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A boundary condition for the Josephson effect is obtained in the quasiclassical approximation 
from the Gor'kov equations. The results of the investigation are in agreement with those of 
previous ones in which this effect is considered with the aid of the tunneling Hamiltonian. 

AN undamped current (Josephson current) can 
flow in a system consisting of two superconductors 
separated by a thin dielectric barrier. [ 1J The the­
ory of this phenomenon is usually constructed on 
the basis of a model tunnel Hamiltonian. [ 2 J It is of 
interest, however, to consider this effect from a 
more general point of view, namely by using Gor­
'kov's equations directly. 

The influence of a dielectric film on the motion 
of an electron is equivalent to the presence of a 
certain potential barrier. The scattering of the 
electron by the boundaries of the barrier is as­
sumed diffuse, and the thickness of the barrier is 
much smaller than the dimension of the pair. Un­
der these assumptions, we shall derive a formula 
which contains all the previously obtained re­
sults. [ 2• 3] In addition, we shall find the distribu­
tion of the current near the barrier. The equation 
for the Green's functions is solved by a quasiclas­
sical method that generalizes the method of Sha­
poval[ 4] and de Gennes. [ SJ 

The Gor'kov equation [ 6 J is conveniently written 
in matrix form 

(1) 

where Ho is the Hamiltonian of the electron in the 
field of the barrier. A* is obtained from the equa­
tion 

(2) 

In the problem considered here, the small pa­
rameter is the coefficient of transmission through 
the barrier. In the zeroth approximation the sys­
tem constitutes two unconnected superconductors. 

For each of them, Eqs. (1) and (2) have solutions 
with A independent of r, the phases A on opposite 
sides of the barrier not being connected in any 
manner. In the first order in the transmission co­
efficient, the zeroth approximation for A should be 
substituted in (1). Thus, it is necessary to solve 
Eq. (1) with 

z<O 
z>O 

The current is expressed in terms of Green's 
functions by means of the formula 

e ,, A A A 

j(r) =- -T Sp .LJ6(r-r) p'tz G. 
m "' 

(3) 

To calculate the current we shall use the method 
of classical trajectories, [ 4• 5] which was general­
ized by one of the authors. [ 7] Expanding G in 
powers of V, we reduce (3) to the form 

X {6mn + V mn !;, 1 · n- ~(J)'tz 

1 1 } + Vmlr: . Vln !;, . + .. · , 
bl - ~W'tz n- L(J)'t 

(4) 

where the matrix elements are calculated from the 
eigenfunctions of ifo. Introducing the time­
dependent operators 

V(t) =exp (-i!l0t)Yexp (ifl 0t), 

we obtain 

j (t•) = _e_T Sp ~ (n J6 (r-; (t)) p (t) 'tz 

m "' 

452 

X [1 +go(t-tl)~"(tl)exp [-i£n(t1 -t)] 

+ go (t- t1) V (t1) g0 (t1- t2) V (t2) 

xexp[-i1;n(t2-t)l+···l!; 1. in), 
n- ~W'tz 

(5) 
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where 

1 (" . 
go(t) = 2:rt .l (~- iunz)-1 exp(-ist)d£. 

Since the factor (~ - iwT z) - 1 exp (- i~t) has a 
sharp maximum near the Fermi surface, and the 
diagonal matrix element depends little on the en­
ergy, we can take it on the Fermi surface, and then 
(5) goes over into the formula 

j(r) = ~ 2:rtvTSp~~dt'(6(r-;(t))p(t)-rz6(t-t') 
"' 

x{go (t- t') -f- ~ dt1g0 (t- f1) V (tt) go (t1- t') -f- .. ·}>. 
(6) 

here v = mp0/27r2 is the level density on the Fermi 
surface, and ( ) denotes averaging over all states 
on the Fermi surface. 

If the barrier is not transparent, then the aver­
ages over the states can be replaced, with quasi­
classical accuracy, by averages over all the classi­
cal trajectories with specified energy, the corre­
sponding operators being replaced by their classi­
cal values on the trajectories. Then, denoting the 
quantity in the curly brackets by g(t, t'), we obtain 
for it the following equation: 

g(t, t') = ~ go(t- tl) .[6(t1- t') + V(ti)g(l1, t')J dt1• (7) 

or, transforming (7) into a differential equation 

[- i ;t -f- iWTz -f- V J g (t, t') = -6 (t- t'). (8) 

Equation (7) can be readily solved for the con­
stant t:. in the absence of the magnetic field: 

g (t, t') c~ 2~ [WTz- E sign (t- t')- i"V] exp (- E It-t'/), 

(9) 

Here E = (w 2 + lt-12) 1/ 2• We note that we can obtain 
the results of Shapoval[ 4J by solving (7) by expand­
ing in the magnetic field, and we obtain the results 
of de Gennes[ 5 J by using an expansion in t:.. 

