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We consider the semi-classical energy quantization of a conduction electron with an arbitrary 
dispersion law in a metal film. We obtain formulae for the surface part of the electronic den­
sity of states; this is used to discuss thermodynamic surface quantities: Fermi level shift, 
surface tension of metals, and surface specific heat. We have studied the most characteristic 
anomalies of the thermodynamic surface characteristics of a metal in the vicinity of an elec­
tronic transition point which is caused by a change in the topology of the Fermi surface when 
it is deformed continuously at high pressures. 

INTRODUCTION 

SoMETIMES it is necessary to take into account 
the influence of the surface of a metal on the ther­
modynamics of conduction electrons (for instance, 
in the theory of the surface tension of metals when 
the thermodynamic properties of metallic parti­
cles and films are studied). Considering the con­
duction electrons in a metal to be a perfect gas of 
quasi-particles with some dispersion law (fJ (p) in 
a volume with an impenetrable boundary surface,[ 1J 

we obtain in the present paper formulae for the 
surface part of the electronic density of states, 
and we discuss then thermodynamic surface quan­
tities using that result. 

The surface part of the density of states can be 
found if we know the energy levels of a conduction 
electron. The problem is solved for a layer. The 
formulae obtained for the density of states is then 
generalized in the limit of short wavelengths to the 
case of an arbitrary surface bounding a given 
volume. 

It is necessary to note that if the energy spec­
trum is anisotropic the well-known quantization 
rule 

Pz = J£nn I L, n = 1, 2, 3, ... , (1) 

where L is the layer thickness, 2rrn Planck's con­
stant, and where the z axis is perpendicular to the 
layer, for the quasi-momentum of a conduction 
electron in a layer is not applicable. When the 
quasi-particle is reflected from the boundary of 
the layer the absolute magnitude of the normal 
component of the quasi-momentum Pz changes if 

1 )Permanent address: S. M. Kirov Polytechnical Institute, 
Tomsk. 

the dispersion law C/ (p) is asymmetric with re­
spect to Pz and this leads to the quantization rule 
(4) which is different from (1) (see Sec. 1). 2> This 
fact influences very substantially the surface part 
of the density of states-while leaving its volume 
part unchanged-and hence the thermodynamic 
surface quantities. 

We have shown, using the formulae for the sur­
face part of the density of states which we obtain 
taking into account the anisotropy of the electronic 
energy spectrum of metals, that at the point of the 
electronic transition predicted by I. Lifshitz [ 21 and 
confirmed experimentally[ 31 the change in the 
topology of the Fermi surface leads to a peculiar 
anomaly of the thermodynamic surface quantities. 
The anomalies differ essentially depending on how 
the topology changes, either through the appear­
ance of a new gap in the Fermi surface or by a 
diminishing of its connectivity. The peculiarities 
of the surface characteristics of a metal are much 
stronger than the volume ones, as in a relatively 
narrow range near the transition point the singu­
larity of the thermodynamic quantities is deter­
mined by its surface part. 

We have calculated the shift in the Fermi level 
caused by the surface of the metal. This may turn 
out to be important for oscillating effects[ 41 as it 
has been shown[ 51 that a relatively small shift in 
the chemical potential when a metal is deformed 
strongly influences the de Haas-van Alphen oscil­
lations in metals with abnormally small groups of 
electrons. 

It is well known [ 61 that the conduction electrons 
contribute appreciably to the surface tension of 

2 li. M. Lifshitz pointed out the necessity to replace the 
quantization condition (1) by the more general condition (4). 
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metals. Using the Sommerfeld model of metals 
(a quadratic dispersion law) Breger and Zhukhovit­
skil[ 71 have considered the theory of the surface 
tension. In the present paper we obtain formulae 
for the surface tension of metals in the framework 
of a model of a gas of quasi -particles with an ar­
bitrary dispersion law. 

1. SEMI-CLASSICAL QUANTIZATION OF THE 
ENERGY OF A CONDUCTION ELECTRON 
IN A LAYER 

We can find the energy levels of a quasi-parti­
cle with an arbitrary dispersion law f£ (p) in the 
semi-classical approximation if we know how the 
energy {t can be expressed in terms of the action 
variables Im. [ 81 The action variable l, corre­
sponding to the finite motion along the z axis 
which is perpendicular to the layer is for the case 
of a quasi-particle in a layer with infinitely high 
potential wall~ equal to 

1 = ~ Pz dz = ! 7Jz(l) - ppl I L, (2) 

where the Pii> are the roots of the equation 

for fixed values of p 1 = ipx + jpy and of the en­
ergy E. 

