 

f;(x,p,l) =fo(x,p) +f(x,p)ei(kll.;-oJt). (5) 

Here k and w are the wave vector and the excitation 
frequency. Substituting ( 5) in (2) and linearizing 
the equation in f, we obtain 

Vk == ~ V n. cxp (ikR). (6) 
H 



COLLECTIVE EXCITATIONS NEAR PHASE-TRANSITION POINTS 1073 

Let us go over in ( 6) from x and p to new canon­
ical variables H and ~, where H is the Hamiltonian 
p2/2m + U(x) - xE 0 and the angle variable ~ [GJ de­
fined by the relation ~ = dx/v(x, H) = m dx/p(x, H) 
denotes the time along the trajectory. x, p, f, and 
f0 in (6) are functions of Hand~, and Eq. (6) takes 
on the simple form: 

- i(l)f +~~I = ~EJJo (If)_ p (~, 11). (7) 
8~1" m · 

The functions p(~) and consequently also f(~) are 
periodic with the period T(lf). Expanding them in 
a Fourier series, we obtain 

fn = i·JiE-~.fo(H) 
m(w +nwH)' 

2n ( "'ru m dx )-1 
WH = T(H) = n J p(x,H). 

X min 

The self-consistency condition takes on the form 

Substituting (9) in (8) and taking into account the 
fact that Pn(H) = -imnwHxn(H), we obtain for the 
dependence of w on k the equation 

T - i -y;:-- X 2 (T) =- J dHf0 (H)xo2(H) + 2w2-

(8) 

X~, ~ dHfo(H) lxn(H) 12 , (10) 
n=1 n2wH2- w2 

where 

X2 = ~.·~ dHfo(H) lxn(H) 12 = ~ x2f0 (x, p)dxdp. 
n 

In integrating with respect to H the pole in the 
right-hand side of Eq. (10) has to be circuited from 
below; one obtains thus the correct sign of the 
damping-the imaginary part of w. However, for 
the small w of interest to us the damping obtained 
from (10) is exponentially small. 

ForT = Tc and k = 0 the left-hand side of (10) 
vanishes in accordance with (4). The form of the 
excitation spectrum depends on the behavior of the 
function x 0(H) near Tc, i.e., on the value of x aver­
aged over the period which depends on the form of 
the potential U(x). Above the transition, the average 
field E0 = 0 and the effective potential U(x) - x(E 0) 

entering into H coincides with U(x). In the case of 
potentials with a single minimum (Fig. 1a) the mo­
tion occurs in a symmetrical region [from -xM(H) 
to XM(H) on Fig. 1a] and x 0(H) vanishes for all H. 
In order to simplify the equations, we assume that 
the interaction VR is spherically symmetric and 
has a finite interaction radius R 0 so that its expan-

sion into Fourier components for small k is of the 
form Vk = Vo(l - k2R5/ 6). Then in the neighborhood 
of the transition for small k and w the spectrum of 
vibrations is given by 

For T < T c the effective potential U- xE0 is 
asymmetric, x 0(H) is different from zero, and close 
to the transition it is proportional to the average 
displacements ~ (Tc- T) 1~. Utilizing a previously 
obtained[!] expression for x 2(T) below the transi­
tion, the dispersion equation for T < T c can be 
written in the form 

a(j)2 = ;k2Ro2 + 2b(Tc- T)+ ~V0 ~ dHf0 (H) (x0 (H)- s) 2. 

(12) 

Thus for k = 0 the frequency of the ''critical'' 
vibrations which are being considered, tends on 
nearing the transition point to zero like 
IT- Tcl 112 .r2-4J 

The situation changes in the case of potentials 
U(x) with several minima (Fig. 1b). In moving in 
the region of the left- or right-hand well with an 
energy H lower than the height of the barrier Hb, 
the particle does not penetrate into the region of 
the other well so that the averages over the period 
of the value of x 0(H) for these H do not vanish. The 
dispersion equations take on the form 

HG 
k2Ro2 

aw2=-6-+b(T-Tc)+2 ~ x02(H)f0 (H)dH, 
Hmfn 

T>Tc, 

Hb Hb co 

+( ~ + ~ + ~ )dHfo(H)(x0 (H)-s)2, 
Hm+ Hm- Hb 

T<Tc, (13) 

where H~ and H~ denote the minima of the right 
and left well. 

