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A method is developed for measuring the shear moduli of liquids; for this purpose the change 
in the resonant frequency of a piezoelectric quartz crystal, induced by the presence of a liquid 
film on a crystal face under a quartz covering plate, is measured for very small vibrational 
amplitudes. For low-viscosity liquids (water and benzene) the shear modulus is of the order 
104-105 dyne/cm2• With increase of the crystal vibration amplitude the effective shear 
modulus decreases and the relative influence of dissipative forces increases. For nonpolar 
liquids the shear modulus remains unchanged at all distances from the quartz surface, 
whereas for polar liquids (water, alcohols, etc.) it increases sharply upon approaching to 
within 600-900 A of the surface. The shear modulus data for thin water films are in quali
tative agreement with those of~ earlier article by one of the authors)1J 

INTRODUCTION 

ONE of the present authors has shown[!] that thin 
films of water between two glass surfaces possess 
a measurable shear modulus. Proof that thin water 
films possess shear elasticity, together with a 
basis for measuring the corresponding shear 
modulus, was provided by a great increase (sev
eral orders of magnitude) in the vibrational fre
quency of a lens that was suspended, convex down
wards, by a thin ribbon and lowered close to the 
bottom of a water-filled vessel. The original 
natural period of the suspended lens was of the 
order of minutes; in the presence of a 10-5-cm 
water film the period dropped to a fraction of a 
second. 

With the deformation of the thin water film be
tween the vibrating lens and the bottom of the ves
sel the elastic component of resistance thus became 
highly dominant over the component depending on 
dissipative forces. The calculated effective shear 
modulus decreased rapidly with increasing thick
ness of the film and could not be detected at thick
nesses exceeding 0.15 micron. It was reasonable to 
presume that the shear modulus existed for the 
water film bounded by glass surfaces because the 
boundary layer structure of the water then differed 
from that of water in bulk and resembled the struc
ture of a solid. 

Investigations of boundary-layer viscosity by the 
blower method[2- 4] and by polymolecular adsorption 
of vapor[ 5] also furnished strong proof that polar-
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liquid thin films on solid surfaces are influenced 
by the solids and acquire special properties differ
ent from the bulk properties of the liquids. On the 
basis of these experiments the authors of the arti
cles referred to were able to postulate the existence 
of a special boundary-layer phase having properties 
that change abruptly from those of the bulk phase. 
One could thus speak of a phase transition between 
the boundary layer and the bulk of a liquid. 

Recent original investigations of other polar
liquid boundary-layer properties have also con
firmed that the influence of a solid wall penetrates 
far into a liquid. For example, it was shown in[S] 
that water in thin capillaries and pores having 
diameters smaller than 0.1 1J. do not exhibit their 
maximum density at + 4 oc. In [7] it was shown that 
the thermal conductivity of water films on mica 
surfaces is anomalously increased (by more than 
one order of magnitude). Other very interesting 
work[s,s] has furnished convincing proof of changes 
in the thermodynamic properties of liquid boundary 
layers. 

It can now be regarded as firmly established 
that the boundary layers of many polar liquids acted 
upon by the surface forces of solids acquire struc
tures distinguished by a higher degree of ordering. 
It can therefore be assumed that the boundary 
layers of many liquid possess shape elasticity, i.e., 
a shear modulus. The special mechanical proper
ties of films between two solid surfaces are also 
very interesting because they are associated with 
different aspects of the physics of surface and 
colloidal phenomena. These properties are espec
ially important in accounting for the boundary
friction mechanism and for the mechanical proper
ties of colloids. 

It was therefore very important to continue the 
earlier work reported in[!] using a more suitable 
method that would permit shear modulus measure
ments at very small shear deformation amplitudes 
and at higher frequencies, when the relaxation of 
strains may possibly be less in evidence. 