In first order in the barrier penetrability, an 
electron moving along any trajectory on one side of 
the barrier, can go over to a trajectory situated on 
the opposite side of the barrier. This corresponds 
to replacement of several neighboring operators in 
(6) by their classical values, taken on trajectories 
located on the other side of the barrier. The quan­
tity g0(t- t') which connects the neighboring opera­
tors t:., taken on trajectories situated on opposite 
side of the barrier, are replaced by 

go(t- to)Dgo(t6- t), (10) 

where t0 is the time and D the amplitude of pas­
sage through the barrier. 

Summing the expression in the curly brackets 
in (6) we obtain 

j1(r) = : 2:n:vT Sp ~ <(IDIZ-rzgi (t, to)g2(to, to)gt(t6, t)p0}, 

ul 

(11) 
The double brackets (( )) denote averaging over 
all trajectories, and the indices 1 and 2 pertain 
respectively to the left and right superconductors. 
Substituting in (11) the expression for g(t, t') from 
(9), we obtain 

e 
j1(r) = -:n:v I ~~~2l sin a 

m 

XT ~ _<(jEfP~~~-!o_exp [-21 to I (ul' +I ~d2) 'h]) (12) 
";; (c•J2+1~d2)'1,((J)2+1~2 12)'h ' 

where to is the time during which the electron 
moves from the observation point to the barrier, 
and a = a 2 - a 1 (t:-1 = lt-11 exp (ia 1), t:- 2 = lt-21 
x exp (ia 2)). 

We see from (11) that the current density de­
pends on the coordinates and does not satisfy the 
current conservation law. This is connected with 
the fact that t:. was assumed independent of the co­
ordinates in expression (1) for the current. In fact, 
owing to the transparency of the barrier, a de­
crease in t:. takes place, and this makes a contribu­
tion to the current. The initial equations were 
gauge-invariant, and therefore this change in t:. can 
be obtained from the current-conservation law. For 
this purpose we can seek t:. in the form 

~ = ~oexp[i ~ g(z)dz]. 

The current j2 connected with the inconstancy of 
t:. can be obtained by the method described above: 

. e 1 {7 ( 2Ex \ 2[( x- r )2 ]2=-:n:vTpol~d 2 ~-- .l g(x) .. --1 ---
m E12 , v 1 x 

w 0 

, (. 2Ejx- rl \ , (2Er)2 ( 2Er) XI -2, 1-2 - f -2,·-
v . v \ v 

xr( -2, 2~~)]}ax, (13) 

where r(a, z) is the incomplete gamma function 
and v is the velocity on the Fermi surface. The 
function j 2(z) is obtained from the condition that 
the total current 

jz(z) =h+h (14) 

must be conserved. For example, without allow­
ance for the magnetic field produced by the current, 
the current would flow through the entire sample 
and jz = const. The influence of the magnetic field 
causes the current flowing on the surface to be 

j:c(x,z) =jx(x,O)qJ(z). 
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In the limiting London case cp (z) = exp [- Kz) , and 
then it follows from the conservation law that 

jz(z) = jz(O) exp [ -xz], 

and the function g(z) can be determined from (12)­
(14). We note that near the surface of the barrier 
the addition to D. is always proportional to the pen­
etrability and therefore when calculating the cur­
rent jz due to this addition we can assume that the 
barrier is not transparent. As a result jz vanishes 
on the surface of the barrier. Thus, the total cur­
rent through the surface, equal to j1(0) + jz(O), can 
be calculated from (12), in which we put t0 = 0. As 
a result we obtain 

. _ nve , . ""' <{Po sign to ID 12} 

l- ~l,h12lsma·T ~ (u.i+T~~)'I•(w2+1~21z)'/,· 
(15) 

If the barrier separates two normal metals and a 
voltage V is applied to it, then the current through 
the barrier is 

Introducing the resistance of the barrier by 
means of the formula 

i 

R-1 = epov \ ziD(z) l~dz 
m .\ 

0 

(16) 

(17) 

and substituting it in the expression for the current 
in (15), we obtain 

j =_::I ~1~2l sin a· T ~ [(w2 +I~ tl 2 ) '/, ( w2 +I ~zl 2) '/,]-'/• 
R 

"' (18) 
As T - 0 the sum goes over into an integral and 

. - 2 I ~i~ 21 . (II~ d -I~ 21 I ) 
l~?}o -R l~d + l~zlsma·K \ ~~~1 + l~zll, '(19) 

where K is a complete elliptic integral. Formula 

(19) coincides with the result given by Anderson. [ Z] 

In the particular case[ 3] when I D.1l = I D.zl 

. n I~ I . I~ I 
1 = --sma· tanh-

2 R 2T . 
(20) 

In conclusion we note that formula (20) does not 
depend on the character of the scattering of the 
electrons by the surface of the barrier, since the 
transmission coefficient is averaged in the same 
way over the angles of the trajectories when cal­
culating the current through the barrier, in the 
case of both normal and superconducting metals. 

The results were obtained independently of the 
form of the trajectories, and therefore the final 
expression (20) does not depend on the presence of 
nonmagnetic impurities. 

The authors thank L. P. Gor'kov for valuable 
advice. 
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