The quantization 

(3) 

1Pz<1>-pz<Zll=2nlin/L, n=1,2, ... (4) 

leads to the following quantum energy levels 
E(p1, n): 

(5) 

where Pz ( p 1• n) is determined by the equation 

~l'(pj_, Pz) = i£(PJ..· Pz- 2nlin/ L). (5') 

The left-hand side of Eq. (4) is equal to the length 
of the section which is cut by the energy surface 
6 (p) = E(p1, n) from the line which goes through 
the point (p 1• n~ parallel to the Pz axis. 

The roots p~ll of Eq. (3) which are the appro­
priate pairs of roots which are quantized accord­
ing to Eq. (4) are uniquely determined by the con­
dition that the quasi-particles are reflected by the 
potential walls. Indeed, on reflection the kinetic 
energy of the quasi-particles is decreased and 
later again increased to its initial value so that 
the roots of the appropriate pair are separated by 
a region in which the kinetic energy is less than 
the fixed value (see Appendix I in [ 91 ). 

In the case of several pairs of roots, there oc­
cur just as many levels, each of which is deter­
mined by Eqs. (5) and (5'). A similar situation oc­
curs for the semi-classical quantization in a mag-

netic field when the energy surface has bulges 
(see Appendix in [ 11 ). 

When pi_2> =Pi!) the quantization condition (4) 
leads to the condition (1), which thus holds for 
isotropic dispersion and for the particular case 
of anisotropic dispersion with one pair of roots 
if Pz = 0 is a symmetry plane. 

2. SURFACE PART OF THE ELECTRONIC 
DENSITY OF STATES 

The number .V.(E) of electronic states with an 
energy less than E is for the case of a layer de­
termined by the formula 

"v = ~ 
.;V'(e) = (2nbli)"L n~1 ~ 8 [e- e(PJ.., n)] d2pJ.., (6) 

where 

8(x) = { 0, 

1' 

x<O 
x>O' 

(7) 

g = 2s t 1, s is the quasi-particle spin and V the 
volume of the layer. 

Using Poisson's formula to sum Eq. (6) and 
neglecting the oscillating terms of higher order 
than A./L where A. is the wavelength of an elec­
tron with the given energy E, we find 

.!V(e) = ~ { S!dn ~ d2pJ..6 [e- e(pJ.., n)] 
(2n/i)2L 0 

-} ~ d2p1.8 [e- e (PJ..O) l} (6') 

Here E lp 1• 0) is the energy for which the roots of 
the appropriate pair coincide. In other words, the 
straight line going through the point ( p 1• 0) paral­
lel to the Pz axis is tangent to the given energy 
surface [g(p) = E(p1, 0). 

The first term in (6') determines the well­
known[ 1l volume part of the number of states .v0, 

and the second one the required surface part .;Vu (E): 

.;Va (e) = - __!!!!__ S (e, Cz), (hth) 2 ,. . 

where u is the area of the surface bounding the 
given layer, 

(8) 

S(e. Cz) = ~ 8 [e- e(pJ.., 0)] d2Pl.· (8') 

In the case of one pair of roots the quantity 
S(E, ez) is equal to the area of the projection of 
the energy surface f{ ( p) = E onto the plane with 
normal €z· 

The surface part of the electronic density of 
states per unit energy range vu(E) =uV'~(E) is de­
termined by the equation 

ga (" 
va(e) =- (4rrfi)2 .l 

C(€, c,) 

dl 

v 
(9) 
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where the integration contour C (E, ez) is the pro­
jection onto the plane with normal ez of the curve 
on the energy surface 8( p) = E along which Vz = 0; 
v = IV' p ~c I is the absolute magnitude of the electron 
velocity along this curve. 

In the short wavelength limit the formulae ob­
tained here for the surface part of the number and 
density of states can be generalized for the case 
of an arbitrary surface u bounding a given vol­
ume V. Provided 

(10) 

where R is the radius of curvature of the bound­
ary surface u, 

.Af'u(e) =- ( 4rt~)2 ~ S(e, n)da, (11) 

" 
Vu(e) =- (4:n)2~ { ~ d~} da. (12) 

u C(e, n) 

Here n is the normal to the surface a. 
This generalization has been proved exaetly in 

the case of a quadratic dispersion law (see, e.g., 
[ 10 l ) • 

Just like the volume density of states, v<r(E) is 
a complicated function of its argument. Its explicit 
form can be obtained only when we make special 
assumptions about the dispersion law. We g;ive 
here expressions for va (E) in some of the most 
typical cases. 