It was also interesting to attempt to detect and 
measure shear moduli in the interior of liquids. 
This kind of data was obtained by Mason[toJ for a 
number of highly viscous liquids by reflecting 
transverse ultrasonic waves from the interface 
between fused quartz and a liquid. By measuring 
the amplitudes and phases of the reflected waves 
with and without the liquid on the quartz surface 
the shear elasticity and viscosity of the liquid can 
be determined. An example is polymerized castor 
oil, for which Mason obtained G = 1.2 x 107 dyne/cm2 

and 11 = 18 poise. His negative results for low
viscosity liquids such as water, benzene etc. can 

possibly be attributed to the damping out of shear 
waves at relatively short distances, and also to a 
reduced sensitivity of the method with decrease of 
the measurable shear modulus. It was therefore 
interesting to detect and measure the modulus for 
films considerably thicker than the boundary layers 
and yet thin enough so that negligible damping of the 
shear waves would occur within them. 

EXPERIMENTAL PROCEDURE 

We used a technique based on Mandel'shtam's 
idea[11 l for determining the interaction forces be
tween any body and a contacting quartz piezo
electric crystal from the frequency shift of the 
latter's natural vibrations. This idea has been 
used by Kha'i'kin et al. [!2 l to investigate dry "static" 
friction forces manifested in "prior displacements" 
which resulted from the fact that objects lying on 
the surface of a vibrating quartz crystal are not 
entrained completely by the surface of the latter. 

In the present work we have measured the shift 
of resonant frequency for quartz having one face 
vibrating in its own plane and separated from a 
quartz cover plate by a plane-parallel film of liq
uid. The observed increase of vibrational frequency 
compared with that of a crystal not bearing a liquid 
film and cover plate proved unambiguously that the 
liquid film possesses shear elasticity; if only dis
sipative (e.g., viscous) forces were operative here 
the resonant frequency could only have been re
duced (even without taking account of the added 
mass). 

It is easily seen, moreover, that if the positive 
shift of the resonant frequency is used to calculate 
the shear modulus while considering the liquid film 
to be ideally elastic and ignoring dissipative forces 
and relaxational processes within the latter, the 
derived effective shear modulus can only be 
smaller, not larger, than the true modulus. We 
shall show when analyzing the results that this 
error cannot reach 10% in most cases. Therefore, 
considering that the given investigation was the 
first to enable estimates of shear moduli for low
viscosity liquids, it is not expedient to introduce a 
correction for dissipative forces into the calcula
tion of the shear moduli, especially since this cor
rection can be accomplished unambiguously only 
with simultaneous measurement of change in the 
width of the resonance curve for the quartz crystal. 
The latter measurement was not obtained syste
matically in the present work. 

We investigated a 5o X cut quartz crystal in the 
shape of a bar with a rectangular cross section 
(36 mm long, 12 mm wide, and 5 mm thick). The 
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working surface was a horizontal face perpendicular 
to the optic axis of the crystal; this face moved 
tangentially during longitudinal vibrations. The 
face was in contact with a liquid film under a solid 
cover plate (Fig. 1) having the dimensions 
8 x 5 x 4.5 mm (the last dimension being the height). 
During vibrational motion of the crystal the cover 
plate is practically at rest because of the obviously 
small coupling through the film, which cannot trans
fer to the cover the huge accelerations involved in 
quartz natural vibrations (at 74.4 cps in our case). 

In quartz of the given cut the Poisson ratio 
vanishes, although when possessing the aforemen
tioned dimensions it interacts with low-frequency 
flexural vibrationsJ10 • 13 • 14 J Thus there existed a 
weak normal component, which in our case induced 
a negative frequency shift that was practically inde
pendent of the liquid film thickness or composition 
and could therefore be excluded easily. 

The quartz crystal was mounted in a special 
holder that was clamped between two steel needles 
making contact on the nodal line through the middle 
of the crystal. The electrodes were separated from 
the crystal by air gaps not exceeding 0.5 mm. The 
electrodes were made of brass plates that were 
fastened in a Plexiglas frame by means of screws. 
The electrodes were applied with an air gap because 
the quartz crystal required continual special clean
ing in the course of the experimental work and had 
to be removed from its holder on each occasion. 

