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The problem studied is that of the ionization of a system bound by short-range forces acted 
upon by an electromagnetic wave of arbitrary elliptical polarization. For the case of a weak 
field F « F0 , w « w0 (F0 is the intraatomic field and w0 is a characteristic atomic frequency), 
in which many-photon ionization occurs, we derive Eqs. (13) and (14), which give the proba­
bility of ionization in the form of a sum of probabilities of many-phonon processes. Equation (23) 
gives the momentum spectrum of the emerging electrons. We consider the transition to the adi­
abatic approximation in the case of low frequencies (y « 1), and also derive asymptotic formulas 
(32) and (33) for the total probability of ionization in the "antiadiabatic" case (y » 1). It is 
shown that with increase of the ellipticity E of the incident light, when other conditions remain 
the same, there is a decrease of the probability of ionization. In the limiting cases E = 0 (linear 
polarization) and E = ± 1 (circular polarization} the formulas go over into the corresponding for­
mulas of [ 11 • In Sec. 3 we expound a simple quasiclassical method for deriving the main (expo­
nential) factor in the formula for the probability of ionization. In the Appendix we consider some 
properties of the solutions of the Schrodinger equation for potentials with a Coulomb ''tail.'' 

1. INTRODUCTION 

IN a previous paper by the writers [ 11 (hereafter 
cited as I) a method was proposed for calculating 
the probability of ionization of a bound system un­
der the action of an alternating external field. In 
Sec. 2 of the present paper this method is used to 
study the ionization of a system bound by short­
range forces and acted on by a wave with arbitrary 
elliptical polarization. The main result is con­
tained in Eqs. (13), (14), and (23), which give the 
probability of ionization of an s level with binding 
energy w0 = K2/2. For given values of the electric 
field strength F and the frequency w the proba­
bility of ionization w( F, w, E) decreases with in­
crease of the ellipticity E of the light. The nature 
of the dependence of the coefficient of the exponen­
tial function in w(F, w, E) on w changes decidedly 
with changes of E and y: in the region of Eq. (32) 
there are threshold oscillations characteristic of 
the case of linear polarization, whereas in the op­
posite case, Eq. (33), the coefficient of the expo­
nential is a smooth function of the frequency, as 
is typical of circular polarization. We also note 
that for E f. 0 the most probable momentum of the 
emitted electrons is different from zero [cf. 
Eq. (22)]. 

In Sec. 3 we expound a simple method for de­
riving the main (exponential) factor in the formula 

for w(F, w, E); this is an extension of the usual 
quasiclassical method to the nonstationary case. It 
brings out some physical features of the penetra­
tion of a particle through a potential barrier which 
changes with time (in particular, we find the de­
pendence of the effective width of the barrier and 
the time of passage on the frequency of the exter­
nal field). 

In the Appendix we discuss the asymptotic for­
mulas for the wave functions 1/J(r) and cp(p) in a 
potential with a Coulomb tail at infinity. In partic­
ular, we derive the formula (A.7) connecting the 
coefficient C K z in the asymptotic form of 1/J (r) 
with the residue of the scattering matrix Sz(k) at 
the pole k = iK corresponding to the bound state. 

2. IONIZATION IN THE FIELD OF AN 
ELLIPTICALLY POLARIZED WAVE 

When the conditions F « F0, w « w0 are satis­
fied, the mean time for ionization is much larger 
than atomic times, 1) and the wave function of the 
electron is mainly (for Kr ~ 1) of the same form 
as in the free atom, being decidedly altered only 
for Kr ~ (F0/F) 1/ 2 » 1. Under the action of the al­
ternating electric field F(t) the bound level is con-

l)In this paper we use the atomic system of units e=fl= m= 1; 
the other notations are the same as in I. 
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verted into a quasistationary state, whose wave 
function obeys the integral equation I, ( 37). For 
potentials V(r) without a Coulomb tail we can 
make the replacement I, (40), after which a calcu­
lation of the current j(r, t) gives 

i 
j(r, t) = "2 ('IJV'IJ*- 'IJ*V'IJ) 

= 2 ( 2~)3 ~ dp1dp2[n1(t)+n2(t)] ·lzm"(P1, t)lzm(P2, t) 

X exp {i(P2- P1){r- s(t)] - 1/2i(P22- P12)t}. (1) 

Here we have introduced the notations 
t . 

lzm(P, t) = ~ dt' X.zm(n(t') )exp {~ [ (p2 + x2)t' + 2ps(t') 
-oo 

~~ 

+ ~ A2(-&)d-&]}, 
0 

(2) 

(3) 

where cpzm(P) is the normalized wave function of 
the bound state in the p representation (binding 
energy w0 = K2/2; l is the orbital angular momen­
tum). The quantities 7T(t), ~ (t), and A(t) are de­
fined as in I, (39). 

