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Formulas for the cross sections for direct processes in which the initial and final state inter­
actions are taken into account via the elastic scattering phase shifts in the physical region, 
are derived in detail. The derivation is based on dispersion theory. A method for taking 
simultaneous account of the nuclear and Coulomb interactions of charged particles is con­
sidered within the framework of this theory. The analytic structure of the reaction amplitude 
is investigated in a potential model for which dispersion relations can be written down. The 
contribution of nonphysical singularities of the nuclear scattering amplitude is considered. It 
is shown on the example of the direct reaction C 13(y, n) C 12 that the contribution of nonphysical 
singularities can be neglected. 

I. INTRODUCTION 

IN the description of direct processes one must, 
in general, take account of the effects of virtual 
scattering of the initial and final particles on each 
other, which are commonly called the effects of 
initial and final state interactions. This problem 
can be considered within the framework of disper­
sion theory.E1•2] In the treatment of the virtual 
scattering effects by dispersion methods the reac­
tion amplitude is expressed through the amplitude 
describing the reaction mechanism without initial 
and final state interactions (called Born amplitude 
in the following) and the amplitudes for scattering 
in the initial and final states. In the language of 
graphs the account of the virtual" scattering of the 
final products of the reaction A + x - B + y means 
the addition to the graph (or sum of graphs) repre­
senting the Born amplitude, of graphs of the loop 
type the left vertex of which is the Born amplitude 
while the right vertex is given by the amplitude for 
the virtual scattering of particles Bandy (Fi~. I). 
The corresponding graphs are considered in [3 • 

Since both the Born amplitude and the scattering 
amplitude depend on the momentum transfer, the 
graph of Fig. 1 describing the virtual scattering 
contains singularities in the momentum transfer 
as well as in the energy. If we go over to partial 
wave amplitudes which depend only on the energy E, 
the singularities in the momentum transfer lead to 
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FIG. 1 

the appearance of left-hand singularities in the 
complex plane of the variable E. Thus the ampli­
tude with account of the virtual scattering of the 
final particles contains, besides the Born singulari­
ties, also left-hand singularities in E which arise 
out of the singularities of the Born amplitude, and 
which are connected with nonphysical singularities 
of the scattering amplitude. These singularities 
will be called quasi-Born singularities in the fol­
lowing. 

It should be emphasized that the scattering am­
plitude entering in the graph under consideration 
is not on the mass shell and cannot be deduced di­
rectly from experiment. Scattering experiments 
determine the scattering amplitude only in the 
physical region. Within a concrete model one can 
obtain analytic expressions for the amplitudes 
which allow one to judge the behavior of the scat­
tering amplitude for nonphysical values of the 
variables. However, the choice of a correct model 
for the scattering is no less problematic than the 
determination of the mechanism of the direct reac­
tion, the more so as models with different analytic 
properties may lead to identical results for the 
scattering amplitude in the physical region; this is 
known, for example, from investigations of the opti­
cal model (cf., e.g.,l4• 5]). To this we must add that 
strictly speaking the elastic scattering cannot be 
reduced to a potential problem in the presence of 
inelastic channels. 

The deviation of the potential model scattering 
amplitude from the actual one can be particularly 
large in the unphysical region. However, if the 
quasi-Born singularities give a small contribution 
to the amplitude for the direct process, the effects 

829 



830 KAMINSKii, ORLOV and SHAPIRO 

of the virtual scattering can be included without the 
use of doubtful models. In the following we shall 
therefore neglect the contribution of the quasi-Born 
singularities in the account of the virtual scatter­
ing effects by the dispersion method. If contrary to 
our expectation the quasi-Born singularities turn 
out to be essential and depend moreover on the 
model used for the scattering, then the problem of 
including the initial and final state interactions can 
hardly be solved satisfactorily. 

The results obtained in the present paper show 
that in some cases at least, the amplitude for a di­
rect process with account of the virtual scattering 
can be expressed through the scattering phases in 
the physical region. It will be shown on the exam­
ple of the direct photoeffect (Sec. 5) that the quasi­
Born singularities can be neglected in the account 
of the nuclear interaction. 

In the case of the Coulomb interaction the quasi­
Born singularities coalesce with the Born singulari­
ties and their contribution becomes important. The 
problem is in this case made easier by the circum­
stance that the Coulomb interaction is known ex­
actly, so that there is no need to use a model for 
the determination of the scattering amplitude in the 
nonphysical region. This allows us to indicate a 
practical method for the simultaneous account of 
the Coulomb and nuclear interactions (Sec. 3). 

