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The doubly-logarithmic asymptotic approximation of the Compton effect is obtained for scat­
tering at large angles. The asymptotic form is calculated by summing the asymptotic contri­
butions of Feynman diagrams. It is shown that both diagrams containing, and diagrams not 
containing, infrared divergences are important. The asymptotic amplitude is represented by 
fexp(-a(47r)-1ln2s). The asymptotic form of the cross section is obtained for different ways of 
measuring the accompanying bremsstrahlung. The total cross section for elastic scattering 
plus bremsstrahlung with no restriction on the photon energy does not include doubly-logar­
ithmic terms and equals the asymptotic form of the Klein-Nishina-Tamm cross section. 

INTRODUCTION 

AT high energies ..fS the asymptotic forms of 
Feynman diagrams contain logarithms of v s, and 
the effective perturbation-theoretical expansion 
parameter becomes 1r-1a ln s in some cases.l1•2] 

In several problems, such as that of bremsstrah­
lu.i'1g, ln2s appears for each power of a, i.e., for 
each intermediate photon. Using the customary 
terminology we shall refer to Feynman diagram 
terms containing (7r-1a ln2s) as doubly-logarithmic 
(d.l.) terms. When 

:n;-1alns< 1, ( 1) 

which denotes the smallness of singly-logarithmic 
terms, the summation of d.l. terms alone will 
yield a correct asymptotic form which we shall 
designate as the d.l. asymptotic form. 

Sudakov was the first to obtain the d.l. asymp­
totic form for the vertex part. [a] Abrikosov [4] and 
Yennie, Frautschi, and Suura[ 5J have also studied 
the d.l. asymptotic form of the Compton effect and 
some other processes. They considered diagrams 
like Fig. 1, d and e, containing infrared divergen­
ces for all intermediate photons. However, the total 
number of d.l. terms is not exhausted by these dia­
grams. For example, let us consider the asymp­
totic form of the Compton effect at high energies s 
and at angles close to 180° in the c.m. system 
(u == canst). The sixth-order diagrams a, b, and c 
of Fig. 1, which do not include infrared divergen­
ces, have been calculated by Gell-Mann et al. [S] 

in this asymptotic form for finite photon mass A. 

The sum of the three diagrams is proportional to 

(2) 

When A - 0 this asymptotic form is incorrect be­
cause it contains an infrared divergence that is 
absent from the diagrams. The correct asymptotic 
form is obtained by replacing A 2 with s-1, thus con­
verting (2) into a d.l. term. The other sixth-order 
diagrams, which contain d.l. terms, are infrared 
terms (Fig. 1). 1> 

In the present work, by summing all d.l. pertur­
bation-theoretical diagrams the d.l. asymptotic 
form of the Compton effect is obtained for back­
scattering (s- oo, u ==canst); this also coincides 
with the asymptotic form for two-photon annihila­
tion of electron-positron pairs. The latter process 
is also of great experimental interest, as it can be 
investigated in colliding-beam experiments. The 
energy at which the d.l. asymptotic form becomes 
important can be estimated from the condition 
1r-1a ln2s == 1, which in the c.m. system gives 
E == vs = 104 MeV == 10 GeV (7r-1a ln s == 0.05). The 
sum of all d.l. diagrams equals the amplitude of 
the pole diagram (Fig. 2a) multiplied by 
exp(-a(47r)-1ln2s). 

It is clear from the foregoing that the appear­
ance of d.l. terms is not associated with infrared 
divergences, i.e,., with the possibility of emitting 
quanta with no lower energy limit. The d.l. terms 

1) Abrikosov [4 ] calculated the infrared diagrams of Fig. 1, 
d and e, incorrectly; as a result he obtained the correct result 
for the cross section (38a) given below. 
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FIG. 1. 

in our case have a very simple origin. It is well 
!mown that the cross section for bremsstrahlung in 
large-angle Compton scattering exhibits ln2s energy 
dependence. An increasing cross section of this 
competing process is accompanied by a corre­
spondingly decreasing amplitude of elastic scatter­
ing. It is important to note that the d.l. contribution 
to the cross section for bremsstrahlung is certainly 
not attributable solely to soft quanta in the rest 
system of the emitting particles. It is easily 
proved, for example, that in the laboratory system 
an important contribution to bremsstrahlung is 
provided by all quanta having energies w « s and 
perpendicular momenta k 1 = wJ. « m = 1. The d.l. 
contribution of intermediate quanta is determined 
by this region. 

FIG. 2. 