For k = 0 and T - T c the frequency tends to a 
finite lim1~, so that an appreciable decrease in w 
will take place only for low barriers: {J(Hb - Hmin) 
«1. 
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Thus, in the classical treatment which we have 
presented, the presence of an impenetrable barrier 
which prevents the free displacement of low-energy 
particles from the left- to the right-hand region 
leads to an increase in the rigidity of the system 
to a finite value up to T = T c. In quantum mechan­
ics every barrier has a finite penetrability and, as 
is shown in the following section, the result that 
the frequency vanishes turns out (in the self-con­
sistent field approximation) to be correct also for 
order-disorder transitions. 

3. DIELECTRIC PERMITTIVITY. QUANTUM 
TREATMENT 

Above the radius R 0 of interaction between the 
atoms was considered finite. The results are, for 
this reason, not directly applicable to the case of 
ferroelectrics for which the electromagnetic inter­
action is appreciable. The slow decrease of the 
electromagnetic forces with distance leads to a 
number of qualitative effects. To take these into 
account, one can add to the interaction VR a term 
with dipole-dipole interaction. [i] It is, however, 
more convenient to find the excitation spectrum 
with the aid of Maxwell's equations, describing the 
effects of the long-range action by means of an 
average macroscopic field E[7]: 

Retardation effects are thereby simultaneously also 
taken into account. 

In the case of tetragonal symmetry under con­
sideration, the non-vanishing components of the 
dielectric permittivity tensor Eaj] are Exx = Err and 
Eyy = Ezz = E 1· The frequency spectrum is deter­
mined from the equations 

( 15) 

In the case of cubic symmetry, when Err = El, 
the excitation spectrum is independent of the direc­
tion of k; in the uniaxial case the spectrum is 
anisotropic. 

The calculation of the dielectric permittivity 
tensor Eaj](k, w) can be carried out by applying 

. api H 
z at= [ to Pi], 

Here eeff is the effective charge, E is the average 
macroscopic field, and Vij3 comprises all the 
short-range forces, including the deviation of the 
field acting on the atom from the average field. To 
simplify the equations, we will assume, as above, 
that the tensor ~j] is equal to oaj]VR and indepen­
dent of the coordinates ri and rj, i.e., we neglect 
the effects of the anisotropy and inhomogeneity of 
the field within the unit cell. Allowance for these 
effects is equivalent to considering potentials 
VR(ri, rj) of a general form, and is discussed in 
Sec. 7. We shall consider the field Ei to depend 
periodically on the time and the number of the unit 
cell: Ei = E exp i(k · Ri - wt). 

In the approximation linear in the field 

( 17) 

where 

p2 
Ho =-+U(r)-xVos, 

2m 
s = Spxpo. 

The equation for p is obtained by linearizing 
( 16): 

(18) 

(J)P, = [Ho, p] + ~ [x'X, po](Ea. + V~~. Spxa.p). (19) 

This equation is conveniently solved in terms of 
the representation of the eigenfunctions lf!v(r) of 
the operator H0 which satisfy the equation Holf!v 
= Evlf!v· As a result, we obtain for the dielectric 
permittivity Eaj] defined by the equation 

2 
~ 4neerr 
LJ ea.13E 13 = Ea. + --- Sp xa.p, ( 2 0) 

13 Vn 

where Vun is the volume of a unit cell, 

e (k ro)- 1 A.Ilu((J)) 
11 ' -+1 VII()' - k II 0> 

(21) 

the method presented above with the addition to the Here 
kinetic equation of a term with an external electric 
field. We make use of the equation for the density 
matrix[sJ which in the quantum description plays 
the part of the distribution function. In the self-
consistent field approximation this equation is of 
the form 

2 
, _ 4ne,eff ,..,_ ' 

Vn 

n" = e-13•4Sp e-13H = e-13•~ j L; e-13•,. 
v 

(22) 



COLLECTION EXCITATIONS NEAR PHASE-TRANSITION POINTS 1075 

In order to find the behavior of Eaf3 close to the 
transition, we compare (21) with the equation for 
finding the Curie temperature T c which is defined 
as the point at which a non-zero displacement s 
appears. Assuming that in the last equation of (18) 
s - 0, we find tp.at T c satisfies the equation 

Substituting (23) in (21), we find that close to the 
transition for frequencies small compared with the 
optical frequencies, ~wJ.J.V' and wavelengths that 
are large compared with the interaction radius R0 

of the potential VR, the dielectric permittivity Ell 
is of the form 

8JJ:i:(k (J)) = 1 + 1 (24) 
' k2t'l +IT- Telll± -(1)2/wcf' 

The signs ± denote here the regions above and be­
low T c• and we have introduced the notation 