In the investigation of the analytic properties 
of the amplitude and in the estimate of the quasi­
Born singularities (Sec. 4) we shall use a model 
with an analytic potential which does not lead to an 
essential singularity in the reaction amplitude. 
Potentials which are cut off at a finite distance 
have been studied in[4•6]; in these papers numeri­
cal calculations are presented which demonstrate 
that the integral over the large circle makes a 
small contribution to the amplitude. 

Numerical calculations (Sec. 5) with a potential 
with diffuse boundary for the determination of the 
scattering phases were carried out for the partial 
amplitude for the direct photo-effect c 13(y, n)c 12 

corresponding to the transition of a neutron from 
a bound p state to an s state in the continuum. 

.. 
2. THE OMNES-MUSKHELISHVILI EQUATION 

AND ITS SOLUTION 

The use of the Omnes-Muskhelishvili equation 
(OM) in the theory of direct nuclear reactions has 
been considered earlier in[2•41 (cf. also[1J) .0 It is 
however useful to reproduce here the derivation 
and solution of the OM equation for the inclusion of 

1 )These papers give references to earlier works. 

the virtual scattering in the initial and final states 
in order to indicate some essential details which 
have partly been considered in f41 . To this we must 
add that there exist some inaccuracies in the 
literature concerning this problem to which we 
shall address ourselves below. 

Following the considerations in the introduction, 
we shall consider only the following of all the 
singularities associated with the virtual scattering 
effects in the amplitude for the reaction A + x - B 
+ y: the right-hand cut along the real E axis 
(E = Ey + EB) from the point E = 0 (E = Q) for 
Q > 0) (Q < 0), where Q = mx +rnA- my- mB 
(i.e., from the normal threshold of the reaction), 
and the poles corresponding to the bound states of 
the system. For simplicity we shall not consider 
anomalous singularities in the energy; they can be 
taken into account by including particular graphs 
(in some reactions they do not occur at all). We 
assume that the reaction mechanism determining 
the Born amplitude B is known and corresponds to 
Feynman graphs with singularities in tor u: 

t = -(Px- py} 2 + 2(mx- my) (Ex- Ey), 

u =- (px- pn) 2 + 2(mx- mn) (Ex- En). (2.1) 

Let us go over to the partial amplitudes Mzz 0(E) 
using the following expansion: 

J=O M=~.J lc=[J~si l=[.J~cr[ 

.JM JM • ( Px )Y ( py ) Mu, (E)CzM~J.<, "I'Cl,M~m, smYlaM~m - lii~I' -, ,(2.2) 
Px PY · 

where sm and af.l. are the channel spin and its pro­
jection on the z axis for the initial (a) and final 
({3) channels; l 0 and l are the orbital angular mo­
menta in channels a and {3. The amplitude M is 
connected with the differential cross section by 

dacxsm-+-B<JJ.<= mxAmyB py \M\ 2, ( 2.3) 
dQ 4n2 Px 

where mxA and myB are the reduced masses in the 
initial and final channels. The partial amJ:litude 
Mzz 0(~) contains the factor [E l(E- Q)lop 2 which 
describes the known threshold behavior 

Mu,(E) = [E1(E- Q) 1opzMu,(E). (2.4) 

For neutral particles 

Mu, (E) --'>-canst =I= 0, E-+ 0, Q. 

The factor [El(E- Q) 1oJ1 12 is separated out in or­
der to get rid of the kinematical singularities in 
Mzz 0 (the corresponding Born amplitude B zz 0(E) 
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has a cut which is absent in the amplitude B ll ) . 2> 

Using the analyticity of Mzz (E), we write dow~ a 
0 

dispersion relation for the difference M ll - B zz 
0 0 

on the physical sheet of E (Im E > 0). We shall not 
make any subtractions, assuming that Mzz - Bzz 

0 0 
vanishes sufficiently rapidly for / E/ - ""· Then the 
integral over the large circle can be neglected and 
we find 

Mu,(E) = Bu,(E) + ~ f E'Au,~E'). dE', e-+ + 0.(2.5) 
n ~ - - ~e 

Let us use the fact that Mzz 0(E) is real on the 

real axis outside the cuts. Taking account of the 
fact that Bzz 0(E) has only left-hand singularities 

connected with the singularities of the reaction 
amplitude in t or u, we obtain then 

2iAu,(E) = Mu,(E+)- Mu,(E-), (2.6) 

where the indices +and- denote the upper and 
lower branches of the right-hand cut, respectively, 
and 

lmM11 ,(E±) = +A 11,(E). (2. 7) 

Thus ( 5) and ( 6) give 

1 ~"" Im Mu, (E') 
Mu, (E) = Bu, (E)+- E' E . dE', n - -~e 

Eo 

B-+ + 0,(2.8) 

where the integral is taken along the upper branch 
of the right-hand cut and E 0 = 0 for Q > 0 and 
E 0 = Q for Q < 0. Singling out those terms in the 
unitarity relation which correspond to the virtual 
scattering of the initial and final particles, we 
easily obtain 