2. CALCULATION OF THE ASYMPTOTIC FORMS 
OF DIAGRAMS 

Let us consider the free-electron Compton ef­
fect. Let Pu p2 and Ku K2 be the 4-momenta of the 
initial and final electrons and photons, respec­
tively. The Mandelstam invariants are 

S = (pi + Xt) 2, 

u = (Pt- X2) 2 = q2, t = (pi- P2) 2. (3) 

We shall obtain the asymptotic expression for the 
process for s - oo and u = const in the case of 
scattering at c.m. angles near 180°. The only 
Feynman diagrams that contribute to this asymp­
totic form are those of Fig. 1, a and b, containing 
the" small" momentum q = p1 - K2 in the internal 
electron lines between external photons .2' The 
diagrams obtained by interchanging these external 

2)In all diagrams the external photons are represented by 
wavy lines and the intermediate photons by dashed lines. 

photons contain the "large" momentum r = p1 

+ K 1 (r2 = s) in the internal electron lines, and are 
small of the order s- n, where n is the number of 
internal electron propagatorsJ4J We shall not also 
consider closed electron loops. It can be shown 
that when the photon self-energy is taken into ac­
count two logarithms are lost, when the scattering 
of light on light is taken into account three logar­
ithms are lost etc. l4J 

To eliminate infrared divergences we follow 
Abrikosov l4 J in introducing a small virtual term 
for the initial and final electrons (p~ = p~ = m2 

+ om2) in place of the photon mass A.. The asymp­
totic form of the amplitude is then calculated more 
simply but differs from the asymptotic form that 
is obtained when A. is used. Infrared divergences 
are removed, as is well !mown, by adding the elas­
tic cross section to the cross sections for inelastic 
processes associated with the emission of any 
number of soft photons. The asymptotic forms for 
inelastic processes also differ depending on whe­
ther A. or o is used. The result of the addition does 
not, of course, depend on the specific cutoff. 

To calculate the integrals we employ Sudakov' s 
procedure, l3J which consists in replacing the inte­
gration over the 4-momentum k of intermediate 
quanta by an integration over a, {3, and k1, where3> 

k = ap + f3Pi +k.1_, 
s 

k2 = saf3 + k.1_2, k.1_2 < 0, d•k = 2 dadf3d2kj_; (4) 

k 1 is a space-like 4-vector that is perpendicular to 
the plane of the vectors p1 and p2• For scattering 
near 180° (u = canst), k1 is the component of the 
photon momentum that is perpendicular to the inci­
dent photon direction in both the c.m. and lab. sys­
tems. For k2 = 0, sa(s{3) represents the total c.m. 
energy of the intermediate photon and initial (final) 
electron. 

Let us consider the single fourth-order diagram 
(Fig. 2b) that depends on s. From the Feynman 
rules we obtain 

3 )All subsequent equations and formulas will be accurate 
to terms of the order 1/s. 
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(2n) ~ 
r Vi(P2 + k + 1) ;1(q + k + 1);2(Pt+ k + 1)vi d~k 
J {(p2 + k)2- 1 + ie]((q + k)2 -1 + ie](k2 + ie)[(Pt + k) 2 - 1 + ie] '· 

(5) 

where p = PfYi and 1i = c = m = 1. Taking into ac­
count that ( 5) is to be calculated between the free 
Dirac bispinors up and up1 and transforming to the 
new variables give~ in ( 4), we obtain for the 
numerator: 

2s£e7(q"'+ kJ_ + 1)e'; + O(a, ~.a~)]. (6) 

We shall show subsequently that the unwritten 
terms containing a or {3 in the numerator do not 
contribute to the d.l. asymptotic form. 

The factors of the denominator in ( 5) become 

(p2 + k) 2 - 1 + ie = s~ + 2a + c'l + kJ_2 +sa~+ ie, (7a) 

(q + k) 2 - 1 + ie = (q + kj_) 2 +sa~- 1 + ie, (7b) 

k2 + ie ~sa~+ kJ_2 + ie, (7c) 

(p1 + k) 2 - 1 + ie = sa+ 2~ + c'l + kJ_2 +sa~+ ie. (7d) 

We have here omitted quadratic terms in a and {3, 
which do not affect the asymptotic form of the inte­
gralY We shall show subsequently that the princi­
pal contribution to the asymptotic form comes from 
·the regions Ia I « 1 and lf31 « 1; this justifies the 
dropping of terms of the order of a or {3 compared 
with unity. The second term in (7a) and (7d) is im­
portant only for {3 < 1/s and a < 1/s, respectively. 
We shall first integrate over a. It is easily shown 
that when {3 ::::; 0 or {3 ::::; 1 the zeros of all four de­
nominator factors in (7) lie either above or below 
the real axis; therefore the integral vanishes. 
When 0 ::::; {3 ::::; 1 the zeros of (7b) and (7c) lie below 
and the zero of (7d) lies above, while the zero of 
(7a) lies below for {3 > 2/s and above for {3 < 2/s. 
When the integration contour is closed below the 
axis it encloses the poles of (7a), (7b), and (7c). It 
is easily seen that the contribution from the pole 
of (7a) does not contain logarithms of s. 