6 = Ro2 Vo 
6 .A. ' 

"+=- Vo2 oll 11 1 
A oT T=Te 

6l=O 

Vo~ nv(Xvv-s)2 
a_= 2a+ + __ .. ____ _ 

Te(Te- T) 

(25) 

6l=O 

The quantity o in (24) and (25) coincides with the 
coefficient of the gradient term in the free energy, 
introduced in the phenomenological description of 
inhomogeneity effects.rsJ The constant a:1 coincides 
with the static value of the Curie-Weiss constant; 
the constant a- is, as in the classical formula ( 12), 
larger than the corresponding static value 2a +· 
This difference, connected with the neglect of re­
laxation processes, is discussed in Sec. 5. It is 
seen from (24) that near the transition Ell is large 
for small k and w. In a phase transition from a 
cubic to a tetragonal unit cell, the permittivity E 1 
is also singular near the transition; it is then of 
the form 

BJ..= 1+ 1 
k2t'l +IT- Tel b±-u:Nwo2 

where b+ =a+, and b:1 is the static value of the 
Curie-Weiss constant for the transverse permit­
tivity below Tc-[7] 

4. EXCITATION SPECTRUM 

Substituting Eaf3(k, w) in Eq. (15), one can find 
the excitation spectrum. 

Let us first consider the simplest case when the 
crystal is cubic above the transition. In this case, 
E 1 = Ell = E in Eqs. (15), and the spectrum is inde­
pendent of the direction of k. One branch of excita­
tions corresponds to longitudinal vibrations whose 
spectrum is given by the equation E(k, w) = 0. 
Making use of (24), we find that for small k and 
T - T c the frequency of these vibrations is w 0• If 
the ratio A./V0 is not small, then these excitations 
lie outside the region of applicability of the ap­
proximation w « wvJ.J. which we have used. The two 
transverse vibrations have an identical frequency, 
given by the first of Eqs. (15): 

w2 = a+(T- Te) + k2t'l 
wo-2 +(ck)-2 · 

(26) 

The spectrum of these excitations is shown in Fig. 
2. 

For very small k the excitation is an electro­
magnetic wave propagating with a velocity deter­
mined by the static E. Fork» w 0/c ~ 102-103 cm-1 

the spectrum has the form of optical vibrations 
with a gap which vanishes at the transition point: 

(27) 

Below T c the crystal becomes tetragonal and 
the critical vibrations split into two branches. The 
spectrum of one is given by the first of Eqs. (15), 
i.e., by Eq. (26) with the replacement a+- a-. 
The spectrum of the second branch is given by the 
second of Eqs. (15), and for not too small k > w0/c 
it is of the form 

w2 = w 02(k21\ + (Te- T) (a_ cos2 8 + b_ sin2 8)] (28) 

where e is the angle between k and the tetragonal 
axis. 

Let us now consider a uniaxial transition where 
the crystal is tetragonal both above and below Tc· 
In this case, E1 for small k, w, and T- Tc is a 
constant of order unity, and only Ell is singular 
near Tc· The vibrations which are critical in this 
case are those described by the second of Eqs. (15) 
from which we obtain 

,w2 = k2t'l+ ~IT- Tel+ e.~..-tctg2 8 (29)* 

wo-2 + ( ck sin 8) - 2 

The spectrum of these excitations has the same k 
dependence as that shown in Fig. 2, but is sharply 
anisotropic. Critical vibrations occur only for a 

*ctg =cot. 
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w 

FIG. 2 

narrow range of directions of k, almost perpen­
dicular to the tetragonal axis. 

For biaxial transitions when the atom is dis­
placed in the yz plane, Ell is constant above the 
transition and E 1 is given by an equation of the 
form of (24). The first of Eqs. (15) yields an iso­
tropic form of the spectrum of the form (26), and 
the second yields a spectrum of the form (29) with 
the replacement e - rr/2- e. Below the transition 
both branches are anisotropic. 

The correspondence between the quantum and 
classical results will be followed on the example 
of Eq. (27), from which the electromagnetic inter­
action, which has not been taken into account in the 
classical treatment, has dropped out. Equation (27) 
is of the same form as ( 11). The parameters enter­
ing in (27) go over into the classical expressions, 
since the case of classical statistics corresponds 
to temperatures much larger than the essential 
energy differences. The differences (nf..l.- nv)wj,~ 
il_!j22)-(25) go over into f3nv and II11(0, T)-into 
(3x2(T). In the case of the single-well potential of 
Fig. 1a the differences wvf.l go over in the classical 
limit into the frequencies nwH, the matrix ele­
ments xf.lv go over into the Fourier components 

xn(H),[al and (27) goes over into (11). 