A. Isotropic dispersion law 

it (p) = 8, 

ga p(e) 
vu(e) =- Srtfi2- v(e) ' 

where the momentum p(E) and the velocity v(E) 
are determined from (13). 

B. Ellipsoidal dispersion law 

(13) 

(14) 

it (p) = Bk + (Pl- P1o)2 + 1 (~z_- Pzo) 2 + (P3' P3o:~, (15) 
2m! 2mz 2m3 

(16) 

where the ni are the components of the normal n 
to the bounding surface a along the principal axes 
of the ellipsoid, B(x) is the function defined by (7). 

C. In the neighborhood of a conic point 

[g (p) = Bh + (Pt- P10) 2 + ,([J_2 -pzo)_:__ _ ~P3- P3o)2 , (17) 
2mt 2mz 2m3 

+ v"(e), (18) 

where 'Va(E) is a smooth function. 
From the formulae given here it is clear that 

in contradistinction to the volume part of the den­
sity of states[1J the surface part Va (E) possesses 
essentially different singularities when the topol­
ogy of the energy surface is changed, depending on 
whether a new region of the surface is split off or 
whether its connectivity is decreased because a 
connection is severed. 

3. THERMODYNAMIC SURFACE QUANTITIES 

1. Shift of Fermi level. The Fermi level E F is 
determined from 

(19) 

where N is the number of electrons and · 1'0(E) the 
volume part of the number of states with a density 
v0(E). 

From (19) and (11) we get for the shift in the 
Fermi level bE F = E F- E~ caused by the bound­
ary of the metal 

(20) 

where E~ is the Fermi level for a bulk specimen, 
S(E~, n) is the area of the projection of the Fermi 
surface on the plane with normal n. 3l 

The Fermi level shift (20) can be observed 
through the de Haas-van Alphen effect. [ 5J It is 
well known[ 1 l that the periods of the oscillations 
(oH-1h are determined by the areas of the extre­
mal cross sections S~ (E F) of the Fermi surface 
with the plane perpendicular to the magnetic field 
H. The changes in the extremal cross sections 

l'l.Sm' = S,i(eFoi + 11eF)- Smi(eFoi), (21) 

when the Fermi level is shifted, where E~ is the 
Fermi level reckoned from the bottom of the i-th 
energy band, lead to corresponding changes in the 
periods of oscillation. For films with L ~ 104 em 
we have as far as order of magnitude is concerned 
bE F/E F ~ 10-3 so t~at for abnormally small elec­
tron groups bEF/E¥ ~ 10%. From this it follows 
that the changes in the periods of oscillations can 
be appreciable. 

For films at right angles to the magnetic field 
H, the change in the periods of oscillation (oH-1)i 
is determined by the equation 

3 lThe shift in the Fermi level for electrons with a quadra­
tic dispersion law in a potential well with a finite depth U0 

was calculated in[•]. As U0 --> oo the expression obtained dif­
fered from (20) and from the corresponding formulae in [10]. 

This can be explained by the fact that in (4 ] the absence of 
electrons from levels with zero quantum numbers [7 ] was not 
taken into account. 
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[( 1 )-1 J 1 cmi * V 
~ b- = ----S(ep•, n), 

H 1 i L 4:n:2eli3 v0 
(22) 

where mi = (27r)~ dS~/dE~ is the effective mass 
for the given cross section for the case of a bulk 
specimen. 

It is clear from (22) that the period of oscilla­
tion (oH-\ in a film (for the case where m{ > 0) 
is less than the corresponding period in a bulk 
specimen and decreases with decreasing film 
thickness L. If the film is oriented in a different 
way the changes in the periods of oscillation may 
be different; this is connected with the anisotropy 
of S(€~, n), i.e., with the anisotropy of the Fermi 
surface. 