For the purpose of exciting the fundamental 
resonant frequency of the crystal we used a rf gen
erator stabilized at 75 kc by a quartz resonator. 
This generator was modulated with± 1 cps accur
acy by an audio-frequency generator. As a result 
of balanced modulation the carrier frequency was 
compensated, and one of the side frequencies was 
partially tuned out by means of the circuit. The 
generator output voltage (variable from zero to a 
few tens of volts) was applied to the first pair of 
electrodes, which were placed on two lateral faces 
near one end of the crystal. 

The applied alternating electric field induced 
oscillations of compression and dilatation in the 
crystal. The alternating emf induced by the direct 
piezoelectric effect was fed through a second pair 
of electrodes (placed similarly to the first pair but 
at the other end of the lateral faces) to an oscillo
scope that was used to monitor the crystal vibra
tions and to measure its resonant frequency within 
± 1 cps. By continuous variation of the modulating 
frequency one of the side frequencies can be made 
equal to the natural frequency of the crystal. The 
amplitude of the crystal vibrations then increases; 
this is accompanied by a corresponding rise of the 

potential applied to the oscillograph, which meas
ured this potential (usually not exceeding a few 
hundred millivolts) and thus recorded the resonance 
curve of the crystal. An oscillograph was required 
for rapid and accurate determination of the reson
ant frequency when investigating volatile low
viscosity liquids, since the film thickness could 
change during the measurements. Pointer-type 
instruments are very unsuitable because of their 
large time lag, as a result of which they can often 
"jump" through resonance without registering it, 
especially in the case of the small quartz vibra
tional amplitudes. 

It can be seen from the theory of the foregoing 
method that determination of the shear modulus 
requires quite accurate determination of the liquid 
film thickness. We used the following interference 
method. The system represented in Fig. 1 is illum
inated with monochromatic light impinging almost 
perpendicular to the surface of the cover prism and 
the reflected light is observed while the wavelength 
is varied continuously. If the liquid film possesses 
uniform thickness the field of view will be darkened 
periodically whenever the light-path difference in 
the film becomes equal to an odd number of half
waves. This path difference is given by 

A= 2Hn+!v/2, 

where H is the film thickness and n is its refractive 
index. 

Let the wavelengths A. 1 arid A. 2 correspond to two 
successive dark bands as the wavelength is varied. 
The two path differences are 

2Hn+'Ad2= (2k-1)'At/2, 

2Hn+'A2/2= [2(k+1) -i]/..2/2. (1) 

Eliminating k, we obtain 

( 1') 

It is more convenient to use a nomogram equivalent 
to ( 1') than to compute the film thickness directly 
from the equation. The ordinate of this nomogram 
(Fig. 2) is the wavelength and the abscissa is the 
optical film thickness. The oblique straight lines 
correspond to the dark bands and were plotted 

FIG. 1. Quartz piezoelec
tric crystal coupled to quartz 
plate. 1-quartz crystal, 2-li
quid film, 3-covel plate. 
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FIG. 2. Nomogram for determining film thickness. 

from ( 1). The procedure for determining film 
thickness is as follows. The two wavelengths A. 1 

and A.2 previously defined are determined using a 
monochromator and are then plotted as horizontal 
straight lines on the nomogram. Among their inter
sections with the oblique lines we find two neigh
boring points lying exactly on a vertical line; the 
latter line determines the optical thickness of the 
film. 

To produce relatively thick films of given thick
nesses for investigating high-viscosity liquids we 
used the flow method described in[15•16]. 