In the quasiclassical case of the double-well 
potential of Fig. 1b the energy differences of the 
even and odd states Was(v) are exponentially small 
for energies lower than the barrier height. If in 
summing over J.1. and v in (22) we separate these 
pairs of states into a separate term, then in the 
region of frequencies w much larger than was• the 
quantum formula for the spectrum analogous to 
(27) will go over into the classical Eq. (13) and 
will correspond to a noncritical branch of vibra­
tions. In this case vibrations of low frequencies 
w «Was will be critical. The main contribution 
to (25) for w 0 is due to transitions between states 
of various symmetries whose energies are lower 
than the barrier height: 

(30) 

where x 0(v) is the average value of x over the reg­
ion of one of the wells. The frequency given by 

(27) may turn out to be small compared with the 
frequencies of the relaxation whose effect is dis­
cussed below. For small penetrability there may, 
therefore, exist no critical vibrations in order­
disorder transitions. 

If the barrier penetrability is not small, then 
critical vibrations should also appear in order­
disorder transitions. 

5. THE EFFECT OF RELAXATION PROCESSES 

As has already been noted, below the transition 
point expression (24) for E(O, w) does not go over 
at low frequencies into its static value Est which 
can be obtained by differentiating the average 
dipole moment with respect to the external field 

This is due to the fact that relaxation processes 
which lead to static equilibrium have not been 
taken into account above. Phenomenologically their 
effect can be allowed for by the Mandel'shtam­
Leontovich method,[to] by introducing in Eq. (16) 
for the density matrix a term that describes the 
relaxation of the distribution of the atoms in the 
unit cell to a Gibbs distribution with a given instan­
taneous value of the acting field Ei: 

. apf i ( e-~Hl ) 
t--=[Hi,pi]-- p----at 't Sp e-IIHj ' 

(32) 

where Tis the relaxation time. Carrying out the 
calculations by the same method as above, we ob­
t~in fo~ the permittivity Eqs. (21) in which IIa(3 is 
giVen, mstead of by (22), by the expression 

s"'s~ 
1!1 0 • 

-lw't 

(33) 
In the low-frequency case w « wvf.l of interest to 
us 

Above the transition xw = 0 and s = 0, and II 11 co­
incides with the static value Ilst· For wT » 1 be­
low Tc, the value of II11 is given by (22) with w = 0, 
and only for w T « 1 does it go over into its static 
value (31). Therefore in the equation for the dielec­
tric permittivity near the transition E±(w) 
= C±(w) /T- Tc/-1 below Tc the Curie constant 
C-(w) will depend on the frequency, and for fre-
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quencies w > T-1 the ratio of the constants C + to 
C-(w) should exceed the static value of 2. 

The use of the introduced phenomenological re­
laxation time T can yield only a qualitative descrip­
tion. Apparently T should be considered a quantity 
of the order of the damping time of optical phonons; 
the dispersion connected with it should, therefore, 
be observed in the region of centimeter or milli­
meter waves. The decrease of C-(w) with frequency 
observed experimentally in a number of cases[11 •12 •5J 
can be related to several mechanisms: the piezo­
electric effect, [l1J domain relaxation, etc. The 
excess of the ratio C +I C- over 2 is to some extent 
also due to the fact that the vibrations are adia­
batic, and not isothermal) 5J In comparing the 
results with experiments one must, therefore, take 
into account that the observed dispersion which 
also exists in a clamped, single-domain crystal is 
connected only with one of the possible mechanisms. 

The effect of the relaxation turns out to be most 
noticeable in order-disorder transitions in the case 
of small barrier penetrability. In this case, as has 
been noted in Sec. 4, the frequencies of the relaxa­
tion r- 1 and w can turn out to be higher than the 
exponentially low transition frequencies was· 
Taking into account that r- 1 and w are much 
smaller than the remaining transition frequencies 
wv!J- and f3was « 1, we obtain in this case for II 

llu = llst + -1 i<o~o't' ~I 2 ~ nvx02(v) + ~ nv(xw- s)2 J, 
'V 'V 

(35) 
where x 0(v) is the same as in (30). 

Near the transition dispersion of the suscepti­
bility will occur for small values of w T. In this 
region 

2Vo2 
B± = -T-C± ~ nvxo2 (v). 