2. Surface tension and surface specific heat of 
metals. In the low temperature region 

(23) 

where Ek are singular (critical, extremal) energy 
values, the free energy F is determined from the 
well-known expression[ 11 

s, 
\ :n;2 

F = NeF- ~ .#'(e) de- 6 T2v(eF)· (24) 

Taking into account the Fermi level shift (20) we 
get from (24) for the surface part of the free en­
ergy, Fa, 

:n:2 d(~eF) 
Fa(T)=Fa(0)+-6 T2vo-d--, (25) 

8F0 

e,, 

Fa(O) = 8~21i2 ~ { ~ S(e, n)de }acr. (25') 
C1 0 

Hence we have for the surface tension K of metals 

x(T,n)=x(O,n)+~T2 Y!__d_(~S(eF•,n) ), ( ) 
48 li2 deF' v0 26 

e,. 
x(O, n) = 8 !li2 ~ S(e. n)de. (27) 

:n; 0 

It is clear from these formulae that if the 
Fermi surface is anisotropic the surface tension 
K (T, n) depends on the orientation of the corre­
sponding crystal boundary. 4> 

4 )In the case of a quadratic dispersion law Eq. (27) 
agrees with the corresponding expression for the surface ten­
sion of metals at T = 0 found in[ 7]. The difference between 
the temperature dependence K(T) determined from (26) when we 
go over to a quadratic dispersion law and the formulae found 
in["] is explained by the fact that in [11 ] the temperature de­
pendence of the chemical potential was not taken into account 
in the calculations. 

We get from (25) for the surface part Ca of the 
electronic specific heat 

Ca = - ~ Tvo d(~eF) , (28) 
3 deF' 

where the function ~E F is determined by Eq. (20). 
For the total specific heat C we have 

C = Co(1- d(~eF) I deF•), (29) 

where C0 is the specific heat of a bulk specimen. 

4. ANOMALIES IN THE THERMODYNAMIC 
SURFACE CHARACTERISTICS OF METALS 
AT HIGH PRESSURES 

In the vicinity of an electronic transition point[ 2 J 

the thermodynamic surface quantities have pecu­
liar anomalies which are clearly manifested at low 
temperatures, 

(30) 

where z = t; - Ek, ?; is the chemical potential and 
Ek an energy where the Fermi surface topology 
changes. Anomalies are caused by the fact that 
near a transition point the density of states has a 
singularity which shows up strongly in the deriva­
tives of the thermodynamic potentials. 

When calculating derivatives we can neglect the 
oscillating part of the thermodynamic potentials,[ a J 

if 

T> ~e, (31) 

where ~E is the distance between the quantum en­
ergy levels. Condition (31) is practically always 
satisfied. An exception are thin films at relatively 
low temperatures. In that case characteristic os­
cillations occur which will be considered 
separately. 

The anomalies of the surface quantities differ 
appreciably depending on how the topology of the 
Fermi surface changes. 

1. Anomalies in the case when there appear 
new gaps at the Fermi surface. If new gaps appear 
at the Fermi surface, for instance, due to uniform 
compression of the metal, in the vicinity of a tran­
sition point at temperatures determined by (30) the 
singularity of the surface free energy Fa will be 
described by the formula 

(32) 

-where Fa is a smooth function, and 

(33) 
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When deriving Eq. (32) we used the density of 
states (16). 

The dependence of z on the volume V and on 
the applied pressure p is determined by the well-
k . [2] nown expresswn: 

- - ~ ( iJ,k'o + Vo deli ) Xo = - ( iJp ) • (34') 
'Y- vo , av" dVk ' avk T=o 

where Vk and Pk are respectively the critical 
values of the volume and the pressure at which 
the Fermi surface topology changes. 

The transition from region (I) to region (II) 
corresponds to the appearance of a new gap at the 
Fermi surface. 

From (32) we get at once the anomalies in the 
following thermodynamic surface quantities: for 
the surface specific heat Cu 

6 T - 0 iJT2 - n2 
C., _ _ iJ2Fa _ I 0 , (I) . 

-3 ~~, (II) 
(35) 

for the surface part of the electronic compressi­
bility 8pu/8V 

f\ iJpa_ =_f. i12Fa = { 0 , (I) (36) 
av avz - ~~vz, (II) 

The anomaly in the surface part of the paramag­
netic susceptibility Xu is determined by the equa­
tion 

OXcr = - 1/2~1[1·2 {0[±(z + 11H)] + 8[±(z- 11-H)]}, (37) 

where there is a plus sign in the first term, if in 
the region (II) z + J.t H > 0, and a minus sign if 
z + J.tH < 0; and analogously in the second term. 
The function B(x) is defined by Eq. (7). 

The second derivatives of the thermodynamic 
surface potentials have thus in a point of an elec­
tronic transition a discontinuity (Fig. 1). 

We now write down the equations for the ~mom­
alies in the thermodynamic quantities taking also 
the volume singularity[ 2 J into account: 

C=Co{t+ [~1zl'f,_1_1_·l8(±z)}, (35') 
vo Vo. 