ImMu,(E)=Mu,(E)hz*(E) + Mu,*(E)fz,(E- Q)+ Au,(E), 

h (E)= {ei0,sin61, E > 0. 
1 0, E<O' 

f (E _ Q = ( ei<P, sin qJ1, E > Q 
1 · ) \ 0, E < Q 

(2.9) 

(o z and cp z0 are the scattering phases of the final 
and initial particles). In the derivation of (2.9) we 
have assumed that the scattering amplitude is 
diagonal in the orbital angular momentum. 

Relation (2.9) has been written in the physical 
energy region, where the factor [EZ(E- Q)Zo]11 2 

is real for arbitrary l and l 0 so that the same re­
lation holds for the amplitude Mzz 0(E) of (2.4): 

Im Mu, (E) = Mu, (E) hz* (E). 

+Mu,*(E)/I,(E-Q) +.Au,(E). (2.10) 

Relation (2.10) can be continued analytically from 
the physical into the unphysical region between the 

2)We note that in [7] this kinematical factor was not 
separated out, so that the discontinuity of the partial ampli­
tude on the right-hand cut was not determined correctly. 

points E = 0 and Q, where only hz(fz 0) is different 
from zero for Q > 0 (< 0). 

Substituting (2.10) in (2.8), we obtain the singu­
lar OM integral equation: 

Mu, (E) = Bu, (E) 

1 ~"" Mu, (E') ht (E') + Ml;,(E')/I, (E'- Q) + Au,·(E') + dE', n E'-E- ie 
Eo 

e-++0. (2.11) 

Equation (2.11) differs from (2.2) of[2 J by the pres­
ence of the term A zz under the integral sign. 

The solution of (2~11) can be obtained as in[2J, 
and we arrive at the expression 

Mu, (E)= Bu,(E) + [nF1(q)F1,(k)]-t 

00J· Fl(q')F!, (k')[Bu, (E') Hu, (E') +Au, (E')] dE' 
X E'-E- ie ' 

Eo 

e-++ 0. 

In (2.12) we have used the notation 

Hu,(E) 

l exp [~ ( ~z* :- ([Jz:)] sin ( <>t + ([J!,), E > 0, Q 
= exp(~61 ).sm6z, O~E~Q, Q>O; 

exp(i([J!,)sin([Jz" 0 ~ E ~ Q, Q < 0 k 

(2.12) 

= [2mxA(E- Q)J'i'/ h, q = (2mynE)'!.J h. (2.13) 

F z(q) is the "dynamical" Jost function connected 
with the scattering phase o z(E) by the integral re­
lation 

[ " E )l [ 1 oo b (E') dE' J 
F!(±q)= II (1+ ~ Jexp n~ E'~E+ie ' 

'll=i 0 

(2.14) 

where the Ev (> 0) are the energies of the bound 
states with given l (the zeroes of F z(q) for Im q 
> 0). The function Fz 0(±k) is defined by (2.14) with 
E replaced by E- Q and o z by cpz 0• 

We note that (2.12) has been obtained under the 
condition that the system has no bound states. The 
bound states can be included by a method indicated 
in[2J. However, there is a simpler solution[4J 
based on the fact that (2.12) can also be used in the 
presence of bound states, regarding it as an analy­
tic continuation in the interaction strength. 

If we want to express the amplitude Mzz 0 solely 

in terms of the Born amplitude Bzz 0 and the scat­
tering phases of the initial and final particles, then 
we must drop the term Azz 0 in (2.12). The quantity 
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A zz 0 is the discontinuity of the amplitude due to the 
effects of all inelastic channels in the unitarity 
relation (2.10). As already noted,[sJ the assumption 
that the main contribution to the mechanism of the 
direct process comes from the graphs (with singu­
larities in t or u) included in the amplitude B zz 0 
implies that the integral term in (2.12) containing 
Azz 0 is small in comparison with the remaining 
terms in (2.12) and can therefore be neglected. 
The assertion of Dar and Tobocman[9J that the ini­
tial and final state interactions can be included via 
the solution of the OM equation (or by the distorted 
wave method) only if the reaction under study is the 
dominating inelastic channel, is in general incor­
rect. Only comparison with experiment can show 
whether the virtual elastic scattering does indeed 
play the main role in the amplitude for the direct 
process. We note however, that if the Born ampli­
tude receives important contributions from graphs 
which also have singularities in E, then we must 
take for All· the discontinuities of the correspond­
ing partial a0mplitudes on the right-hand cut. 