/.. c v 

(36) 

It is seen from (36) that on approaching Tc the 
dispersion of the permittivity starts at low fre­
quencies w ~ /T- Tel (TB)- 1; this corresponds to 
an increase in the effective relaxation time. At 
higher frequencies E(w) is a smooth function of the 
temperature. A dependence of this kind has been 
observed in a number of experiments. [11, 13 ] 

6. DIAGRAM TECHNIQUE. DAMPING OF EXCI­
TATIONS 

In order to calculate the following self-consis­
tent field approximations and also in order to jus­
tify more rigorously the graphic method which has 
been presented, it is convenient to make use of 

diagram-technique methods.l14 J This technique is 
worked out for the case of Fermi and Bose statis­
tics when the Hamiltonian is written in terms of 
second-quantization operators. In terms of these 
operators the Hamiltonian of the system under con­
sideration is written in the form 

tie= ~ dr1Jl+(r) [- :m + U(r) J 1Jl(r) 

- ;-~ dr dr'¢+(r)1Jl+(r') V (r, r')¢ (r') ¢ (r). (37) 

For what follows it is essential to make use of 
the circumstance that each unit cell contains with 
overwhelming probability one and only one atom. 
This condition it is most convenient to write by 
adding to the Hamiltonian the term 

g~( ~ ¢+(r)1Jl(r)dr-1 r 
t. un' 

(38) 

Here the sum is over all unit cells, the integral­
over the volume vun of a unit cell, and the constant 
g will in the answers tend to infinity. Addition to 
(37) of the term (38) does not change the form of 
the Hamiltonian, and one can use the usual methods 
of calculation. 

Taking as the zeroth interaction representation 
Hamiltonian the first term of (37), one can separate 
the uncoupled graphs. The coupled graphs can be 
represented in the form of one-cell blocks, connec­
ted by dashed lines, which correspond to the second 
term in (37). When taking into account the electro­
magnetic interaction, the dashed line represents 
the sum of the interaction V and the zeroth Green's 
function of the photon. 

Graphs of all orders in the interaction (38) are 
collected in each block. In calculating a single­
cell block, one can let g in (38) go to infinity. This 
reduces the problem to the one-particle case. In 
addition to the first term of (37), it is convenient 
to include in the one-particle Hamiltonian also the 
zeroth self-consistent field approximation from 
the second term; it coincides then with H0 from 
(18). 

For the interaction which we are considering 
VR(r, r') = (r · r')VR; the Fourier component of a 
single-cell block with n outgoing lines is given by 

f'!'•a, ... tt,. ( Olt1 002, ••• 1 Oln) 

P n n n 

= Tn ~IT dtjeim;t; [ (.TIT xa1(t;))-{ TIT Xa1(t;) }]~ 
0 i=f i=t i=t 

H t -H t A (
39) 

where x(t) = e 0 xe 0 , T is the T-ordering sym-
bol, [t4J i wm = 27TimT are the imaginary frequen-
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cies of the temperature diagram technique, [l4] the 
average ( ... ) denotes Sp Po ( ..• ) with Po from 
( 18), and the symbol { ... } denotes the sum of the 
products of all possible averages of lower rank. 
For an oscillator potential U(r) it follows from the 
Wick theorem for Bose operators that only r 2 does 
not vanish in (39). 

The Fourier component of the two-particle 
correlation function of the coordinates is expressed 
in terms of the irreducible part ITaf:l with the aid 
of the formulas[!] 

~ 

Ka~(k,iron)=~ ~ ((xi'"(O)-s")(xi~(t)-s~))eiront-ikRll 
R;j 0 

= ITa~ + ~ ITay V Ky~, (40) 
'\'=1 

and ITaf:l is represented by the sum of the diagrams 
of Fig. 3, where the dashes denote the screening 
interaction Vk(1- ITVk)- 1• 

The diagram of Fig. 3a corresponds to the first 
self-consistent field approximation: 

(41) 

" 
Here o(wn) is the Kronecker symbol. The last 
term of (41) differs from zero only forT< Tc, 
and a andy corresponding to the tetragonal axis. 
In deriving (41) use has been made of the relation 

( nll-nv ) 
I +. = IS(ron)~nv. 
\ Cilv~t ~Ciln ll=\> 

(42) 

With the aid of the correlation function ( 40) one 
can find the correction to the free energy of the 
system [tJ: 

1 
~F = ~F<0> +- ~ ~ In ( 1 - V krru<0> (iron)) 

2 k n 

+ ~ ~ ln(f- Vkil.L(O)(iron) ), (43) 
k n 

where F(OJ denotes the zeroth self-consistent field 
approximation. 