The omitted terms of the numerator that are 
proportional to a (or {3) compensate with 1/ s ac­
curacy the only important pole located above the 
axis in (7d) [or (7a)]; therefore the contribution 
from these terms vanishes. The contributions of 
the poles of (7b) and (7c) cancel for large k1. We 
shall therefore assume - k3_ ~ 1. The contribution 
from the pole of (7b) is 

4 >By rotating the a and f3 axes we can arrive at k = p 1'f3' + 
p~ a + k 1, where p;• = p;• = 0, and quadratic terms in a' and f3' 
do not appear.['] 

In (7a) and (7d) we have dropped terms of the 
order 1/s; accordingly the lower limit of integra­
tion over {3 has been replaced by 1/ s (the coefficient 
of this limit is unimportant). We have also neglec­
ted quantities of the order of a or {3 compared with 
unity. We get rid of the o function conveniently by 
integrating over k 1: we then obtain a limitation on 
the variation of the product sa{3: 

1 ~sa~ (9) 

and, therefore, 

e~ 1 dp 
Jb = ---3 ~ -·const = lns·const'. (10) 

{Z:rt) 1/s f3 

We see that the contribution from this pole furn­
ishes only a singly-logarithmic (s.l.) term and 
should therefore be dropped in our approximation. 
The loss of one logarithm although the original 
logarithm (8) is of d.l. form results from the con­
dition (9) imposed on sa{3. We note that the regions 
{3 ~ 1/ s and {3 ~ 1 furnish no logarithmic contribu­
tions. We can therefore assume 1/ s « {3 and a « 1 
or a ~ 1/ s{3, thus justifying our foregoing procedure 
with regard to the dropping of terms. 

The contribution from the last residue of (7c) 
corresponding to a real intermediate photon, can 
be divided conveniently into two parts, which are 
contributions from the regions - k3_ > a and- k}_ < a, 
1/s « a« 1. The first of these contributions is 
treated exactly as in the preceding case and leads 
to a fixed value of saf3 while furnishing a s.l. term. 

The contribution from the second region is 
i 

e~:n; s d~ r da 
Jc = - {2:rt) 3 0 ~ + 2a/s+ bjs J a+ 2~/s + c'ljs 

a ,.. ,.. -

X\ dzO(z-sa~/1(q+ 1)e2 =f(u/ -~A') ,z=-kj_2, 
J q2 -1 \ 2:rt 
0 ( 11) 

where 

f< )- 2 e1(q+ 1)e 
u -e ~ q2 ---1 

A=1/2 ln2 s-2lnsln6_,_ a=e2/4:rt. (12) 

We see that this region gives a d.l. term that deter­
mines the asymptotic form of the integral in ( 5) as 
a whole. Without changing the d.l. contribution, we 
can, as in the preceding case, assume a, {3 « 1 in 
( 11). However, care must be exercised at the 
lower limits because of the infrared divergence. 
It is easily proved that the d.l. contributions from 
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the regions (a « 1/s, {3 » 1/s), (a » 1/s, {3 « 1/s), 
and (a « 1/s, {3 « 1/s) corresponding to a soft in­
termediate photon in ( 4) are mutually cancelled for 
o « 1/s; these regions make no contribution when 
o - 1. Therefore the entire d.l. contribution to ( 11) 
is determined completely by the region a > 1/s, 
{3 > 1/s (a,{3 -1/s make no logarithmic contribu­
tion). This region corresponds to a hard photon in 
any system of coordinates such as ( 4). Cancellation 
of the d.l. contribution from soft photons occurs in 
all perturbation-theoretical orders, as we have 
shown in [7) . For the sake of simplicity we shall 
subsequently assume o - 1 and determine the con­
tribution of hard photons satisfying 

1fs<a.~<1. (12a) 

The appearance of a d.l. term is associated with 
the possibility that the value of sa{3 can vary down 
to zero. If we introduce the photon mass with 
A. 2 » 1/s, which corresponds to introducing A.2 as 
an additional term of the o function in ( 11), then 
A. 2 will be the lower limit of sa{3 and we shall ob­
tain only a s .1. term. This is the situation that 
arose in[BJ, where the d.l. term appeared in the 
cross section only upon the addition of the inelastic 
cross section associated with the emission of an 
additional soft quantum. 