Practical calculations with (2.12) simplify con­
siderably if the Jost function F z(q) is known. In[2J 
the corresponding expression for a square well was 
quoted. In numerical calculations using the optical 
model the wave function in the internal region is 
matched to the free solution in the external region 
at the point r = R, where the nuclear interaction 
can be neglected. In this case the Jost function can 
be defined by the expression [4 ) 

F1(+q) = =t=iW[xh\1 •2) (x), u1(q, r)], x = qr,(2.15) 

where hz(x) is the spherical Hankel function, 
uz(q, r) = rif; z(q, r) and if; z(q, r) is the radial solu­
tion of the Schrodinger equation with an optical 
potential, normalized by the condition 

u1(q,r)-+xjz(x), r-+0; 

. [ dcp d'¢] 
W[cp(x),'ljl(r)]=q-1 -d 'ljl-cp-d . 

T T r=R 
( 2 .16) 

Since we need to know the Jost function only in the 
physical region of E, we can use the numerical 
calculations of uz(q, r) with the optical model. 

3. SIMULTANEOUS ACCOUNT OF COULOMB 
AND NUCLEAR INTERACTIONS 

In the description of processes involving charged 
particles one must include the Coulomb interaction 
along with the nuclear interaction. For small en­
ergies, for example, the effects of the virtual 
Coulomb scattering are predominant (barrier 
effect). As noted in the introduction, in taking ac-

count of the Coulomb interaction it is impossible to 
neglect the quasi-Born singularities. Let us con­
sider a method in which these singularities are 
taken into account rigorously while the effects of 
the virtual nuclear scattering are included in the 
approximation of the dispersion method discussed 
above. The possibility of a rigorous account of the 
quasi-Born Coulomb singularities is connected 
with the fact that in contrast to the nuclear inter­
action, the Coulomb force is known exactly. Since 
we regard the Born amplitude as known, we separ­
ate from the full reaction amplitude the terms 
which do not contain virtual nuclear scattering 
and can therefore be determined rigorously without 
use of any model for the scattering. Then we ob­
tain the sum of graphs shown in Fig. 2 in which the 
first term is the Born amplitude, the second is a 
graph containing in the right vertex the amplitude 
for virtual Coulomb scattering, and the third is 
the analogous graph with "nuclear" scattering in 
the right vertex (the term "nuclear" is put between 
quotation marks, since we are talking about nuclear 
scattering in the presence of the Coulomb field). 

The "nuclear" scattering amplitude is the dif­
ference between the full and the Coulomb scatter­
ing amplitudes. The phases 61 corresponding to 
the "nuclear" scattering amplitude on the energy 
she 11 are defined by 

exp (2ibt)- 1 = exp (2Ul~C))[exp (2i6z)- 1]. (3.1) 

Here o(C) is the Coulomb phase with account of 
screenfng (the problem of the screening of the 
Coulomb potential and the definition of the phase 
o(C) are considered below), and o z is the nuclear 

l 
phase equal to the difference between the full phase 
and the phase o ~C) . 

After expansion of the desired reaction ampli­
tude into the sum of graphs of Fig. 2, the problem 
reduces to the calculation of the last term by the 
dispersion method. Here we can use the solution 
of the OM equation (2.12) in which the scattering 
phase is to be replaced by '6z; we must add to this 
amplitude the amplitude corresponding to the sec­
ond term in Fig. 2. However, the calculation of 
the Jost function for the phase '6z by formula ( 2 .14) 
is a compli-cated problem owing to the bad behavior 
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of o)C) for small energies. Let us therefore con­
sider a second equivalent but more convenient 
method for the inclusion of the nuclear-Coulomb 
interaction allowing us to use the expression for 
the Jost function with the phase oz from the optical 
model: 

Fz(±q) = -W(Gz, uz) =F tW(F1, u1). (3.2) 

Formula (3.2) is a generalization of (2.15) for the 
case of a Coulomb asymptotic form in the scatter­
ing problem, where Fz(q, r) and Gz(q, r) are the 
regular and irregular solutions of the Schrodinger 
equation with a Coulomb field, respectively. 