Let us consider the most general case of a mo­
nochromatic light wave-a wave with elliptical po­
larization: 

F(t) = (F cos wt, eF sin wt, 0) (4) 

(the direction of propagation of the wave is along 
the z axis). The parameter E ( -1 :::::: E :::::: 1) is 
called the ellipticity (see ( 2 J); E = 0 corresponds 
to linear polarization, and E = ± 1 to circular po­
larization. For E > 0 the polarization is left­
handed, and for E < 0, right-handed. Using the 
condition that the field is turned on adiabatically 
at -co, we find 

f 

A(t)=- rF(t')dt' = (- = sinwt, ~ coswt,o), (5a) 
-oo 

t 

s(t)=- ~ A(t')dt' = -~F(t); 
-oo (J) 

(5b) 

~ (t) is the trajectory of the classical particle mov­
ing in the uniform field F(t) with the null initial 
conditions ~(-co)= ~(-co)= 0. 

To find the probability of ionization w(F, w, E) 
it is necessary to integrate the radial component 
h of the current over a cylinder of radius R 
(R - co) with its axis along the z axis (the atom 
undergoing ionization is at the origin). We denote 
by .1 (R, t) the integral of h over the cylinder, by 
Pz the component of the momentum p along the z 

axis, and by k the component of the momentum p 
that lies in the plane of x and y. Using the equa­
tions 
co 2l"l 

J dz ~ Rdcp exp {i(Pt- P2)r} (n1 + n2)er 
0 

RJ1(Rik1- k2l) 
= 4n2ic5(P1z ·- P2z)bt12 (t)- n22(t)] lkt- k

2
l , 

(6) 

1. RJ1(Rik~- k21) = 2 1(k - k) for R-+ oo (7) 
liD I kl - k21 nu 1 2 

(J1 is the Bessel function), we get the following ex­
pression for .1 (R, t): 

lim .1 (R, t) =2~ ~ dp1 dp2 6 (Pi- p2)[nt2(t) 
R-+ao 

(8) 

because of the presence of the 6 function the dif­
ference 1ri(t)- 1r~(t) becomes zero, and only singu­
lar terms in Izm(P, t) make finite contributions to 
the integral. 

For the field of the wave ( 4) the integrand in (2) 
is periodic and can be expanded in a Fourier se­
ries, after which the integration over t' gives 

~ exp(iQnt) 
lzm(P,t)= -i LJ Fn(P) Qn-ill 

n=-oo 

(!) xw 
'\' = - = - c5-+ +O. 

Wt F ' 
(9) 

The coefficients F n(P) are very important for 
what follows [see (14)] , and are found from the ex­
pansion 

co 

~ Fn(P)exp(-inwt) 
n=-oo 

{ 
(Oo ( 2kx 2eky 

= 'X.lm(n(t) )exp -i- --cos,wt +--sin wt 
(I) xy xy 

+ \'\'2 
82 sin 2.wt]}. (10) 

From this we have 

exp {ips(O)} ,"~ 
Fn(P) IP=P = 2 dax.zm(n(a)) 

n :rt _, 
. " 

X exp {;w ~ [n2(y) + x2] dy ), 

n(a)= ( kx+ ~sin a, ky- e:;cosa, Pz ). (11) 

As we shall proceed to show, for w « w0 it is suf­
ficient for the calculation of Fn(P) to know only 
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the behavior of the wave function cpzm(P) near the 
pole p2 = -K 2• 

Using the identity 

. Ptz_ pzZ 

P~:!, [(p12 + x2)/2- nt'ro- i6][(pz2 +x2)/2- nzro + i6] 

=- 2:dt5n,n, t5(pi2 + x2- 2roni), (12) 

we can transform (8) into a sum of probabilities of 
many-photon processes: 

co 

w(F,w,e)= ~ w{F,U>,e), v= wo(1+ 1 + 82
), (13) 

n:;;a.v U) 2y2 

Wn(F, w, e)= 2:rt ~ dpt5 (: p2-! Pn2) IFn(P) 12. (14) 

These formulas are a generalization of I, (43) to 
the case of elliptical polarization. The quantity 11 
has the meaning of a threshold for ionization (the 
minimum number of quanta whose absorption is 
necessary for ionization is [ 11] + 1; here [ 11] is 
the integer part of the number 11). The momentum 
Pn (the average momentum of the electron at in­
finity) is found from the law of conservation of 
energy: 

1 1. ( f+ez) -p 2 =nw--x2 1+~ 2 n 2 2y2 ' 
Pn = [2w (n- 'V )]''• 

(15) 

[the term K2(1 + € 2)/4'}' 2 = 1/ 2 A2(t) is the mean 
kinetic energy of the vibrational motion of the 
electron in the field of the light wave (4)]. 