We have thus far been considering films of uni
form thickness, which are sometimes not easily 
produced. If a slightly wedge-shaped film is pro
duced, one or two bands will be observed at smaller 
thicknesses and a somewhat larger band at greater 
thicknesses. Since the shift of the quartz frequency 
depends on the thickness, the nonuniformity of the 
film must be taken into account. This is done by 
determining an equivalent uniform thickness, for 
which purpose it is desirable to have the interfer
ence bands lying parallel to the direction of the 
quartz vibrations. It can then be shown by a rela
tively uncomplicated argument that the equivalent 
thickness relative to coupling rigidity is 

He= I'!H/In (t-I'!H)~ Hml( 1 + -1 ( 1'1H)2 + ... J (2) 
H1 1 12 Hm ,, 

where H1 is the film thickness at the thin edge; H2 
is the thickness at the thick edge; Hm = (H1 + H2)/2; 
~H is the difference between the thicknesses at the 
two edges. It can be seen that the error is negli
gible when the nonuniformity of the film is not ex
cessive. 

The experimental procedure was as follows. The 
experimental liquid was purified by known methods. 
All crystal surfaces and that of the covering prism 
after brief treatment in a chromate mixture were 
cleaned in a glow discharge using the technique 

described in[t7). Immediately thereafter the crys
tal was placed in its holder, and the liquid film was 
applied to the crystal by a clean glass rod; the 
film was then carefully covered with the quartz 
prism. The shallow meniscus formed along the 
perimeter of the prism remained unchanged during 
the experimental work. Experiments with highly 
volatile liquids were performed in an atmosphere 
of the saturated vapor. To determine the film 
thickness it was first necessary, while observing 
the wedge interference pattern, to make the film 
uniformly thick by pressing lightly on the edge of 
the prism. The measured wavelengths for two dark 
bands were used to obtain the film thickness, after 
which the resonant frequency of the vibrating sys
tem was determined. The film thickness was varied 
by squeezing liquid out of the gap. 

THEORY OF THE METHOD AND CALCULATIONS 

It is easy to derive a general formula for the 
frequency shift ~f of a quartz piezoelectric crystal 
of mass M, caused by its interaction with the cover
plate of mass m through a liquid film. However, it 
is possible to perform all calculations with a sim
pler approximate working formula, using the con
ditions 

6./ /fo<.i, 

m/M<.1, 

H/'A<.1, 

hlto<.i, 

(3) 

( 4) 

(5) 

(6) 

where A. is the length of the shear waves propagat
ing in a film of thickness H as a consequence of 
the crystal vibrations; f0 is the natural frequency 
of the crystal; f1 is the natural frequency of the 
covering plate that results from its elastic coup
ling with the crystal surface through the liquid 
film. The fulfillment of condition ( 4) is associated 
with the fact that in our experiments M = 7.04 g 
and m ~ 0.4 g. 

The fulfillment of condition ( 5), which was veri
fied a posteriori for all our experiments, resulted 
from the fact that the shear modulus (and there
fore A. also) had a sufficiently high value (above 
104 dyne/cm2). The fulfillment of this condition 
permits neglect of the inertial forces acting on 
volume elements of the film, and it can also be 
assumed that the shear stress at all points of the 
film during the vibrations is a function of time only 
and is independent of distance from the crystal 
surface. In other words, we can make a quasi
static analysis of the deformation field in the film 



MEASUREMENT OF THE SHEAR ELASTICITY OF FLUIDS 649 

produced by shear stresses despite the time depen
dence of the latter. As a result, the cover plate 
can be considered as having linearly elastic coup
ling with the crystal, and the rigidity k of the coup
ling for an assumed uniform film can be given by 

k =SG/H, (7) 

where H is the thickness of the film, G is its shear 
modulus, and Sis the area of the bottom of the 
cover plate. 

The fulfillment of condition (3) was also verified 
a posteriori for all our experiments by means of 
the relation 

2 _ k _ 1 SG 
It - 4n2m- 4n2 Hm ' 

(8) 

where k is the rigidity of coupling between the 
covering plate and the crystal, and m is the mass 
of the plate. 