Carrying out the analytic continuation of the 
function K(i wnl into the complex plane w, [t4J 
i Wn - w, we arrive at formulas (21) for the dielec­
tric permittivity. As has been noted above, for the 
oscillator potential U(r) only diagram a of Fig. 3 in 
IT does not vanish, and Eqs. (41) and (43) are exact. 

-o- + -8- + -o- + --o--o-+--o~~~o--+-___ .... __ ...... 
(j 2 iJ 

FIG. 3 

In order to determine the corrections to the 
spectrum and the phonon damping, one must take 
into account the following approximations in IT, i.e., 
diagrams b-e of Fig. 3. Each integration over the 
momenta that enters into the dashed lines leads to 
a small factor, proportional to R(t [ 1 J Thus dia­
grams b, c, and dare of the order R03 and diagram 
e is of the order of R06• From parity considera­
tions, diagram d differs from zero only below the 
transition. For simplicity, we will confine ourselves 
below to the region above the transition for the 
cubic case and not too small wave vectors k > w0/c. 
As was shown in Sec. 4, one need not consider ex­
plicitly the effects of the electromagnetic interac­
tion, and IT~> in (41) is of the form Oay ITo. For 
the first cortection to IT which is of the form 
IT< 1> = o IT< t> we obtain 

ay ay 

~ p" a 1 a 2 a a1 
L.i X/.IJ x~,v Xvp Xpl. 

AllVP 

Tb(rot + ro2 + Cil3 + ro,) 
X n,. ( Cil/.1-1 + iro1) ( Cill.v + iro1 + iro2) ( Cill.p - iro,) 

(44) 

Here the symbol P denotes the sum of all possible 
permutations of the indices 1, 2, 3, and 4. 

The damping is determined by the imaginary 
part IT(w) which appears in the analytic continua­
tion of IT ( i wnl to the real axis. In the case of the 
small frequencies w « wv11 of interest to us the 
contribution to the imaginary part IT (1) in ( 44) will 
be due only to terms containing o(wn + wm). Using 
relation ( 42) to separate these terms, we obtain 

~ dq 
Jm fi(IJ(ro) = r -- {j (f- V q flo(Cil)), 

(2:rt)3 

Near the phase transition point, the excitation spec­
trum with account of (25) and (27) is of the form 
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( &noVo) kRoJ +(T-Tc) -- -ia.Vof'--= . 
fJT y6 

(46) 

Here a = 3V'6/27TR5 is the small parameter of the 
self-consistent field expansion, the derivatives of 
IT 0 are taken at the point w = 0 and T = Tc, and 
small corrections ~a to the real part of w2 have 
been omitted. 

An appreciable contribution to the thermodynamic 
quantities is due to excitations with wave vectors 
for which the first and second term in (46) are of 
the same order of magnitude. It is seen from (46) 
that for these k the relative damping Im w/Re w is 
proportional to a(T- Tc)-1/ 2• Therefore at the 
limit of applicability of the self-consistent field 
method[tJ T- Tc ~ a 2Tc the damping becomes 
comparable with the frequency, and the vibrations 
disappear. 

The damping described by (45) and ~46) is con­
nected with the scattering of phonons by density 
fluctuations and is small for long-wave excitations 
with k - 0. Diagram e of Fig. 3 describes, in addi­
tion to the scattering by fluctuations, also phonon­
phonon interaction processes. The damping connec­
ted with these processes does not disappear for 
small k and can be found by the method described 
above. After analytic continuation in the frequency, 
the imaginary part of diagram e which corresponds 
to the scattering of a given phonon by one of the 
thermal phonons is given for small k, w, and 
T - T c by the expression 

. (2) _ (' dpdq b(w + Wp- Wq- Wk-p-q) ( 47) 
Im Ilczp - bczpGJ.w J (2 ) 6 2 2 2 • 

:n; Wp ·Wq Wk-p-q 

Here G2 is a constant proportional to the product 
of two vertices r 4 from ( 44) at zero frequencies, 
and wk: is given by the right-hand side of (46) or 
(27). In (47) it has been assumed that the frequen­
cies w and wk are small compared with the tem­
perature, so that the Bose distribution functions 
ni = (exp f3wi- 1)-1 appearing in the calculations 
are replaced by the classical limit ({3wir 1. 

Expression (47) is of the order of a 2, and for a 
real phonon with w = wk differs from zero for all 
k. Thus forT- Tc ;S a 2Tc the damping is com­
parable in order of magnitude with the frequency 
for all k. 