To get concrete formulas we still have to find 
Fn(p). For w « w0 the integral (11) can be calcu­
lated by the method of steepest descent. The posi­
tion of the saddle point 010 = a 0(p) depends on p 
and is found from the equation 

( 'X )2 ( 'X )2 . :rt2{a)== k,.+-sina + ky-e-cosa +P.Z=-x2. 
'Y ' . 'Y 

(16) 
Let us determine the value of p for which 

I Fn(P) I is a maximum. To do so we need to find 
the maximum of the function 

exp {-2i 1P)(:rt2(y) + x2)dy} == exp{~ G(p)}, 
(J) 0 (J) 

where 

ReG(p)=-(.E:.+1+ 1 + 82 )v , x2 2y2 , 

2 1.-82 
-- (kx cos u- eky sin u) sh v ----cos 2u sh 2v, 

xy 4y2 

ao=:rt/2-u+iv. (17)* 

From the conditions 

*sh =sinh. 

a a a 
aReG= ak ReG=-ReG=O 

Pz x aky 

together with (16) we find that kx = Pz = 0, 
u = ±1r /2, and the values of ky and v are found 
from the equations 

shv y 
±x--=-ky, 

v 8 

ky2 1 + y2 26ky 1 - 8z 
--+ +--chv----ch2v=O. (18)* xz yz xy yz 

It is convenient to make the substitution 

sh v = [ {s2 + y2) / {1- s2) )'lo, (19) 

after which we get from (18) the following equation 
for the determination of s: 

( 
8z + yz )''• 8 ( 8z + yz )''• Arth =-- ---
1+y2 8-s 1+y2 

(20)t 

[cf. I, (70) in the case of circular polarization]. 
This transcendental equation has a unique root 
s = so('Y, €), which always lies in the range (0, €), 
and for which s0( '}', €) = -s0('Y, -€). For 'Y « 1 
and for 'Y » 1 Eq. (20) can be solved approximately: 

so(y, 8) 

e [1- (In y l'2ln y)-1 + ... ], y~1, 181-+1. 
(21) 