Our method for including the nuclear interaction 
in the final state for charged particles consists in 
the following: We start from the amplitude M~C) 

which includes only the Coulomb interaction (first 
two terms in Fig. 2). The OM equation for the 
inclusion of the nuclear interaction is written down 
for the function R z(E) connected with the desired 
amplitude Mz(E) by 

(C) 
Mz(E) =Rz(E)/Fz (q), (3.3) 

where F)C)(c:j) is the Coulomb Jost function. After 

this operation the function Rz(E) contains no new 
singularities compared to the singularities of 
M z(E). At the same time the function R z(E) has no 
right-hand Coulomb cut, its discontinuity on the 
right-hand cut is determined solely by the behavior 
of the nuclear phase o z· The free term in the OM 
equation is given by the function R~0>(E) which is 
connected with the amplitude M~C)(E) by a relation 
analogous to (3.3): 

M}C>(E) =R/0> (E)/F~C)(q). (3.4) 

We recali ihat in the derivation of the OM equa­
tion we have constructed a function such that the 
free term in the equation has no discontinuity on 
the right-hand cut. To this end we have separated 
the kinematical factor [El(E- Q) Zoj112 in the par­
tial amplitude. The separation of the factor 
1/ F~ C) ( c:j) carried out above is done for the same 
purpose; the derivation of the OM equation for the 
function Rz(E) is then carried through in the same 
way as for the pure nuclear interaction. If the par­
tial amplitude with pure Coulomb virtual scatter­
ing is lmown (cf., for example, [to]) then the problem 
reduces to the determination of the Coulomb Jost 
function Fl(C)(q). We use the relation (for a repul­
sive poten ial) 

ao (C) I 

FfC>(q)=exp{-_!_ ~ E'fJz ~E). dE'}, e-++0, (3.5) 
:~: 0 - -'e 

where o~C) is the scattering phase for a screened 
Coulomo field, since it is impossible in the case of 

a.n unscreened Coulomb field to introduce rigorously 
the concept of a scattering phase because of the 
distortion of the plane wave at infinity. 

Let us find o~C) for a screened Coulomb poten­
Ual of the form 

_(eZ/r, r<R 
V(r)-\ 0 R . , r> (3.6) 

The screening radius R is sufficiently large com­
pared to the range of the nuclear force. An approxi­
mate expression for the scattering phase for the 
potential (3.6) can be obtained by joining the asymp­
totic expression of the solution of the Schrodinger 
equation in the internal region to the solution in the 
external region at r = R: 

fJfC> cr1 - TJln 2qR, 

('Jz = arg r (l + 1 + iTJ), '11 = ZBZye2mBy I fiq. (3. 7) 

The second term in (3.7) is connected with the cut­
off of the Coulomb potential. Expression (3. 7) for 
the phase is a good approximation if 

I (l + 1 + iTJ) (l- iTJ) I/ 2qR~ 1, (3.8) 

we see from this relation for which values of l and 
q (3. 7) can be used for fixed cut-off radius R. As 
we shall see in the following, using the approximate 
phase (3. 7) has the effect that Renters in the reac­
tion amplitude only as a phase factor which is inde­
pendent of the orbital angular momentum l. There­
fore the corresponding approximate cross section, 
expressed through the square modulus of the am­
plitude, does not contain the radius R. 

Let us find the Jost function, using the relation 

FfC)(q) = exp [- lt(E) + lz(E)], (3.9) 

where we have used the notation 

l (E)=~ f crz(E') dE' 
1 n J E'- E ' 

0 

J" E)=~ rTJ'ln2q'R dE' 
.( :rt J E'- E 

0 

(3.10) 

(E is a complex quantity). The first integral is 
easily calculated if we use 

1 f(l + 1 + iTJ) 
crz= 2i 1nr(Z+1-iTJ) ' 

and consider the integral of the function 

[2i(E'- E)]-1 ln [f(l + 1 + iTJ) I f(l + 1)1 

over a closed contour in the E plane, circumventing 
all singularities of this function. As a result we 
obtain 

J (E)= l f(Z_+ 1 + iTJ) 
1 n f(Z + 1) 

(3.11) 



834 KAMINSKI!, ORLOV and SHAPIRO 

The quantity J2(E) is calculated analogously, con­
sidering the integral of the function 

(E' - E)-1TJ' ln 2q'R 

over a closed contour in the E plane circumventing 
the singularities of this function. We have 

(3.12) 

Substituting (3.11) and (3.12) in (3.9), we obtain the 
Jost function for the screened Coulomb field in the 
form 

We note that the factor 1/F~C)(q) separated out 
in (3.3) coincides in absolute value with the known 
penetration factor for the Coulomb barrier. The 
Jost function (3.13) corresponding to the phase 
(3. 7) (where R is arbitrarily large) is defined on 
the entire physical sheet of the energy including 
the lower branch of the right-hand cut. At the same 
time, the approximate S function corresponding to 
the phase (3. 7), 

Sz = eXJp · ['2i ( crz - TJ ln 2qR)] 

is given on the physical sheet of the energy and 
cannot be continued onto the lower branch of the 
right-hand cut. 