When integrating higher order diagrams we 
shall henceforth retain the order of integration that 
has already been shown: We shall first integrate 
over a or {3 in the complex plane, close the contour 
on the side containing the pole of the photon Green's 
function, write the contribution of each pole as a 
o function, and integrate the latter over k 1. The 
square of the logarithm of s for each photon can 
then arise only out of an integral having the form 

~ da ~ d~ (13) 
a ~ 

under the condition that sa{3 is not bounded in both 
directions while a and {3 satisfy condition (12a), for 
which o - 1. The diagram will furnish a d.l. con­
tribution as ln2s appears for each intermediate 
photon. 

3. ASYMPTOTIC FORM OF THE AMPLITUDE 

We select the next order, which is the sixth 
order, as an example. The sixth-order diagrams 
making d.l. contributions are shown in Fig. 1. The 
remaining sixth-order diagrams are corrections to 
the vertex parts and self energies and do not furn­
ish d.l. contributions, as can be shown directly. 

We shall begin by analyzing diagrams d and e 
of Fig. 1. As in the fourth order, only the momenta 
p1 and p2 can remain in the numerators of the 

vertical-line electron propagators. The other 
terms will contain corrections of the order of a 
or {3 in the integrand. By moving p1 and p2 towards 
the free bispinors up1 and up2 it becomes easy to 
show that the only important terms are the anti­
commutators of the momenta Pi and the 'Yz matrices 
at the vertices, which contribute 2s for each virtual 
photon. The resulting expression is 

la =•---e6
- ~ iflku ~iPI0..L 

(2,-.;)8 

~ dat da2 d~t d~z 

(15a) 

s(a1 + az)(r~l + ·~2) ~ sa2~1 < 1 (I q2 - 11 "" 1), ( 15b) 

lkt.L2 l ~1, lku2 l < 1. (15c) 

No other region makes a d.l. contribution. Observ­
ing these conditions, calculating the contributions 
of the residues with respect to a 1 and a 2, and inte­
grating over ku, we obtain 

e2 
a=-, 

4n 
(16) 

where f(u) is the Born amplitude ( 12). 
The d.l. contribution of diagram e in Fig. 1 dif­

fers from that of diagram d by the exchange 
{32 ~ {3 1 and has the form of the integral in (16) 
under the conditions 

Let us now consider diagram a of Fig. 1. In the 
numerator we, as previously, obtain 2s from the 
anticommutators of Pi and 'YZ at the vertices of 
quantum 2. The anti commutator of p1 andy i at the 
upper vertex of quantum 1 leads to the replacement 
of 'Yi by p1 at the lower vertex. Continuing the 
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movement of this p1 towards the free end with the 
momentum p1, we easily see that the only important 
term is the anticommutator of p1 and k1 + ~ in the 
numerator of the nearest electron propagator. This 

term, s(a 1 + a 2), compensates the denominator of 
the electron propagator between the photon lines 
having the momenta K1 and k:!· We finally obtain 

Ia = _ __ e6_ ~ dl-ku_ ~ dl-ku ~ . dat da2 d~t d~2 
(2n)B (at+ ~e)[(q + ku_ + ku) 2 + s(a1 + a2) (~1 + ~2) -1 + ie](~2 + ie) 

( 19) X e~(qA+ku+1)e; 
((q + ku) 2 + sa2~2 - 1 + ie]{ku_2 + sa1~1 + ie) (ka2 + sa2~2 + ie) 

We note that the poles with respect to a 1 and a 2 

in ( 19) lie on opposite sides of the real axis when 
{31 < 0, {32 > 0, and l/311 > {32• To obtain residues of 
the photon propagator poles the contour must then 
be closed below the axis for integration over a 2, 

and must be closed above the axis for integration 
over a 1• Having determined these residues and 
having integrated over ku, we obtain (16) under 
the conditions 

U2~ I at!, l·~d ~ ~2, ls(at + a2) (~t + ~2) I = lsll2J~d ~ 1, 

-ku2 = sa21~2 ~ 1. (20) 

We note that whereas -kh = sa 2{3 2 « 1, the quantity 
- kJ1 = sa 1{3 1 can be either larger or smaller than 
unity; thus a d.l. contribution appears for both 
- kh « 1 and - kJ1 » 1. 