The dependence of so('Y, €) on 'Y and € is shown in 
Fig. 1. 

~~~~ e~ 
0.8 :::=======;;SiT ~ e-0,1 

u.s 
0.2~-~-~-~~-7~~=--~-~ 0 

FIG. 1. The root So(y,c) of the transcendental equation (20). 
The ordinates are values of the quantity c-1 s0 (y,c). 

Knowing s0 ( '}', E), we find from (18) the value Po 
of the momentum which corresponds to the maxi­
mum I Fn(P)I: Po = (0, ± ko, 0), where 

*ch =cosh. 
tArth = tanh-1 • 
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X ( 1 + y2 )'/• ko=-(e-so) ---
'¥ 1- so2 

lxe/y, y~1, 

= e ( 2y )-1 
X-=- ln-= , y~1, 
11- e2 11- e2 

lel=#=1(22) 

(see also Fig. 2). For 0 < IE I< 1 the most proba­
ble momentum Po of the ejected electrons is per­
pendicular to the maximum electric field strength; 
for IE I = 1 the electrons come out isotropically in 
the (x, y) plane. 

e=l 

e=O.I 
5 

FIG. 2. Dependence of the most probable momentum k,(y,f) 
of the ejected electrons on the parameters y and f (the unit 
for measurement of ko is the intraatomic momentum K). 

To find the total probability of ionization we 
must calculate the I Fn(P) I from (11) for values of 
p close to p0• We confine ourselves to the sim­
plest case l = 0 (ionization of an s level), for 
which 

Xzm(P-+ ix) = 1/2(x I 2n2) 't.C,.o. 

The extension to arbitrary l is no problem (see I). 
In the case l = 0 we get 

IFn(P) I !=P n = D(y, e)exp{- 2: 0 f(y, e)}. 

· exp {- ! [c1kx2 + c2(ky- ko) 2 + C3Pz2J}, (23) 

where 

f(y, e) 

1
2/ay[i-1/10(1-1/3 e2)y2 + ... ], y~ 1 

~ ln(2y/11- e2)- 1/2, y ~ 1, 

ln(y 12ln y)- 1/2, y ~ 1, 

(24') 

We note that f( y, E) depends only on IE 1. For 
E = 0 * 

f(y, 0) = ( 1 + 2~2 )Arsh y- l'r;:-, 

which is the same as the result of Keldysh. [ 3 J The 
other quantities in (23) are 

Ct = so(1- e2) ( s02 + y2 )'7• 
(e-s0)(1-es0) 1+yz 

= I tj3y3(1- e2), 

2y 1 
ln-------

l'1 - e2 1 - e2 ' 

(25) 

= 2y ez I y, 

ln +-­
l'1 - e2 1 - e2 ' 

v~t 

y~1, 

; (26) 

lei=#= 1 

- e ( so2 + "· z )''• 'C3----
e- so , 1 + V2 

(27) 

(28) 

In the exponent in (23) we have dropped terms of 
higher order than K-2(p2 - P5); owing to the factor 
w0/w » 1 this expansion is legitimate. Equation 
(23) gives the momentum spectrum of the emerg­
ing electrons. 

In the adiabatic case ( y « 1) the coefficients ci 
go to zero and a huge number n of photons is ef­
fectively involved in the ionization. When we replace 
the summation in (13) with an integration, we find 

IC,.ol 2 tW'1•y { 2 Fo '} w(F, cu, e)=---- -= exp -- -g(y, e)' 
41n x 1c1c2c3 ' 3 F 

Wo [ 3 ( F )''']'/, 
=IC,.oiL2 n(1-e2) F 0 

x exp {- -~ ~ [ 1 - 1~ ( 1 - ~ ) y2 + ... ]} , (29) 

where the function g( y, E) is connected with f( y, E) 
by Eq. (24) [cf. I, (12) and I, (4) for l =A. = 0]. This 
formula is good for all E except in narrow ranges 
near E = ± 1. For E2 - 1 the coefficient c 1 goes 

* Arsh = sinh_,. 
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to zero, and higher-order terms are important in 
the expansion (23). It can be verified (see a paper 
by the writers[ 41 ) that inclusion of these terms 
leads to replacement of the factor [3F /7r(l- E 2) 

X F 0)112 in (29) by a function A(F, w), which was 
derived in I by an independent treatment of the 
adiabatic approximation. When in (29) we neglect 
the correction terms ~y2 in the exponent we get 
complete agreement with the formulas of the adia­
batic approximation. 

It can be seen already from (29) that with in­
crease of IE I the function f(y, E) increases mono­
tonically, and the probability of ionization de­
creases. This conclusion is valid for all values 
of y. In Fig. 3 we show curves of the function 
f(y, E) for several values of E, as obtained by nu­
merical computation from (20) and (24). In the re­
gion y ~ 30-50, which is of practical importance 
for experiments, the difference between E = 0 and 
E = 1 is extremely important. The threshold for 
ionization with illumination with linearly polarized 
light is lower than that for the case of circularly 
polarized light. The physical reason for this is 
that in the field of an elliptically polarized wave 
the trajectory of the electron is "twisted up" and 
its emergence through the barrier is made more 
difficult (for details on this see Sec. 3, point C). 

J 

2 

0 

FIG. 3. The function f(y,c), the argument of the exponential 
in the formula (29) for the probability of ionization. The numbers 
on the curves indicate values of c. 

Let us now proceed to the region of high fre­
quencies, y » 1. The most probable number of 
quanta absorbed is found from the condition 

1 wo e2 ( 2y )-2 
no-v=-ko2 "'- --- ln---=--

2w w 1 - e2 l' 1 - e2 
(30) 

The effective width of the distribution in n is 

r 82 Wo ]''• !!n "" --- -----
L 1- e2 ro(ln y)3 · (31) 

We consider two limiting cases, D.n « 1 and 
Don » 1. 

1. In the first case 

!!n~1, I """- ( 82 Wo \ 'I• 
ny~ -----

1- e2 w 