The fulfillment of condition ( 6) would signify that 
when vibrations having the frequency f0 are induced 
in the cover plate the amplitude of these vibrations 
is much smaller than the amplitude A of crystal 
surface vibrations, so that it is a good approxima
tion to consider that the plate is motionless. 

To calculate the frequency shift of the crystal 
when coupled with the plate we can use Rayleigh's 
method, which is based on determining the natural 
frequency by equating the maximum potential and 
kinetic energies, U and T, of the system. By equat
ing the changes of U and T due to the presence of 
the cover plate, while assuming that the amplitude 
remains unchanged, we obtain 

flT = n2MA2!1(!0)2 =flU= kA2/2. (9) 

It has here been assumed that the effect of the ad
ditional mass on T can be neglected in virtue of a 
motionless plate and thin liquid film. Hence, using 
(7), we obtain 

( 10) 

and therefore 

G = 4n2MHfoflf IS. (11) 

When the conditions (4)-(6) are fulfilled Eq. (11) 
can also be applied unaltered to the case in which 
G acquires a complex value as a result of dissipa
tive forces; Af then is understood to be a complex 
frequency shift. If measurements of the real part 
of the frequency shift were combined with measure
ments of changes in the resonance curve width, 
thus enabling us to calculate the change in the 
imaginary part of the frequency shift (i.e., damp
ing), we could determine simultaneously the abso
lute value IGI of the complex shear modulus and 
the loss angle. 

However, since the shear elasticity of liquids is 
a relatively new phenomenon it seemed sufficiently 
interesting as well as expedient to restrict our
selves in the present work to measuring the effec
tive shear modulus (which is equal to its real part), 
leaving complex measurements for some future 
time. This decision was all the more justified be
cause there is reason to consider that the loss 
angle is small (see below), while its measurement 
would be interesting only over a broad frequency 
range with the associated experimental difficulties. 
Measurements at a single frequency cannot furnish 
a sound basis for any particular phenomenological 
treatment in which a liquid would be identified with 
an ideal body or model. Indeed, there are no natural 
solids or liquids that can be described by simple 
equations for all frequency intervals. We arrive 
only at the following qualitative conclusions. 

If we identify a liquid with a "Kelvin body" and 
sum the elastic and viscous stresses (without real 
justification), the effective shear modulus obtained 
from ( 11) for the real part of the frequency shift 
coincides with the shear modulus of the Kelvin 
body. If we identify a liquid with a Maxwell body 
(with the relaxation time T) and sum the deforma
tions (which is also without justification), then the 
Maxwell shear modulus G will be related, as we 
know, to the effective shear modulus Ge by the ex
pression 

(12) 

from which we see that G > Ge. However, there is 
no justification for considering the value of Gob
tained in this manner as truer than Ge, since the 
Maxwell modulus is not usually valid at low fre
quencies when wT < 1. Therefore, either (12) is 
unsuitable or there would be no sense in using it 
as the basis for a small correction. We note that 
for solids better results are obtained with Boltz
mann's elastic lag equations, which are equivalent 
to a broad spectrum of relaxational frequencies. 

We can expect that the investigated films of 
polar liquids will exhibit nonuniform properties in 
the transverse direction, i.e., the shear modulus of 
the film could be a function of the distance from a 
solid surface. Therefore the shear modulus der
ived from (11) will actually be a mean shear modu
lus G(H). To determine the true shear modulus as 
a function of distance from the crystal surface we 
shall divide our film into several layer elements 
that are parallel to the quartz surfaces and located 
at distances z from one of the surfaces. The dis
placement dx of each layer element will obviously 
be 
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dx = T dz I G(z)S, ( 13) 

where T is the tangential shear stress. Integrating 
( 13), we obtain, for the purpose of determining the 
coupling rigidity k, 

X 1 1 f dz (14) 
r=-k"=s ~cw-· 

where X is the displacement for the entire film. 
Assuming that since the two surfaces are very 
similar the film has symmetric properties, and 
G( z) = G( H - z), we obtain, in place of ( 14) , 

1 2 h dz 
~ (1m 

-;;=--s~~· 
0 

where h = H/2. Differentiating (15) and making use 
of ( 10), we obtain 

- 8rr.2Mfo [ d(f..j)-1 J-1 
G(h)- S dh ' (16) 

which gives us the shear modulus in the middle of 
the film (at the distance h = H/2) from the quartz 
surfaces. 