A completely analogous calculation of diagram 
b in Fig. 1 yields the integral ( 16) under the con­
ditions 

a2 ~ I ad, I ~d ~ ~2.1 sa2~d ~ 1,-ku_2 = sa1~1 ~ 1. (21) 

Diagram c is the most complex diagram. Trans­
forming the numerator, beginning with the external 
electron propagators, we find that the momentum 
2p1 arrives at the upper vertex of the central ver­
ticfl.l line and 2p2 at the lower verte~. All terms in 
the numerator of the central vertical line that are 
proportional to p1 or p2 make no contribution. Thus 
only the perpendicular components of the momenta 
"survive" in the numerator; these include q (q is 
almost a perpendicular vector: q = q1 + ap2 + bp1; 

a, b ~ 1/ s). The same applies to the lower (upper) 
horizontal line of the diagram, since the numerator 
of this line stands between up1 and p2 (up2 and p1). 5> 

When we interchange p1 with the numerator of the 
central vertical line we reverse the sign of the 
vectors in the numerator. Then when p1 is com­
muted with p2 we obtain the factor 2s; the other 

5frhe anticommutators of p1 and e2 , 2p1e 2 and p2 , e1 and 
2p2e 1 do not depend on s because of the transverse character 
of the photon and the condition u = const. 

terms do not contribute. The product of the three 
remaining numerators with sign changes taken into 
account is 

- {(q + k!)2- 1](q + ku + 1)· 

- [(q + k2)2 -1](q + ku_ + 1) 

+ (q + kt.L + 1) (q- 1) (q + ku + 1) 

+ sa1~1( q + ku + 1) + sa2~2(q + ku_ + 1). (22) 

We have converted the quadratic te.rms containing 
ku to similar terms containing the whole vector ki 
by adding and subtracting saif3i· By inserting the 
numerator (22) into the integral for diagram c it is 
easily shown that in the first two terms of (22) the 
quadratic factors cancel the corresponding denom­
inators. Following this, the integrals containing 
the first and second terms of ( 22) differ only in 
sign and therefore cancel completely the integrals 
for diagrams a and b, respectively. We note that 
this cancelation can occur without imposing the 
conditions (20) and (21) that distinguish the d.l. 
contribution. The last two terms of (22) do not 
contribute because they compensate the pole with 
respect to a 1 or {32 that lies above the real axis, 
after which the remaining poles all lie on one 
side of the real axis. The third term of the numer­
ator leads to the integral ( 16), where the region 
determining the d.l. contribution is defined by 

a2 ~ I ad .d ~d ~ ~2.11 sa2l3d ~ 1,f--ku2 = sa;~;~ 1. (23) 

We note that this remaining uncompensated term 
makes a d.l. contribution only in the region 
- tq1 « 1 for both intermediate quanta; thus in 
addition to the canceled contributions of diagrams 
a and b the d.l. contribution from the region 
- Iq1 » 1 is also canceled (as has been observed 

in [S] for the case of nonzero photon mass). The 
cancelation of the d.l. contribution from the region 
- ki1 » 1 occurs in all perturbation-theoretical 
orders. [7] 

We note that (23) differs from (17) only in the 
reversal of the inequalities imposed on sa 2{3 1• 
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Adding the sum of diagrams a, b, and c to diagram 
d and taking into account that the region I sa 2,8 1l ~ 1 
[see (7)] makes no d.l. contribution, we find that 
the sum of diagrams a, b, c, and dis still given 
by the same integral ( 16) under the condition 

-ki2 =sa;f\i~1, a2~la1l, lfl1l~f\2, i=1,2.(24) 

Adding this sum to the last diagram e [see ( 18)] and 
considering that the region IJ311 ~ ,82 also makes no 
d.l. contribution, we find that the sum of all sixth­
order diagrams is determined by the conditions 

-ki2 = saif\i~1, aa~ lad. (25) 

The foregoing result is clearly independent of 
the numerical indices assigned to the photons, i.e. 
when we reverse the condition imposed on a 2 and 
a 1 the integral yields the same contribution. We 
can therefore remove this condition and divide the 
result by 2. The final result is 

1 ( a r dafl..aa. dfl )2 1 ( a )2 = f(u)- - J- S- = f(u)- -ln2 s . 
2 2:rr1/s a 1/s fl 2 4:rr 

(26) 

By adding the second, fourth, and sixth orders 
we obtain the amplitude F in the form 

F(s~ u)=f(u) { 1-~p2+~ ( ~p2r- ... } ,p =Ins. 
4:rr 2 \ 4:rt ' . ( 27) 

We derived this equation by assuming o ~ 1, but 
the result also is valid for o - 0. [7] In ( 15b) we 
have assumed q2 - 1 ~ 1, so that our analysis can­
not be applied for q2 - 1. We note that the asymp­
totic contribution of all the considered orders is 
proportional to the f(u) -pole diagram a of Fig. 1, 
which contains the entire dependence of the ampli­
tude on q2 = u. The first three terms of (27) coin­
cide with the expansion of exp(-ap2/47r). 