The main contribution to the probability of ioniza­
tion is made by one value of n (n = n0). If the 
somewhat stronger condition 

( p} Wo )''• lny~ --- , 
1-82 (!) 

is satisfied, then n0 - v « 1 and the sum over n 
reduces to the first term of the series. In this 
case the total probability of ionization can be put 
in the form2> 

2wo · ( F )"' --w(F, w, e)= -1Cxol 2 -y l'1- e2 

1t Fo 

X exp{- 2<>(ln Zy 
l'1- 82 

- 1 1 
82 ) }w ( ( 1 ZB 82) ''') 

X exp{- 2u~o /(y, e)}. (32a) 

Here 6 = [ v) + 1- v. For E- 0 Eq. (32a) goes 
over into the formula for linear polarization with 
l = 0 and y » 1, Eq. I, (54). The behavior of the 
factor before the exponential in (32a) shows thresh­
old singularities at the frequencies Wn that satisfy 
the condition v = n, an integer, and is in general 
similar to that in the case of linear polarization 
(see Fig. 3 in I). 

The function w(x) which appears in the right 
member of (32a) is defined in I, (56) (for m = 0). 
Using for f(y, E) the asymptotic form (24') for 
y » 1, we can transform (32a) to a more conven­
ient form, 

w(F, w, 8) 

~A(B,8)w( :
0 

)"'( ~ yrv+Jl' (32b) 

where 

( 1 + 8z ) (( 2B )'") X exp I> 1=7 w , 1 _ ;2 , , (32c) 

Because of the factor w/w0 the field F1 is about 
an order of magnitude smaller than the intraatomic 
field F0• With increase of the ellipticity E the 
quantity F1 increases, and this leads to a sharp 
decrease of the probability of ionization. The fac­
tor A(o, E) is of the order of magnitude of unity 

2)For the derivation of this formula see[41. 
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tO 

0 0.5 1.0~ 

FIG. 4. Curves of the function B(B,f); the function A(B,€) in 
(32b) differs from B(B,€) only by a constant factor of the order 
of unity: A(8,€) = "-12-'I:.ICK•i 2B(8,€). 

(see Fig. 4), except in a narrow range of frequen­
cies close to the threshold frequency, w - wn. In 
this region 6- 0, and the second term (n = 11 + 1) 
of the series in (13) must be included. The result 
is that for 6- 0 the quantity A(6, E) takes a small 
value "' (F /F1)2 [but not zero, so that Eq. (32b) 
does not hold near the threshold]. This frequency 
range is very small, however: Aw /wn"' n - 1(F /F1)4 

<< 1. If w is not very close to wn and E is not 
close to unity, then A(6, E) "' 1; in this case it fol­
lows from (32b) that w(F) "' F2[ v+il (for fixed fre­
quency of the laser). 

2. In the other limiting case 

( e2 roo )''• lnv< --- , 
1- e2 w 

Replacing the sum over n by an integral, we have 

roo ( F )''' [ y ]''• w(F, w, e)= --=ICxDI 2 -

2l'n F0 ln(2y/J'1- e2) 

X exp{- ~0 j(y, e)}. (33a) 

The factor before the exponential is a smooth func­
tion of the frequency and has no threshold singu­
larities. We can simplify this expression in the 
same way as before: 

w(F, w, e)~ !Cxol2 w (~)''• [In ( F1) ]-'t. ( _!_ )2'\1. 
4l'2n roo F F1 

(33b) 

For ionization of gases by ruby-laser light w0/w 
"'10-15, and y"' 30-50; under these conditions, if 
E is not very close to unity we have the first case. 
The second case always occurs, however, when we 
go over to circular polarization (I El- 1). 

3. THE QUASICLASSICAL APPROXIMATION IN 
THE PROBLEM OF IONIZATION 

The formulas derived above are rather compli­
cated [even if we confine ourselves to the exponen­
tial factor in w(F, w, E)]. We shall now give a sim­
ple method for deriving the exponential in the for­
mula for w(F, w, E); it reveals the physical con­
tent of the exact method we have used to calculate 
w(F, w, E). We get an elucidation of a number of 
important features of the passage of particles 
through a potential barrier varying with the time. 

Under the conditions F « F0, w « w0 the wave 
function satisfies the equation [cf. I, (37) and 
I, (40)]: 

1. 

1Jl(r, t) =- i ~ dt' ~ dr' G(rt; r't') V(r')IJ'o(r')exp(-iEot'). 
-oo 

(34) 

In the quasiclassical approximation 

G (r, t; r', t') ,..., exp {iS (r, t; r', t')}, ( 35) 

where S(r, t; r', t') is the classical action3> (cf., 
e.g., [ 51 ). From this we have 

• 
1Jl(r, t),..., e-iEot S dt' J dr' exp {iS(rt, r't')} V(r')q>o(r'),(36) 

-oo 

where S is the so-called contracted action [L(T) 
is the Lagrangian] 

t 

S(rt; r't') = S(rt; r't') + E0(t- t') = ~ [L(-r) +Eo] d,;, (37) 
t' 

For w « w0 the exponential in (36) is a rapidly 
oscillating function, and the main contribution to 
the integral over t' is determined solely by the 
saddle point to; moreover, the quantity V(r') 
x cp0 (r') decreases exponentially for Kr' » 1, i.e., 
it is small values of r' that are important in the 
integral over r'. We then have 

¢(r, t) ,..., exp {i[S(r, t; 0, t0) - Eot]}. (38) 

The saddle point t0 is found from the condition 

aS(r, t; 0, t') I = 0 
at' t•=to 

xz 
or. H(O, to)= Eo=- 2 (39) 

[here H(r, t) is the HamiltonianJ. For motions 
that include passage through a potential barrier 