7. ARBITRARY INTERACTION. TRANSITIONS IN 
OTHER SYSTEMS. 

In order to simplify the equations, we assumed 
above a simple form of the interaction between the 

unit cells VR(ri, rj) = (ri · rj)VR· We shall show 

that, as in thermodynamics,[t5] all the results are 
retained for an arbitrary interaction. 

Equations (16) take on the form 

. ap, [H I 
£ Tt == t. Pi, 

- ~ Sp V R (r,, ri) Pi- eerf r,Ei. 
i 

(48) 

The equilibrium matrix p 0 is defined in analogy 
with (18): 

e-llHol 
Pi0 = , Sp e-liH0; 

(49) 

We seek a solution of (48) in the form (17). In 
the representation of the eigenfunctions 1/Jv of the 
operator H0 we obtain for the addition p linear in 
the field from (49) the equation 

V,..~, va = ~ 1Jlt..(r)1Jl" (r) Vk(r, r') 1Jlv(r')1Jla(r') dr' dr. (50) 

Expressing the solution of this equation in terms 
of the eigenfunctions pm of the homogeneous equa­
tion 

aT 

we obtain for the dielectric permittivity by the 
usual method 

+ ~ x:vP"vxe" J. 
"" 

(52) 

The transition temperature Tc is defined in 
analogy with (23) and Eq. (33) of[15] as the point at 
which there- appear for Eq. (49) solutions of the 
form p 0 = p 00 + 1)p01 where p 01 describes a lower 
symmetry than p 00 and 1J- 0 forT- Tc- 0: 

(53) 

If we normalize p 01 in accordance with (51), then 
for T close to Tc and small w and k, Eq. (51) for 
the functions p 1, which go over at T = Tc, k = 0, 
and w = 0 into p 01 , can be solved by a method 
analogous to perturbation theory. Thus we obtain 
for the nondegenerate case 
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~ r P"v(Tc, 0)-P"v(T, w) 
1- Ai = PJ.tv l--------~ llJ.Iv a~ 

P2 (T 0) ' I'V J.I'Y C, 

+(V0 - Vk)J.Iv,a~J p~~- (54) 

Here the singular part of the dielectric permittivity 
is 

2 
4ne eff Sp x"p10. Sp xPp10 

Bczp=--- · 
Vun 1- At 

(55) 

Taking into account (54), we find that E is of the 
form (24) where in the noncubic case k2 may be re­
placed by some quadratic form of ka. Only the ex­
pression of the parameters in terms of the interac­
tion characteristics has thus changed in the dielec­
tric constant. 

If the transition is nonferroelectric, then the 
numerator in (55) vanishes, the dielectric permit­
tivity has no singularities, and the critical vibra­
tions are not related to the electromagnetic field. 
The spectrum of critical vibrations is in this case 
determined by the solution of the homogeneous 
equation for the addition to the density matrix, i.e., 
of Eq. (51) for A. = 1. For small k and w the spec­
trum is determined by setting the right-hand part 
of equality (54) equal to zero, i.e., it is of the form 
(27). Here the anisotropy effects of the spectrum 
discussed in Sec. 4 and connected with the long­
range action are absent, and the gap in the excita­
tion spectrum is proportional to IT - T c I for all 
small k. 

The collective excitations in second-order phase 
transitions connected with the ordering of the rota­
tion of molecules in solids should exhibit peculiar 
characteristics. The assumption here is that above 
the transition the probabilities of arbitrary orienta­
tions of a molecule are equal, whereas below T c 
there appears a preferred direction. For solids 
such a model is an idealization, since the presence 
of the crystal lattice always leads to anisotropy, 
but if the anisotropy is small then this model can 
be convenient for describing the phase transition. 
Using the methods described above, one can show 
that above T c the spectrum of critical excitations 
is of the usual form (29), whereas below T c there 
are two degenerate branches with an acoustic dis­
persion of the form w = const · k, corresponding to 
vibrations relative to the direction of the spontane­
ous orientation. 

Let us discuss the possibility of the existence of 
critical vibrations in other types of phase transi­
tions. 

Phase transitions of the ordering type in binary 
alloys are, as is well known,[tG] described by the 

Ising model. In this model, there are not only no 
critical vibrations, but also no collective excita­
tions and relaxation processes; since in this model 
an arbitrary distribution of spins in the unit cells 
is stationary, the Hamiltonian commutes with the 
operator ui of each unit cell. Excitations simply 
corresponJ to a reversal of the spin of an individual 
unit cell. Thus, in a cubic lattice with a nearest­
neighbor interaction with a constant J, the excita­
tion energies are 0, ± 4J, ± 8J, ± 12J, depending on 
the spin orientation of the neighbors, and depend 
neither on k nor on T. 