The crystal resonant frequency shift ~ and the 
film thickness H appear as a product in ( 11). This 
indicates that if the liquid possesses a constant 
shear modulus independent of the film thickness, 
~should exhibit a hyperbolic dependence on H; in 
other words, the shift of the resonant frequency 
should be proportional to the reciprocal of the film 
thickness. Any deviation from this relation will 
indicate the presence of special boundary-layer 
elasticity in the film. However, it follows from ( 16) 
that in the presence of an anomaly it is more suit
able to consider the dependence of the reciprocal 
frequency shift on the half-thickness h of the film, 
since this enables us to judge whether boundary
layer elasticity exists and whether it is dependent 
on distance from the solid surfaces. In analyzing 
the experimental results we shall make use of both 
dependences. 

EXPERIMENTAL RESULTS 

The investigated liquids were liquid petrolatum, 
castor oil, oleic acid, water, acetone, alcohols, 
acetic acid, benzene, and carbon tetrachloride. 
When investigating viscous liquids it is necessary 
to take into account the effect produced on the 
vibrational system by dissipative frictional forces, 
which can reduce the crystal resonant frequency, 
and also the possibly nonlinear character of shear 
elasticity in liquids. Therefore, in order to obtain 
the "purest" values of the shear modulus, which 
would be least distorted by damping, we plotted the 
dependence of the quartz frequency shift on the 
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FIG. 3. ~f versus amplitude for different thicknesses of a 
film of liquid petrolatum. 1-7p., 2-3.2Sp., 3-2.8p., 4-2.0Sp., 
S-1.4p., 6-1.04p.. 

amplitude of the registered crystal voltage for 
different constant film thicknesses; the curves 
were extrapolated to zero amplitude. One series 
of these dependences for different thicknesses is 
shown in Fig. 3 pertaining to liquid petrolatum (the 
abscissas are the registered crystal voltages and 
the ordinates are the shifts of the crystal resonant 
frequency). The curves can be extrapolated to zero 
amplitude. The figure shows that the crystal fre
quency shift is strongly dependent on the amplitude 
of the vibrations. As the vibration amplitude de
creases the positive frequency shift increases, and 
the curve becomes steeper for the thinnest films. 

Figure 4 shows the dependence of the resonant 
frequency shift on the reciprocal of film thickness 
for liquid petrolatum and castor oil as plotted from 
extrapolated data. Practically perfect linearity is 
observed; as already stated, this indicates that the 
liquids possess a constant shear modulus (indepen
dent of the film thickness). 

Figure 5 shows the experimental results for 
oleic acid for different amplitudes of the potential 
applied to the crystal; the same coordinates are 
used as in Fig. 4. Curve 1 corresponds to the 
maximum amplitude of applied voltage; the other 
curves correspond to fractions of this maximum: 
Curve 2-one-half, curve 3-one-fourth, and 
curve 4-one eighth. Curve 5 was plotted from the 
extrapolation to zero amplitude, but the nearest 

FIG. 4. M versus 1/H 
for liquid petrolatum (curve 
1) and castor oil (curve 2). 
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FIG. 5. M versus 1/H 
for oleic acid. 

approach to linearity is found in curve 3. 0 This 
obviously indicates that the thinnest films of oleic 
acid possess the greatest boundary-layer elasti
city. The curve corresponding to the maximum 
applied voltage amplitude is seen to have a clear 
maximum; therefore as the film thickness is re
duced still further this curve should intersect the 
horizontal axis and enter the region of negative 
quartz resonant-frequency shifts. This obviously 
indicates that as the shearing deformations in
crease along with reduced film thickness the dissi
pative viscous forces increase more rapidly than 
the elastic forces, which are proportional to the 
shear deformation. Therefore the liquids are 
visco-elastico-plastic bodies with a low elastic 
limit. This conclusion is in agreement with the 
concepts and experiments of Nerpin and Bondar
enko, [ts J who measured the limiting shear stresses 
of polar liquids. 