FIG. 1. The anomaly in the 
surface heat Ca in the case of 
the appearance of a new gap at 
the Fermi surface when the pres­
sure increases at the point pk. 

x = xo + 1/211-2{[alz + 11HI'12 - ~t]0[±(z + !.tH)] 

+[alz- ~tHI'f,- ~t]8[±(z- 11H)]}, (37') 

where 

(38) 

The smooth part of the various quantities is indi­
cated by the index zero. 

The contribution of the surface of the metal to 
the pressure temperature coefficient 8p/8T and 
to the thermal expansion coefficient 8V /8T is un­
important in the case considered. 

2. Anomalies in the case where the connectivity 
of the Fermi surface decreases. The thermody­
namic surface quantities have much stronger sin­
gularities if at the transition point the connectivity 
of the Fermi surface diminishes because connec­
tions are broken. In the range of temperatures de­
termined by (30) we get by using ( 18) for 6 F u 

(39) 

where 

~2 = -y~-;m2m; ~ ( n12 + nz2 _ n32)'/• dcr. ( 40 ) 
(2nli) 2 a \ m1 m2 m3 

We get from (39) the anomalies of the surface 
part of the following thermodynamic quantities: 
specific heat 

(41) 

electronic compressibility 

OOpa I a v = ~zv2ln I z I. (42) 

pressure temperature coefficient 

1 opa i12Fa n 2 1 
{j T7JT =- 0 iJTiJV = 3 ~z'\' -;-· (43) 

The anomaly in the surface part of the paramag­
netic susceptibility is determined by the equation 

OXa = 1 /~fl2 i3z(ln lz + fdlj + ln jz ·- 11Ill). (44) 

When the volume and surface singularities are 
both taken into account the anomalies of the ther­
modynamic quantities have the following form: 

C = C0 { 1·- -~ Jzj'f,8(+z)+ ~2 lnlzl }. (41') 
~ 'Vo Vo 

iJp =(.!!'.) -uy2 jzj'f,8(+z)+~zy2lnjzj, (42') av ,iJ~ .o 
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iJp n2 { iJv0 1 , . _ 1 1 1 iir-=3T 8v~+2--avlzl-h8(+zJ+~zv-;-]· (43) 

X = Xo + 1/zfl2{ -a I;:; + flll 1'1'8 [+ (z + flTl)] 

+ Bz l n I z + fd/ I -a I z -- ulll'128 [ + ( z - ftlf) ] 

+ Bzln 1:::- ftliJ}. (44') 

The transition from region (I) to region (II) 
corresponds to a decrease in the connectivity of 
the Fermi surface. In the equations the upper 
sign corresponds to the case where in region (II) 
z < 0, and the lower sign to z > 0. 

The thermal expansion coefficient 8V /8T has 
the same singularity as the pressure temperature 
coefficient 

From the equations obtained here it is clear 
that in a rather small neighborhood of the transi­
tion point the contribution from the surface to the 
singular dependence of the thermodynamic quanti­
ties is very important. When I z I < Zk the singu­
larity of the thermodynamic characteristics of a 
metal is determined by its surface part, where zk 
as to order of magnitude can be found from the 
equation 

( z" )''' ~ tz = -~ lin~ ! . 
eF! fmeF V fF 1 

For films of thickness L ~ 10-4 em, and assuming, 
to get some estimates, that EF,..., 1 eV we have 
zk"" 10-4 eV. 

In contradistinction to the anomalies in the bulk 
thermodynamic quantities which differ only in sign 
in their dependence on how the Fermi surface 
topology changes, the anomalies in the surface 
quantities have a qualitatively different charac­
ter (see Figs. 1, 2, 3). 

We note that in the neighborhood I z I« .6.E it is 
necessary to take into account the oscillating 
terms which we have dropped. For those values of 
z the formulae given here lose their meaning as 

\( 
FIG. 2. The anomaly in the 

surface specific heat C0 for the 
case when the Fermi surface con­
nectivity decreases in the point 

pk. 

FIG. 3. The anomaly in the 
surface part of the pressure tem­
perature coefficient iJp0 iJT for 
the case when the Fermi surface 
connectivity diminishes at the 
point pk. ( 
by virtue of the condition (31) this range of values 
is unimportant since in it the singularities of the 
thermodynamic quantities are completely smeared 
out. 

In conclusion I express my deepest gratitude to 
Professor I. M. Lifshitz for his careful guidance 
during this work. 
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