Actually the relaxation of the distributions in 
binary alloys takes place by means of processes 
related to the temperature penetration of atoms 
through potential barriers, for instance by the dif­
fusion of atoms along sites and along interstices. 
Introduction of the corresponding terms into the 
Hamiltonian allows one to describe relaxation 
processes. [17 1 However, critical excitations could· 
exist only for an appreciable quantum penetrability 
of the barrier for exchange of positions of neigh­
boring atoms of different kinds. In real alloys this 
penetrability is extremely small, and nonstationary 
processes connected with a redistribution of atoms 
in the unit cells are purely relaxation processes. 

When applied to phase transitions in a supercon­
ductor, Bose-gas, and ferromagnet, the methods 
described above yield the known results. In a 
superconductor, the self-consistent field approxi­
mation is applicable at practically all tempera­
tures)tJ The critical excitations correspond to 
moving Cooper pairs.[18•14 J In a Bose system the 
"critical" excitations above T c are the ordinary 
single-particle excitations and below Tc-it is the 
second Landau sound, [19] whose velocity vanishes 
at the transition like (T C - T) 112 , as the gap in the 
case of crystals. These results can be obtained by 
the method described, but for the Bose system the 
self-consistent field approximation coincides with 
perturbation theory,[11 and has no region of appli­
cability in real liquid He4• An investigation of spin 
waves in ferromagnets according to the described 
methods will be carried out in another paper. 

8. CONCLUSION 

We shall remark on the applicability of the re­
sults of the present study to real systems. 

We have throughout the article discussed second­
order phase transitions. There exist many first­
order transitions which are "close to being second­
order'' in the sense that the thermodynamic quan­
tities exhibit near the transition an anomalous 
temperature dependence, and the jumps character­
istic of a first-order phase transition (for exam-
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ple, in the average displacement) are relatively 
small. The Curie temperature which enters in the 
Curie-Weiss equation for the dielectric permittiv­
ity is here below the transition temperature Tn for 
T > Tn and above Tn forT< Tn. Therefore there 
may altogether not be any region IT - T cl :Sa 2T C 
where the self-consistent field expansion is not 
applicable, and the anomalies connected with the 
transition are fully observable. An example are 
the numerous perovskite-type ferroelectrics 
which are well described by the phenomenological 
theory. [ 5l The equations and results of this paper 
can be directly generalized to this case if we un­
derstand T c everywhere to denote the Curie tem­
peratures T c+ and T C- which are different for 
regions above and below the transition. 

The state of the unit cell has been described 
above by means of the coordinate of a single, 
chosen atom. In the general case, one must take 
into account the motion of all atoms of the unit 
cell. In all the formulas xa is understood to be 
one or several generalized coordinates describing 
a group of atoms in the unit cell. In addition, one 
should take into account the interaction of the 
vibrations being considered with the remaining 
optical and acoustic phonons. As a result, there 
appears an additional damping, and also a renorm­
alization of the interaction v.r2o] Qualitative effects 
can only arise from the interaction via acoustic 
phonons which, like the electromagnetic interaction, 
is long-range. [211 It can be taken into account in the 
same way as the electromagnetic interaction was 
taken into account above, only instead of Maxwell's 
equations one must consider the equations of the 
theory of elasticityJ22l 

In conclusion, we shall enumerate the main re­
sults of the present study. Critical vibrations can 
exist only for a large radius of interaction in the 
region in which the phenomenological theory of 
phase transitions is applicable. Even in this case, 
they do not appear in order-disorder transitions 
if the penetrability of the barrier is small. In 
ferroelectrics one should observe a dispersion of 
the dielectric permittivity at frequencies wr which 
decrease on approaching the transition point ac­
cording to the law wr ~IT- Tel; for large fre­
quencies E(w) ceases to follow the Curie-Weiss 
law. 

In transitions of the displacement or order-
disorder type for large barrier penetrability 
critical vibrations exist and have different spectra 
for cubic and noncubic ferroelectrics. In the cubic 
case, as in nonferroelectric transitions, the gap in 
the excitation spectrum near T c tends to zero like 

IT - T c I independently of the orientation of the 
wave vector k. In a uniaxial transition the gap is 
small only in a narrow region of directions of k, 
almost perpendicular to the ferroelectric axis. 
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