Figure 5 also shows that all curves converge 
toward the coordinate origin,2> thus providing con
firmation that the experimental film thicknesses 
were greatly exceeded by the wavelengths of shear 
vibrations in the liquid. If the film thickness were 
comparable with or much greater than the wave
length of shear vibrations the relation between the 
frequency shift, on the one hand, and the film thick
ness and shear modulus, on the other hand, would 
be much more complex and the foregoing theory 
would not have been applicable. In such instances 
one might use Smoluchowski' s theory of vibrations 
in a two-layer system,[2oJ and (11) would represent 
the limiting case of this theory. 

The data represented in Fig. 3 can be used to 
plot the dependence of the crystal frequency shift 

1l]ust the opposite result is obtained for liquid petrola
tum. 

2lin [19], which was written by the present authors, the 
curves failed to converge towards the origin because of errors 
committed when determining film thicknesses. 
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FIG. 6. ;\f versus 1/li for liquid petrolatum at constant. 

on the reciprocal of film thickness at a constant 
shear angle. Figure 6 shows this dependence for 
three shear angles. Curve 1 pertains to the shear 
angle when the ratio of the registered crystal volt
age to the film thickness was 100 mV /micron. For 
curve 2 the ratio was 50, while curve 3 pertains to 
an infinitely small shear angle (corresponding to 
extrapolation). We observe that all of the lines are 
straight and pass through the origin. This obviously 
signifies that the hysteresis loss angle resulting 
from dissipative forces depends on the size of the 
shear angle but not on film thickness and is identi
cal throughout the latter. We can therefore assert 
that a film of liquid petrolatum is uniform with 
respect to both elastic and dissipative forces. 

Figure 7 shows the dependence of the resonant 
frequency shift (extrapolated to infinitely small 
amplitudes) on the reciprocal of film thickness for 
water, acetone, and benzene. The polar liquids 
water and acetone exhibit a sharp deviation from 
proportionality for the thinnest films, whereas 
proportionality is maintained for benzene. This re
sult indicates that all three liquids possess constant 
volume shear elasticity, while water and acetone 
also exhibit a considerable increase of mean shear 
elasticity in thinner films. 

We have already stated that when special 
boundary-layer elasticity exists it is more advis
able to consider the relation between the reciprocal 
of the resonant frequency shift and the half-thick-

50 

0 2 3 4 5 1/H, 11-1 

FIG. 7. M versus 1/H for (1) water, (2) acetone, and 
(3) benzene. 
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FIG. 8. 1/ i\f versus H/2 for carbon tetrachloride. 

ness of the film. Figure 8 shows this relation for 
carbon tetrachloride; it is found to be linear and 
convergent towards the origin. Consequently we 
find that nonpolar carbon tetrachloride, like ben
zene, possesses constant volume shear elasticity 
that is independent of film thickness. 

Figure 9 shows the same relations for the polar 
liquids acetone and for ethyl and octyl alcohol, 
while Fig. 10 shows the relation for butyl and hexyl 
alcohol and for acetic acid. The graphs are recti
linear in the investigated region of film thicknes
ses, thus indicating that for h > 10-5 em the shear 
elasticity is constant and equal to the bulk value, 
which can be determined from the slopes of the 
curves. However, since the graphs would pass 
through the origin as h approaches zero, but any 
intersection of the horizontal axis is impossible as 
representing a nonphysical passage of .6-f through 
± oo, for small h = H/2 the curve should exhibit a 
break or bending, as shown schematically by the 
dashed line in Fig. 9. 