The diagrams of all higher orders can be trea­
ted similarly, but for lack of space we refer those 
who are interested to[7) and shall state only the 
result. It is customarily assumed that in the course 
of motion along an electron line intermediate pho­
tons are first emitted and then absorbed. Every 
d.l. diagram can be represented by a ladder 
(Fig. 3a) constructed out of an electron line, with 

a b 

FIG. 3. 

all photon lines beginning and ending only on the 
rungs of the ladder. On each rung (Fig. 3b) the 
emitted and absorbed photons are grouped to form 
two nonintersecting beams. The first beam along 
the electron line consists only of the emitted photon 
lines that are absorbed at some later location on 
the electron line (following the entire first beam). 
The second beam consists of the absorbed photon 
lines emitted from the same or from preceding 
rungs. The last emitted photon line in the first 
beam and the first absorbed photon line in the 
second beam must connect different rungs. Ex­
ternal photons are to be associated with directions 
corresponding to the u channel, i.e., they are the 
reverse of the lines shown in Fig. 3. The sixth­
order diagrams of Fig. 1 comprise the simplest 
illustration of the latter case. 

The sum of all n-th order diagrams makes the 
d.l. contribution f(u)(-aA/27r)n/n!, which is equiva­
lent to the exponential d.l. asymptotic amplitude 
F(s, u): 

F(s, u) = f(u) exp( -aA / 2:rt), 

where f(u) and A are defined by ( 12). 

(28) 

In conclusion, we note the following interesting 
fact. It is easily verified, using the sixth order as 
an example, that we obtain the correct d.l. contri­
bution from all diagrams when at the vertices of 
photon emission (absorption) we replace Yi by k/a 
(or k/,8) and divide d4k by s/2. This also holds 
true for higher order diagrams. The resulting 
expression coincides with that obtained when photon 
Green's functions in the form kl-lkvdz/k2, where 
dz = 2/sa,B, are inserted in the Feynman integrals. 
We know that the contribution of longitudinal pho­
tons to the renormalized scattering amplitude 
(neglecting photon loops in the external electron 
lines) is exp(f d4kdz/k2), in agreement with (28). 

4. RELATION OF THE ASYMPTOTIC AMPLITUDE 
TO PARTIAL WAVES FOR COMPLEX l 

It is interesting to understand our foregoing re­
sult from the point of view of an asymptotic form 
of the amplitude in the u channel for fixed u and 
large unphysical values of the transferred momen­
tum s, as is done in the theory of complex angular 
momenta. 

The Compton effect is characterized by three 
independent helicity amplitudes of determinate 
parity: 

Iss= (1/2ITI 1/2), fsn = (1/ziTI 3/2), fnn = ( 3/ziTI 3/2), (29) 

where 1/2 and 3/2 are the sums of the photon and 
electron spin projections on the direction of elec­
tron momentum. 
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The asymptotic form of these helicity ampli­
tudes is determined by the characteristics of the 
corresponding partial amplitudes f~s· f~n• and 
f~n ( l = j - %l. In the Born approximation we have 

lssl =- ~2{Jzo • lsnl = e~, Inn!= e2(yu -1) . (30) 
yu- 1 yl l 

The pole in the amplitude f~n for l = 0 comes from 
the diagram in Fig. 4a and, as is shown inl6J, in 
the case of massive photons it is the "nucleus" 
for the appearance of a moving Regge pole. To ob­
tain f~n in higher approximations we can first take 
into account the contributions coming to it from 
diagrams such as Fig. 4b having no singularities 
with respect to u, and then obtain the contributions 
of the other diagrams with the aid of the unitarity 
condition. 

In the case of real photons, which are massless, 
we can unfortunately not make use of unitarity, 
because for this purpose we would have to be con­
cerned with intermediate states populated by many 
quanta. This situation is associated with the fact 
that the virtual quanta with small k 1 considered in 
the preceding sections are soft in the u channel. 
Nevertheless, the helicity amplitude fnn (u, s) can 
be calculated on the basis of the following simple 
but very useful fact. In a state with the projection 
3/2 of its total spin on the direction of motion the 
product of the photon polarization vector e = e IJ.I'IJ. 
and the bispinor up vanishes: 

up,;/=0, lip,;{=O (e/=e2, e2'=e1). (31) 

These identities result from the impossibility of 
constructing a state with the projection 3/2 from a 
spinor. The amplitude fnn in the asymptotic form 
is of the order 1/s.ESJ 