Since (3.7) is approximate, it does not satisfy 
the relation 

(C) (C) 
6z (-q)=-6z (q), (3.14) 

which is a general consequence of the invariance 
of the Schrodinger equation under the interchange 
q --q. This is a consequence of the fact that in 
deriving (3.7) we have used the asymptotic expres­
sion of the Coulomb wave function containing the 
confluent hypergeometric function 

F(l + 1 + iTJ, 2l + 2, -2iqR). 

Although this function is an entire function of q, it 
does not have a unique asymptotic representation 
in the entire q plane. However, the expression for 
the S function for potential (3.6) obtained from the 
phase (3. 7) is a good approximation for real posi­
tive values of q, i.e., in the physical region of the 
energy; this is quite sufficient for the solution of 
the problem of the effects of the virtual scattering 
in nuclear reactions. 

Coming back to our remark on the absence of a 
rigorous concept of a scattering phase for an un­
screened Coulomb potential, let us clarify the 
meaning of the use of the phase az in Coulomb 
scattering problems. Since the partial wave ex-

pansion converges for all nonzero scattering an­
gles we may use a screened Coulomb potential 
with sufficiently large cut-off radius. The cut-off 
radius is determined by the condition that the phase 
(3. 7) can be used for all terms making an appreci­
able contribution to the sum of partial amplitudes 
Then the introduction of a cut-off in the Coulomb 
potential only leads to the appearence of an unes­
sential phase factor in the full amplitude, since 
the second term in (3.7) is independent of lIn cal­
culating the Jost function by (3.5) the cut-off in the 
Coulomb potential plays an essential role. 

4. ANALYTIC PROPERTIES OF THE MATRIX 
ELEMENTS 

As already noted, the quasi-Born singularities 
in the reaction amplitude, which are neglected in 
the dispersion method, are essentially determined 
by the choice of the model for the scattering. It is 
impossible to estimate their contribution to the 
reaction amplitude without recourse to a concrete 
model. Let us introduce a potential model for the 
elastic scattering. Moreover, let us for simplicity 
consider only the interaction in the final state. In 
this approximation the amplitude corresponding to 
the graph of Fig. 1 coincides formally with the 
matrix element obtained by the distorted wave 
method (DWM) which it is convenient to use for 
our methodological purposes. 

Since we are interested in the analytic structure 
of the matrix elements of the DWM, we shall use 
nuclear potentials V(r) which are analytic in the 
right half-plane of the complex variable r. The 
amplitudes calculated with such potentials have no 
essential singularity at infinity. We note that the 
potentials used customarily in nuclear physics 
(square well, Saxon-Woods potential) lead to the 
appearance of an essential singularity at infinity, 
so that the investigation of the quasi-Born singu­
larities is reduced solely to numerical estimates. 
For definiteness we shall consider only the effects 
of the interaction in the final state. 

The radial matrix element of the DWM can be 
written in the form 

00 

Mz(E) = ~ ¢b(r)O(k,r)¢1(q,r)r2dr, (4.1) 
0 

where lf; z(q, r) and 1/Jb(r) are the wave functions for 
the continuous spectrum and the bound state, res­
pectively, O(k, r) is an operator determined by the 
reaction mechanism, and k and q are the wave 
numbers of the initial and final particles in the 
c.m.s., which we shall regard as independent 
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variables (the connection between them required 
by the law of energy conservation can be taken into 
account in the final expressions). 

Our problem consists in writing the wave func­
tions in analytic form. The most convenient method 
for this purpose is the spectral method of 
Martin,[11 •12 J which makes use of the Laplace 
transformation for the wave function and the poten­
tial. This method may be used only for potentials 
which are analytic for Re r > 0, for which the 
Laplace transform exists everywhere for r > 0. 
In[t 3J, where the three-prong vertex part was cal­
culated and investigated as to its analytic proper­
ties, the following potentials were proposed which 
approximate closely the Saxon-Woods potential but 
are analytic for Re r > 0: 

" (w)<c) 
Vi(r) =- V0e-11r ~~~ 

k=O 

Vz(r) = - V0[1- (1- e-l!r)n]. 

(4.2) 

(4.3) 

In potential V 1 the role of a radius is played by the 
quantity na (a = 1/11- is the diffuseness of the sur­
face) and in the potential V2 by the quantity n ~A, 
where A is the number of nucleons in the nucleus 
(A ~ 30). The remaining parameters have the usual 
meaning. 