3)The Green's function for motion in a uniform electric field 
is of the form 

6(t-t') 0 • 

G (r t; r' t') = [2lti (t _ t'))'l• exp {18 (r t; r t')}. 

This is one of the few cases in which the exact quantum­
mechanical Green's function is the same as the quasiclassical 
approximation (see£•]. 
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(impossible in classical mechanics) the point t0 

moves off into the complex plane. Equation (38) 
determines the probability of ionization (apart 
from the factor in front of the exponential):4> 

w,...., limj'ljl(r, t) 12,...., exp {-lim2ImS(rt; Oto)}. (40) 

We now show that (40) gives the correct expo­
nential in the formula for w(F, w, E). Here we can 
assume that the motion through the barrier occurs 
under the action of the external field F(t) alone 
(since we confine ourselves to potentials without a 
Coulomb "tail"). 

A. Ionization by a Constant Field F 

Let us first consider the one-dimensional prob­
lem. The classical "trajectory" is determined by 
Newton's equation x = F and the initial conditions 
x(to) = 0, x(to) = iK. Choosing the origin for time at 
the instant when x = 0 (the time of emergence of 
the particle from the barrier), we have 

:t = Ft, 
i~ i 

to=F=ro;· (41) 

In the process of the particle's motion the "time" 
t varies along the curve shown in Fig. 5, a; for the 
motion through the barrier the "time" is imagi-

a 

0 

.~ 
0 t 

FIG. 5. Classical trajectory corresponding to passage of a 
particle through a potential barrier. The figure shows the 
changes during the motion of the following quantities: a- the 
time; b- the coordinate; c- the velocity. Pure imaginary quan­
tities are shown with dashed lines. 

4 >In the stationary case a quasiclassical formula analogous 
to (40) holds for the probability of passage through a potential 
barrier (cf. [7], page 220, and also[•]); in this formula for the 
stationary case the ordinary action appears instead of the con­
tracted actionS. 

nary. The variations of x and x are shown in 
Fig. 5, b and c. At the time t = 0 (x = 0, x = Xo 
= K2/2F) the particle emerges beyond the barrier, 
and the further part of the trajectory has meaning 
also in classical mechanics. 

The trajectory we have found is an analytic so­
lution of the equations of classical mechanics (in 
particular, the point t = 0 is not a point of discon­
tinuity). When we go over into the quantui_!l domain 
it acquires physical meaning: the action S, calcu­
lated along this trajectory, determines the wave 
function 1/J (x, t) (in the quasiclassical approxima­
tion). From (41) we have 

t F2 
S(t, to)= ~ x2 (t')dt' = -(t3 - t03). (42) 

to 3 - -The variations of Re S and Im S during the 
motion are shown in !:ig. 6; after the emergence 
from the barrier Im S remains constant, and from 
this we get 

wstadF)""' exp {- 2 ImS(O, t0)} = exp(- ~ ~). (43) 

Accordingly, apart from a constant factor (40) 
gives the correct value for Wstat<F) in the one­
dimensional case. 

Im s,Rss 
fo/8F 

_ ... .... ," 
0 

" 

I 
I 

I 

t 

FIG. 6. Change of the 
contracted action S during 
the process of passage 
through a barrier. The 
solid curve shows the var­
iation of ImS, and the 
dashed curve, that of ReS. 

Proceeding to the three-dimensional case, we 
note that the field does not change the transverse 
momentum p 1, which therefore behaves classi­
cally (p~ > 0). There is motion through the bar­
rier only in the direction of the field; that is, the 
problem reduces to the one-dimensional case. The 
only change is in the initial condition: we now have 
x(to) = i(K2 + Pl) 1/ 2 , and this means that we make 
the replacement 

~-+~'= (x2+P.L2)''•=x(1+1f2(P.L/x)2+ ... ). (44) 

Making this change in (43), we have 

from which we get 

I F 2 Fo) WstadF)=J dp.LWstat(F,p.L)""' Fo exp( - 3 F . (45) 

The exact formula for the probability of ionization 
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of an s level in a short-range potential is as fol­
lows: [ 9 J 

roo 2 F ( 2 Fo) 
Wstat(F)=21Cxol Fo exp -3- F · (46) 

A comparison of these formulas shows that apart 
from a numerical factor of the order of unity the 
value of w stat< F) in a constant field can be found 
from Eq. (40). 

B. Ionization in the Field of a Wave with Linear 
Polarization 

Let the field F(t) = F cos wt be directed along 
the x axis. The classical trajectory x(t) is found 
from the equations: 

x = Fcos (J)t, x(t0 ) = 0, .i(t0) = ix' = i(x2 + P.L2)'1• 

(47) 

[the transverse momentum is taken into account by 
using (44)). We get 

.r(t) = Px(t- to) - Fw-2 (cos wt- cos wto), 
(48) 

"x(t) = p._ + Fw-1 sin wt, 

where Px = iK'- Fw-1 sin w~; Px is the average 
momentum of the particle (in the direction of the 
field) during its motion to infinity. The particle 
emerges from the barrier at the time t = 0, when 
the field reaches its maximum value (the ampli­