All diagrams of the type of Fig. 2, a and b, that 
we have considered make no contribution to the d.l. 
asymptote of fnn· Indeed, in virtue of (31) the anti­
commutators of Pi and Yi in the external electron 
lines vanish identically; this produces a loss of s. 
The result of commuting Pi and Yi vanishes because 
of the free Dirac equation (Pi- 1)u = 0. The re­
maining terms of the numerator contain 0! or {3 and 
are small because of the condition 0!, {3 « 1. The 
asymptotic behavior of fnn is determined entirely 
by Fig. 4b diagrams. This indicates that a right­
hand cut and unitarity are not essential for calcu-

'I~ 
lCz(:~t;J a ~ 

/1, 
', 

t'~'' ~ 

) }' x,(l(, 

"'z (lt;J 
// 
/I 
/ 

~) 

b 

FIG. 4. 

lating fnn with d.l. accuracy. In the partial-wave 
treatment this results from the factor ru- 1 in the 
expression for f~n in (30); this factor causes 
vanishing of the contribution from states with 
u ~ 1 (soft quanta). The diagrams in Fig. 4b are 
proportional to 1/s; for this reason we have not 
discussed them earlier. Diagrams of this kind 
containing more than one internal electron line 
are proportional to s-n (n ==: 2); they must there­
fore be dropped. 

The diagrams in Fig. 4 can be calculated in an 
elementary manner. For example, the n-th order 
contribution can be obtained by interchanging the 
ends of all photon lines, for which 0! i and {3i then 
become independent variables. The result is the 
product of the pole diagram Fig. 4a by the expres­
sion 

~{-~A}n 
nl 2:n: ' 

(32) 

where (n! )-1 arises from the interchange of the 
photon lines and A is defined by ( 12). Summation 
over n yields the exponential in ( 28). 

The entire discussion concerning the calculation 
of fnn can be applied to the calculation of fns· Thus 
we have 

_e2(y;--1) (-a A\ 
Inn- exp -2 J, 

S \ Jt I 

Ins = ~ exp (-~A J. 
s 2:n: ; 

(33) 

The situation is reversed for the calculation of 
fss· Diagrams like Fig. 4a, having no singularities 
with respect to u, yield contributions of the order 
1/s, while the amplitude itself is not diminished. 
The amplitude is determined by the diagrams con­
sidered in the preceding sections and therefore, 
with respect to the u channel, by intermediate 
states containing low-energy quanta. The actual 
calculation yielded 

e2 ( a \ Iss= -_--exp. --A) I. 
iu- 1 ' 2:n: 

( 34) 

This result could have been predicted on the basis 
of (33) from the factorization requirement for 
helicity amplitudes. 

In conclusion, let us consider the partial waves 
of the u channel. Foro ~ 1 and A = p 2/2 a simple 
calculation yields 

e2(iu- 1) 
lnn1 = -----cp(z), 

l 
2 00 

lssl = ~(cp(z)- 1], cp(z) = ~ e-x'lz-xdx, 
iu-1 o 

4:n:l2 
Z=--. 

a 

(35) 
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Thus when we took account of d.l. terms, or, 
equivalently, the correct behavior of partial waves 
for l "'[(;, the o z 0 nonanalyticity in the partial 
waves vanished. In this sense we can state that 
taking account of d.l. terms leads to Regge-like 
behavior of the partial amplitudes. 

5. ASYMPTOTIC FORM OF THE CROSS SECTION 

To obtain our final result the elastic-process 
cross section must be added to the cross section 
for inelastic processes associated with the emis­
sion of any number of additional bremsstrahlung 
photons. To preserve the kinematics of the process 
we shall assume that the total bremsstrahlung 
energy is much smaller than the initial energy: 
2;koi « Vs. This is equivalent to the conditions 
2;ai « 1 and 2;{3i « 1, which are always satisfied 
when obtaining the d.l. contributions. 

Let us consider the asymptotic cross section in 
the sixth order. Following Abrikosov,[4J it is use­
ful to represent inelastic cross sections by dia­
grams such as those in Fig. 5, which contains d.l. 
diagrams for inelastic cross sections involving the 
emission of two real bremsstrahlung photons. The 
d.l. cross-section diagrams of the corresponding 
order involving the emission of a single real 
bremsstrahlung photon are obtained from Fig. 5 
by transposing the end of one bremsstrahlung pho­
ton from the right-hand or left-hand corner of the 
upper electron line to the corresponding free 
corner of the lower electron line. For example, 
diagram c becomes diagram c'. When the ends of 

b 

c c' 

FIG. 5. 

both bremsstrahlung photons are transferred from 
the upper to the lower electron line we obtain the 
unrelated diagrams of Fig. 1 and Fig. 2a corre­
sponding to elastic scattering. Since the d.l. con­
tribution to the amplitude arose out of real inter­
mediate photons, the calculation of the d.l. contri­
butions to the cross section from Fig. 5 diagrams 
is analogous to the corresponding calculation for 
Fig. 1 diagrams. The integrals yielding the d.l. 
contributions of Fig. 5 diagrams differ from the 
corresponding integrals for Fig. 1 diagrams only 
in that q is replaced by q' = q - k11 (which does not 
affect the result when - kil « 1 and q2 "' 1), and that 
the integration region over all a i and {3i is modified 
in accordance with experimental conditions. s> 
Unlike intermediate photons, bremsstrahlung pho­
tons are emitted at both vertices, thus yielding the 
factor (-1) for each bremsstrahlung photon. 