The corresponding functions p(a) and their 
Laplace transforms 

00 

V(r) = V0 ~ p(a)e-Cirda 

have the form 

(4.4) 

where o(k)(a- /1-) is a function defined by the rela-
tion 
b 

~ f (x') l'J(k) (x'- x) dx' 
a 

=J (-1)kdk~;:) ,lxinside (a,b), 

1 0 , I x outside( a, b) 
( 4.6) 

" 
pz(a)= ~(-1)kCnkl'J(a-kf.-t). (4. 7) 

Using the explicit form of the function p(a), we 
can find the expression for the radial wave function. 
The spectral method is particularly simple in the 
case of s waves, to which we shall restrict our­
selves in the following. In studying the analytic 
properties of the matrix element, the actual value 
of l is evidently not very important (for example, 
the location of the singularities of the partial am-

plitudes in the energy plane is generally indepen­
dent of l). Omitting the index l = 0, we write the 
radial wave function in the continuous spectrum in 
the form 

1 
'iJ(q, r) = 2iqrF(q) [F(- q)f(- q, r)- F(q)f(q, r)]; (4.8) 

f(+q, r) -+exp (+iqr), r-+ oo. (4.9) 

Here F(q) is the Jost function, where 

F(±q) = f(+q, 0). ( 4.10) 

The Jost function (4.10) for the potential V2(r) 
has the form 

F(± q) = 1 + ~ (Koa)2"Fv(+ q); (4.11) 
V=1 

( 4.12) 

Substituting expression (4.8) for the wave function 
in the matrix element M of (4.1), we obtain 

1 
M(q) = F(q) {F(- q)<DC1l(q)+F(q)<DC2l(q)}, (4.13) 

1 00 

<D(1,2l(q) = +----:- ~ 'i'b(r)O(k, r)f(+ q, r)rdr. (4.14) 
2!q 0 

For the potential V2(r) we find 

00 

'V (1,2) 
!D(1,2) ( q) = B(1,2) (x, q) + Ll (Koa) 2" Bv ( q), 

where 

V=1 

1 "" 
B<t·2l(x,q)=+ Ziq ~ 'i'b(r)O(k,r)e±iqrrdr, 

0 

B(x, q) = B(!l(x, q) + B<2l(x, q), 

r'iJb.(r) -+Ce-xr, r-+ oo. 

( 4.15) 

( 4.16) 

Here B is the Born amplitude of the reaction (for 
the s wave). Formulas (4.13), (4.11), (4.15) and 
(4.16) give an analytic expression for the partial 
amplitude of the DWM (for s waves) and can be 
used for the numerical calculation of the amplitude 
and for the analysis of its analytic properties. 
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Let us separate from the amplitude thus ob­
tained the terms corresponding only to the quasi­
Born singularities. To this end we write Min dis­
persion form, considering the Cauchy integral over 
a contour circumventing the singularities of the 
amplitude M. Using the fact that the discontinuity 
of the Born amplitude B(K, q) on the left-hand cut 
of the physical sheet of the q2 plane is equal to 

L\B(x, q) = tt'!B<2l(x, q), ( 4.17) 

we obtain the following expression for the quasi­
Born terms: 

V=1 

Q() =_1 __ ~ ("d,2 L\B(x+11sv;q'). 
v q 2ni ~ J q q'2 - qz 

h1o kz, ... , kv=i Lv 

( 4.18) 

The integral is taken along the upper branch (from 
left to right) of the cut, on which the function 
B(K + Jl,sv; q) has the discontinuity b.B(K + Jl,Sv; q). 

The separation of the terms containing only the 
quasi-Born singularities is a generalization of the 
analogous procedure used in[ 14 ] for the partial 
Born amplitude in the form of a pole term. It was 
shown in that paper that the contribution of the 
quasi-Born terms to the cross section for the 
photo-disintegration of the deuteron near threshold 
is negligibly small for a wide range of values of 
the parameter a. 

We note that the usual argument for the neglect 
of the quasi-Born terms is based on the remote­
ness of the corresponding singularities in the phys­
ical sheet. However, as shown in[13 ] in connection 
with the calculation of the three-prong vertex part, 
the effect of the radius is determined by the con­
tribution of just these remote singularities. It is 
of interest in this context to investigate the quasi­
Born terms for the case of a finite radius. As will 
become clear in the following, an estimate of the 
contribution of the far quasi-Born singularities to 
the difference between M and MOM requires the 
knowledge of the Jost function F(q) in the nonphys­
ical region. However, for qualitative estimates of 
the relative role of the different quasi-Born singu­
larities one may use directly formula (4.18). 

For simplicity and anschaulichkeit we consider 
the pole term Born amplitude 

( 4.19) 

In this case the quasi-Born singularities are also 
simple poles. Collecting the terms with the same 
singularities, we arrive at the expression 

~ ~~ ~v 
Q(q)=L_jQv(q)=.:::.J 2+(x+ v)2. (4.20) 

V=! V=1 q 11 

To avoid unwieldy expressions we do not here quote 
the explicit forms of the terms f3v, which can be 
easily found from ( 4.18). 