tude). The "initial time" t0 is found from the 
equation 

sinwto=; (ix'-px)=v[i( 1+ px~2 r-~J, (49) 

which can be put in the form 

( Px + ~sin wto r + P.L2 == :r2 (to) = - x2• (50) 

Both the trajectory r(t) and the action S are 
depzndent on p. Let us choose the p for which 
Im S is a minimum, i.e., the probability of ioniza­
tion is a maximum. This trajectory corresponds 
to Pl = 0, Px = 0, wt0 = i sinh-1 y. For the intui­
tive description of the motion through the barrier 
it is convenient to change to a real time T = it 
(-To 5 T 5 0); the equation of the extremal tra­
jectory is then 

dx F 
-= --shw,;. (51) 
d-r; (j) 

The total time T 0 of the motion through the 
barrier decreases monotonically with increase 
of y: 

To = _..!.._ Arsh y ~ ~{ 1 - 1j 6y2 + ... , y ~ 1 
Wt 'Y Wt y-1Jn y, 'Y ~ 1 

(52) 

With increase of frequency there is also a de­
crease of the classical turning point (the length of 
the barrier): 

F x 2 --
Xo = 002 (ch w,;0 -1) = F (1 + l'1 + y2)-1 

~( 1-t..) 
2F 4 ' 

x2 
(53) 

Fy' 

This is the reason for the increase of w(F, w) for 
w » wt; as y increases the barrier gets ''shor­
ter" because of the decrease of x0• 

It is easy to see that for t - oo onl:t, the motion 
through the barrier co~ributes to Im S (t, to), so 
that it suffices to find S (0, t0): 

S (0, to)= ~ {..!_ ,i2 + Fx (t') co.s wt' - x2 
} dt' 

~ 2 2 

= i wo {(1 +-1-)Arshy- l'~}. (54) 
(!) 2y2 I 2y 

By means of (40) we find that the exponent in the 
formula for w(F, w) is of the form 

( 2wo ) exp --/(y) , 
' (!) 

/(y)=(\1+-2
1 )Arshy- l'1 +v~, (55) 
y2 2y 

which is the same as I, (75). 
Trajectories corresponding to p f 0 make 

smaller contributions to w(F, w). From (49) we 
find for p2 « K2: 

wto = i Arsh V - y Px 
l'1 + y2 

(56) 

i.e., the ''initial time" to is shifted from the 
imaginary axis into the complex plane. Ca!culating 

ImSp- ImSp=o =<'I ImSp 

to and including terms ~ p2/;, we find 

6ImS =-wo{(Arshy- y ) Px2 +ArshyP.L2 
}. 

w 1'1 + yz xz . xz 
(57) 

Owing to the factor w0/w » 1, only trajectories 
with small p are important. This justifies the ex­
pansion in powers of p2/ K2 which has been made in 
(57). Equations (55) and (57) give the main terms 
in the expression for I Fn(P)I 2 [cf. I, (53)); the 
term in I, (53) containing 

( 4 Wo 1'1 + y2 Px ) cos - --'------'---
(!) 'Y X 
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cannot be derived in the framework of the quasi­
classical approximation, but its contribution to the 
total probability of ionization is negligibly small. 

C. Wave with Elliptical Polarization 

Here the electric field F(t) is of the form (4). 
We shall look for only the ext:.:_emal classical tra­
jectory, which minimizes Im S. In analogy with 
the preceding case we assume that Pz = 0 and that 
the particle emerges from the barrier at the time 
t = 0 when the field reaches a maximum value, so 
that x(O) = 0. Using these conditions, we find for 
the velocity of the motion 

F 
x(t)=-sinwt, 

(J) 

eF 
y(t) = + ko ---cos wt, 

(J) 
i=O. 

(58) 

The average momentum of the particle at infinity 
is ± ko and is directed along the y axis. The con­
dition p2(t0) = -K 2 gives 

(± k0 - eF ch W'to )
2
- pz sh2 W'to = - x 2 (-ro =ito.) (59) 

w w2 

Integrating (58) and using the initial condition x(to) 
= y(to) = 0, we get 

x (t) = Fw-2 (cos wt0 - cos wt), 

x(t) = e.Fw-2 (sin wt0 - sin wt) + ko(t- to). (60) 

It is assumed that the "time" t varies in the same 
way as in Fig. 5, a. 

In order for the coordinate y(t) to be real at 
t - oo, the following condition must be satisfied: 

Im (eFw-2 sin cut0 + koto) = 0 

or 

An examination of the classical trajectory (60) 
elucidates a number of features of the process of 
ionization by the field of an elliptically polarized 
wave. By means of (60) and (19) we find that at the 
moment when it emerges from the barrier the par­
ticle is at a distance Xo = x0 ( y, E) from the atom 

Xo= x2? [(!+v.~ )'/'-1] 
Fv- 1- so' 

= I ;; [ 1 - ( ~ - ~ ) v2 + ... J , 
x2 

---==· v~1, lei+ 1 
Fvl'1- e2 

(63) 

The larger IE I, the more slowly Xo decreases with 
increase of y (see figure in [ 0 ). This shows why 
the probability of ionization decreases with in­
crease of IE I. Furthermore, in its motion in the 
field (4) the particle describes the ellipse (58). At 
the time of emergence from the barrier :X = 0, and 
therefore the average momentum of the ejected 
electrons is perpendicular to the direction of max­
imum field strength. 

Thus the idea of motion of the particle through 
the barrier along a complex trajectory which for­
mally satisfies the classical equations of motion 
is extremely useful. In the writers' .next paper 
this idea will be used to take into account the Cou­
lomb interaction between the electron and the 
atomic residue. 

APPENDIX 

SOME PROPERTIES OF THE SOLUTIONS OF 