In the higher orders the diagrams yielding d.l. 
contributions to the cross section can also be 
represented by means of Fig. 5, where the upper 
and lower diagrams will have been replaced by any 
diagrams of Fig. 3; then one end of each brems­
strahlung photon belongs to any beam of emitted 
photons in the Fig. 3 diagrams, while the other end 
belongs to any beam of absorbed photons. The out­
side photons of a beam can then be either intermed­
iate or bremsstrahlung photons. 

The result of adding the elastic and inelastic 
cross sections is 

da da0 ( a ) ( a -) -=--exp --A exp +--A , 
du du n 1 :t ' 

(36) 

where 

dao / du = 2na2/ s ( 1 - u) (37) 

is the asymptotic form of the Klein-Nishina-Tamm 
cross section. The first exponential is the square 
of the factor multiplying the elastic scattering am­
plitude in ( 28). The second exponential arises out 
of the inelastic cross sections. The values of A 
and A, obtained from (12), determine the contribu­
tions of the intermediate and bremsstrahlung pho­
tons, respectively. The integration limits for 

6 )The removal of limitations such as I sa2{3 1 I ~ 1 and 
a2 ~ I a 1 I when summing diagrams (see Sec. 3) is not performed 
in exactly the same way for elastic and inelastic cross sec­
tions, as a general rule. For example, diagrams d' and e' sep­
arately in an inelastic cross section involving the emission of 
one bremmstrahlung photon do not contain the limitation I {3, I 
~ {3 2 of (lSa); this leads to the required doubling of their sum. 
Contributions from large kil are compensated among the dia­
grams a, b, and c of Fig. 5 in the same way as in the amplitude 
of Fig. 1. 
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FIG. 6. 

hI llf 

bremsstrahlung photons in A depend on the experi­
mental conditions. The virtual term o that has been 
introduced for electrons, and which A and A con­
tain, cancels out. [5] 

In Fig. 6 the solid curve denotes the region of 
integration over intermediate quanta in A. The 
dashed lines define the integration regions for 
bremsstrahlung quanta in A under determinate 
experimental conditions. The contributions of the 
different regions are indicated by numerals in 
units of p2 = ln2s. 

We now present the resulting cross section 
formulas obtained with different methods of cutting 
off bremsstrahlung experimentally. 

1. In the lab system (p1 = 0) bremsstrahlung is 
emitted with the energy k0 = (3 + sa/2 ::s E. Then 

a) E ~ 1, i.e., (3 < 1, Cl' < 1/s, and 

da = dao exp ( _ ap2 ) , 

du du :n; 
(38a) 

b) E ~ 1/s, i.e., (3 < 1/s, a < 1/s2, and 

da = dao exp (- 4ap2 ) • 

du du :n; 
(38b) 

2. Bremsstrahlung is emitted with the energy 
ko ::s E ~ 1 in the rest system of either the initial or 
final electron. In this case we have either {3 < 1, 
a < 1/s or (3 < 1/s, a < 1, and the cross section is 

da = da0 exp ( _ ap2 ) • 

du du 2:rt 
(39) 

3. In the c.m. system bremsstrahlung is emitted 
with the energy k0 = Vs/3/2 + Vsa/2 < E ~ 1. This 

kind of experiment in which two-photon pair annihil­
ation is measured can be performed with colliding 
beams; the cross section in this case coincides 
with (39). 

We note in conclusion that, as already mentioned 
in our Introduction, the major d.l. contribution to 
the bremsstrahlung cross section is determined by 
quanta with -k~ « 1, w «E. This indicates that if 
we consider the total cross section for elastic 
scattering and any number of bremsstrahlung 
quanta, this cross section will equal (36) with d.l. 
accuracy, with the integration region in A deter­
mined by the conditions -k}_ <a, a« 1, thus coin­
ciding with the integration region in A. Conse­
quently, this total cross section equals da0/,du with 
d.l. accuracy. 

The authors are grateful to A. A. Abrikosov, 
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