The numerical estimates of the relative contri­
bution of the closest poles of the function Q(q) near 
the reaction threshold (q = 0) for the potential 
V2(r) with the parameters V0 = 40 MeV, n = 5, and 
K = 0.5 F-1 are given below: 

v : 1 2 3 4 
Qv/QI: 1 0,05 -0,07 -l-0,07 

We see from this that we can neglect all quasi­
Born poles compared to the closest pole. This is 
in strong contrast to the situation which obtained 
in the consideration of the vertex part, [13 ] where 
the contributions of a number of poles turned out 
to be comparable. 

We note that the account in the reaction ampli­
tude, of the term which has only the closest quasi­
Born singularity is equivalent to the inclusion of 
this singularity in the amplitude corresponding to 
the graph of Fig. 3. The wavy line in this graph 
corresponds to the Born amplitude for scattering 
on the potential 

( 4.21) 

This model graph may be compared to the analog­
ous graph in which the wavy line indicates the 
exchange of a "1r meson." Then the physical mean­
ing of the appearance of the factor n is simply that 
the number of possibilities of a ''one-meson'' ex­
change increases with increasing number of 
nucleons in the nucleus. 

If the quasi-Born terms Q(q) are known, one 
can use the following expression for the calculation 
of the reaction amplitude: 

1 F( ') 
M(q) = 2niF(q)' -~ dq'z q'2 ~ qz [L\B(q')+ t'!Q(q')],(4.22) 

where the integrals are taken along the cuts of the 
functions B and Q. This expression is the analog 

FIG. 3 
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of the corresponding formula for the amplitude ob­
tained from the solution of the OM equation: 

MOM(q) =-.-1-- ~ dq'2 F(q') AB(q'). (4.23) 
2n~F(q)' q'2- q2 

It is seen from (4.22) that the contribution of the 
quasi-Born singularity depends on the magnitude of 
the Jost function on the corresponding cut. For ex­
ample, in a realistic situation the relative contri­
bution of the Born singularity located much closer 

Rei'( rel. un. 
ImH, rel. un. 

I 2 3 4 5 E; MeV 

Q06 -aoz 
\ 
\ 

Q04 \\ -Q04 ' 

'-
-....... --

0.02 ' . -Q06 ' ... ----
............ 
' 

1 2 3 4 5 E,Ha6 

FIG. 4. Energy dependence of the partial s wave matrix 
element for the direct photo effect C13(y, n)C12• Solid curve: 
Born approximation ( x 0.1); dotted curve: M 0 M; and dash­
dotted curve: DWM. The parameters are given in the text. 

to the physical region than the quasi-Born singu­
larity, is enhanced by the weight factor F(q') under 
the integral, which is different on the Born and 
quasi-Born cuts. 

5. NUMERICAL CALCULATIONS 

For an estimate of the total contribution of the 
quasi-Born singularities to M it suffices to know 
the Jost function in the physical energy region 
where it can be calculated with the help of formulas 
(2.15) or (3.2) (depending on whether the particles 
are charged or not). Formulas (2.15) and (3.2) 
contain quantities which are determined in an in­
termediate step in the calculation of the phases 
and the scattering cross sections by the optical 
model. The numerical calculations demonstrating 
the role of the quasi-Born effects were, as be­
fore,[4•6J carried out for the reaction c 13(y, n)C 12• 

The bound state was again described by a model 
with a square-well potential (R = 2.86 F, 
V0 = 33.65 MeV), which gives the correct value of 
the binding energy of the extra nucleon. The con­
tribution of the region inside the nucleus was 
neglected. The new feature in the calculation is 
that the wave function of the continuous spectrum 
and the scattering phases were calculated by an 
optical model with a Saxon-Woods potential with 

parameters taken from[ 15J, where the energy de­
pendence of the depths of the real and imaginary 
parts was taken into account. The results for the 
energy depend~nce. of the partial amplitude corre­
sponding to an s wave of the neutron emitted from 
the p shell are shown in Fig. 4. The use of a 
Saxon-Woods potential for the determination of the 
scattering phases in the physical region is not 
inconsistent with the dispersion relations, since 
this potential can be approximated with sufficient 
accuracy by an analytically admissible potential of 
the type (4.2) or (4.3). 

It is seen from a comparison of the correspond­
ing curves for MOM and M that the neglect of the 
quasi-Born singularities leads to an insignificant 
alteration of the value of the amplitude while com­
pletely preserving the character of its energy de­
pendence. At the same time the effect as such of 
the virtual scattering of the products of the photo­
reaction is very important . 

The authors express their sincere gratitude to 
Yu. P. Orevkov for programming and carrying out 
the numerical calculations on an electronic com­
puter. 
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