THE SCHRODINGER EQUATION FOR A 

ko = + x~ sh CU'to , 'to= ito. (61) POTENTIAL WITH A COULOMB "TAIL" 
V CU'to 

Setting wT 0 = v and ko = ky, we see that (59) and 
(61) are the same as the equations J18) for deter­
mining the saddle point. We bring S(O, to) into the 
following form: 

0 ? 

S ( 0, to) = ~ { L ( t) - ~ } dt = 
to 

Owing to the conditions r(t0) = 0, r(O) = 0, the last 
term is zero, and we have 

2 roto 2 

-2ImS(O,to)=-~lm\ (t+~)dt. (62) w .\ x2 1 
0 

Since r(t) = 'll'(wt), exp [-2 Im S(O, to)l is the same 
as the exponential in (11). 

As can be seen from Eqs. I, (4) and I, (54), in 
the case F « F0 the probability of ionization is 
determined by the "tail" of the wave function of 
the atomic electron. In the investigation of the 
asymptotic properties of 1/J(r) it is usually assumed 
that the potential has a finite range. In this case 

e-><r ( r \ 
'¢xzm (r) ~ C,.zx'/,- Yzm - I, 

xr \ r 1 
(A.1) 

The Coulomb interaction, with its long-range ac­
tion, distorts the shape of the wave function at 
large distances. We shall here discuss some 
properties of the wave functions for potentials 
which have a Coulomb "tail" at infinity: 

V(r) ~ -xc/r, xr~i (A.2) 

(here KC is the Coulomb momentum; in atomic 
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units KC = Z). The behavior of V(r) at small dis­
tances can be arbitrary. 

It follows from the Schrodinger equation that 
the asymptotic behavior of the wave function of a 
bound level with binding energy K2/2 in the poten­
tial (A. 2) is of the form 

'llxzm(r) ~ Cxl'x'"(xr)1·-ie-><rYzm(r / r), (A.3) 

where A. = Kc/K. The larger A., the more slowly 
11/1 12 falls off at infinity, and the more "crumbly" 
is the system. The dimensionless coefficient C Kl 
determines the probabilities of peripheral proc­
esses, which depend on the behavior of the "tail" 
of the wave function. The determination of C Kl 
requires exact solution of the Schrodinger equation 
in all space, which can be accomplished only in the 
simplest cases. For example, for the hydrogen 
atom in a state with principal quantum number n 

}., = n, C,,z = (-1)n-l-1.2n[n(n + l)! (n -:-l - 1) !]-''' 

(A.4) 

and the factor before the exponential in (A. 3) is of 
the form (Kr)n- 1 which agrees with the exact solu­
tion [cf. Eq. (36.15) in [ 7J]. For the s level in the 
three-dimensional 6 potential C KO = 21/ 2• 

The asymptotic behavior of 1/J(r) for r - oo de­
termines the behavior of the wave function <p(p) in 
the p representation near the pole p2 = - K 2• By a 
Fourier transformation we get from (A. 3) 

'Pzm(P) = 'Pz(P) Yzm(P/P); 

r('J., + 1) ( 2x2 )41 

'Pl (p) ~ £zCxz (2nx3) '" . p2 + x2 

where ~l = 1 for p- iK and ~l = ( -1)Z for 
p--iK. 

(A.5) 

For short-range potentials A. = 0 and the singu­
larity at p2 = - K 2 is a simple pole. When there is 
a Coulomb "tail" the wave function <pz(p) in gen­
eral has branch points at p = ± iK; for integer val­
ues A. = n there is a pole of n-th order. The tail 
of the potential V(r) also determines the position 
and character of the nearest singularity of the 
scattering amplitude f(E, z). For the potential 
(A.2) this singularity lies at the edge of the physi­
cal region: 

t(E z) ~ Xc·2-i><c/k f(1- ixc/k) (1- z)-l+i><cl" Z-*1 
• k2 r ( 1 + ix I k) ' 

c (A.6) 

(E = k2/2, z = cos 8). It is a branch point, and its 
index ( -1 + iKe /k) depends on the energy E of the 
incident particles. This is typical of the Coulomb 
potential; if V(r) falls off more rapidly than r-1 

for r - 00 , the nature of the nearest singularity of 
f(E, z) is determined only by the asymptotic beha­
vior of the potential (see [ 10 J). 

The important physical significance of the con­
stant CKZ has been emphasized in papers by Hei­
senberg,[11J Moller,[ 12 J andN. Hu,[ 13 J inwhicha 
connection was established between C Kl and the 
residue of the scattering matrix Sz(k) at the pole 
k = iK which corresponds to the bound state. Here 
it is essential to use the form of the asymptotic 
behavior, Eq. (A.1). These results can be extended 
also to potentials of the type (2); to do this, follow­
ing the method of Hu's paper, [ 13 J we consider the 
completeness relation for the radial wave func­
tions for r-oo. The result is the following for­
mula5l 

2~ I Cxzl2 = ein(l+A+t/2)- rxl, 
X 

(A. 7) 

in which rKz is the residue of the scattering ma­
trix Sz(k) at the pole k = iK, 

S1(k) = k rxz. + finite part 
k~iK -~X 

(A.8) 

For potentials that decrease more rapidly at in­
finity than the Coulomb potential (i.e., for A.= 0), 
(A. 7) corresponds to Eq. (22) in [ 13 J. 

In the case of a pure Coulomb potential 

Sz(k) = f(l + 1- ixc/k) ---+~ 
f(Z + 1 + ixc/k) k~i>< nk- ixn 

Xc 
Xn=-, 

n 

i(-1)n-Hx 

n2(n + l)! (n -l- 1)! 

By means of (A. 4) we can verify that (A. 7) is satis­
fied identically. 
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