The minimum possible shear modulus in the 
region of boundary layer thicknesses is obviously 
derived by connecting the lower ends of the straight 
lines to the origin. The reciprocal slopes of these 
segments then yield the smallest possible boundary
layer elasticity, which exceeds the volume shear 
elasticity by more than one order of magnitude. 
Our experimental work is thus in fundamental 

(1/4f)·IOZ 
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FIG. 9. 1/M versus H/2 
for acetone (1), ethyl alcohol 
(2) and octyl alcohol (3). 

FIG. 10. 1/ M versus H/2 
for butyl alcohol (1), hexyl al
cohol (2) and acetic acid (3). 
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agreement with the existence of special boundary
layer phases.E2- 5l An analysis of the graphs also 
yields the approximate thickness of the boundary 
layers. The upper limit is obviously the abscissa 
of the lowest experimental points on the curves, 
while the lower limit can be determined by ex
tending our curves until they intersect with the 
horizontal axis. It is easily seen that these two 
limits lie close together in our experiments, the 
difference between them being under 0.01 1J. for 
acetone and a little above 0.01 1J. for ethyl alcohol. 
Therefore the average of the two limits can quite 
definitely be regarded as the thickness of the 
anomalous boundary layer. For example, in the 
cases of acetic acid and ethyl alcohol the lower 
limit of thickness is at least 0.06 /).; the result for 
acetone and octyl alcohol is 0.08 !J., and for water 
about 0.09 IJ.. 

The accompanying table gives the effective vol
ume shear moduli calculated from experimental 
data using ( 11) and ( 16), and also the thicknesses of 
the boundary layers. 

In contrast with the well-known method of 
Mason,[lO] which is mainly suitable for investigat
ing the shear elasticity of high-viscosity liquids, 
our present method is distinguished by its extreme 
simplicity and reliability as well as by the absence 
of any viscosity limit. Our method has also yielded 
positive results for low-viscosity liquids princi
pally because of its high sensitivity and, possibly, 
because the spatial damping of vibrations is not 
significant in a thin liquid film. The method is 
equally successful in determining the shear modu
lus of such viscous liquids as castor oil and such 
low-viscosity liquids as acetone and benzene. 
Another advantage lies in the fact that the elastic 
properties of thin boundary layers can be investi
gated. 

To sum up, our experimental work has proved 
that volume shear elasticity exists in all liquids 
and can be measured by the given method. Shear 
elasticity is thus one of the universal properties 
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Shear elasticity of liquids* 
Boundary-

1 1 

Ge X 10 ... , 
Liquid Degree of purity t, •c 

dyne, cm2 . 

layer thick 
ness, p. 

Acetone Distilled 25 0.42 0,08 
Water Triply distilled 23 1.1 0,09 
Benzene Dehydrated 
Carbon tetrachloride Distilled 
Acetic acid Distilled 
Ethyl alcohol Dehydrated 
Butyl alcohol Dehydrated 
Hexyl alcohol Dehydrated 
Octyl alcohol Dehydrated 
Oleic acid Dehydrated 
Liquid petrolatum Filtered 
Castor oil Filtered 

*The bulk values of Ge are given. 

of liquids. The thin boundary layers of polar liq
uids possess special mechanical properties that 
appear to result from a higher degree of molecular 
ordering than in the interior of the liquids. 

It is appropriate here to recall Frenkel's 
ideas[21 ] that liquids, which resemble the crystal
line state with respect to their structure and the 
character of their thermal motion, should also 
possess shear elasticity that would usually be 
masked by their fluidity. It can be presumed that 
our present results confirm these ideas qualita
tively and demonstrate the existence of measurable 
shear elasticity in liquids at the frequencies that 
we have used. However, Frenkel believed that 
shear elasticity could be manifested only at con
siderably higher frequencies (of the order 1010 cps), 
so that in this respect our results were unexpected. 
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