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Quasihomopolar states of a system with a half-filled band, which is narrow compared with the 
conductivity band of metals (copper salts, antiferromagnets such as iron-group transition­
metal oxides, and hydrocarbons with conjugated bonds), are considered on the basis of pertur­
bation theory for degenerate levels of a many-particle system. The low-energy levels of these 
systems belong to the quasihomopolar states. The Schrodinger eqdation can be projected on the 
spin-function space for the quasihomopolar states. Operators corresponding to physical quanti­
ties can also be defined in this space; in other words, the operators of the physical quantities can 
be projected on the spin-function space. A method is proposed for calculating the projected 
Hamiltonian and projected physical-quantity operators of the systems. Corrections of the 
Heisenberg Hamiltonian are obtained for antiferromagnets. The projected current operators 
and electron-density distribution are investigated. After calculation of the projected operators, 
the problem reduces to a solution of the Schrodinger equation with a spin Hamiltonian in spin­
function space. 

WE consider crystals or molecules made up of 
identical atoms with one electron (or hole) in the 
unfilled shell. Such systems include, for example, 
the antiferromagnetic v~ (electron in d-shell of 
the v4+ ion), copper salts with Cu2+ ion (hole in the 
d-shell), and molecules of hydrocarbons with con­
jugated bonds such as the polyenes or benzene 
(pz -electron band). The electrons of the unfilled 
shells of these systems form a narrow (compared 
with metals) half-filled band. The behavior of elec­
trons in such systems depends essentially on the 
Coulomb correlation energy of the electron inter­
action. We shall break up the Hamiltonian of the 
system of electrons into a zero-order Hamiltonian 
and a perturbation, such that the Coulomb correla­
tion energy of the electron is already taken into 
account in the zero-order Hamiltonian. To this 
end we go over to a system of orthonormalized 
localized Wannier functions wnl• where n is the 
number of the band and l is the number of the cen­
ter on which the electron is localized. The Hamil­
tonian of the system, written with the aid of Wan­
nier functions, is 

H = Ho + II', II' = H1 + H2, 

Ho = { ~ F(l1l2l2li) (Nt,- 1) (Nt, -1) +Eo, 
1,1, 

H1 = ~. p(ll')a~at•a, 
l,l',CJ 

H2= ~ ~(llla)ataaha+ ~. F(lllll2)al~(Nt-1)al,a 
lth=Fll' l,lt=#=l2,a 

" 

p (l1l2) = ~ d3rw1, (r) [ ~:+ V (r) J w1, (r) + ~ F (l1lll2), 
l 

(1) 

We have retained in (1) terms pertaining only to 
the lowest half-filled band. Its Wannier functions 
are denoted wz(r). We shall discuss below the 
question of allowance for terms with Wannier func­
tions of the higher energy bands. Ho includes terms 
that do not contain overlaps of the Wannier func­
tions from different centers, H1 includes the over­
lap of only the nearest neighbors (the summation 
is over l' -the nearest neighbors of l), and H2 
contains the overlap of the nearest neighbor from 
the Coulomb energy and all the overlaps of the 
non-nearest centers. 

The eigenfunctions of Ho are functions with a 
definite number of electrons Nz at the center l • 
The ground state is 2N-fold degenerate in the 
spins, and includes functions with a single elec­
tron at each center. The energy of such homopo­
lar states is E0; we shall henceforth denote their 
space by C. The excited (polar) states of Ho are 
separated from the ground state by a gap u1 
= F(llll) - F(ll'l'l). The perturbation H' lifts the 
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spin degeneracy of the homopolar states, and they 
go over into states called quasi-homopolar. We 
shall henceforth consider only the quasi-homopolar 
states. In crysta!s with transition-metal ions and 
in molecules, these include the ground and the low­
est excited states of the Hamiltonian (1). 

In copper salts, the coefficient {3(ll') in H1 is 
two orders of magnitude smaller than the parame­
ter of the zero-order Hamiltonian Ut. and the co­
efficients in Hi constitute not more than 0.1 {3(ll'). 
In antiferromagnets with iron-group transition­
element ions {3(ll')u11 ~ 0.1 and H2 is, as before, 
lower by one order than the term Hi. In such 
cases we can confine ourselves to perturbation 
theory for the degenerate states C. In the lower 
orders of perturbation theory, the secular equa­
tion for the determination of the stable combina­
tions Ci and the energies corresponding to them 
was obtained by Bogolyubov for the polar model of 

tal [i] . me s and by Andersen for antlferromagnets.[ 2 l 
The secular equation has the form of a Schrodin­
ger equation in which the Heisenberg spin Hamil­
tonian plays the role of the effective Hamiltonian 
in C -space. Bogolyubov also found a method of 
calculating the operator of any physical quantity, 
projected on the space C, in lowest orders of per­
turbation theory in H' for quasi-homopolar states. 

In molecules, Hi is of the same order as Ho 
({3( ll')uii ~ 0. 7), and we cannot confine ourselves 
to the lowest order of perturbation theory in Hi. 
However, the parameters in H2 do not exceed 
0.1{3(ll'), and this circumstance enables us to find 
for molecules, too, the effective spin Hamiltonian 
and the projected (on the spin-function space) 
operators of the physical quantities of quasi-homo­
polar levels. 

We shall construct below a perturbation-theory 
series in H' for the exact secular equation of the 
degenerate levels C of the Hamiltonian (1). By us­
ing the perturbation-theory series, we shall show 
that in the approximation H = Ho + H1 the current 
operator on the space of the quasi-homopolar func­
tions is equal to zero and that the electron density 
at each center is equal to unity. We shall subse­
quently propose a method for calculating the spin 
Hamiltonian and the projected operators of the 
physical quantities for molecules with conjugated 
bonds. 

PERTURBATION THEORY FOR DEGENERATE 
LEVELS 

Our problem is to obtain a perturbation theory 
series in H' for the matrix h of the secular equa­
tion 

(h-E)C=O, (2) 

such as to obtain the exact stable combinations C. 
and the energy Ei of the quasi-homopolar states. 1 

The methods of stationary perturbation theory[ i-3 l 
are not suitable for this purpose, since they give 
a secular equation (2) with h dependent on E 
I [ 4 5] . • 
n ' , the formahsm of the S-matrix with adia-

batic inclusion of the interaction was used for the 
construction of the perturbation-theory of the de­
generate level. In the case of the zero-order 
quadratic Hamiltonian, the singularities arising in 
this case, of the type o-n as o- o, were elimi­
nated by Morita[4l by a diagram technique. The 
diagram technique cannot be applied to a four­
fermion zero-order Hamiltonian (1). Therefore, 
Us ·ng M "t ' · "d [4] 1 on a s mam 1 ea, but without resorting 
to diagram technique, we shall construct a per­
turbation theory which is valid for any type of 
zero-order Hamiltonian. At the same time we im­
prove the form of the exact secular equation ob-
ta. d . [4] k" h . me m , rna mg t e matriX h of this equa-
tion hermitian. 

We shall use the S-matrix formalism with adia­
batic switching of the interaction. [ Sl If Cf are 
stable wave functions of the Hamiltonian H0 with 
respect to the perturbation H', then we have for 
them the Schrodinger equation 

(Ho + H' -E;)S(O)C;' = 0, 

0 

S(O) = Texp [- i ~ Hp'(T)d-r l 
-oo 

H p (-r) = exp (iHo-r)H' exp ( -iHoT + 6T), 6-+ 0. (3) 

Let P be the operator of projection on the space 
C. Acting with this operator from the left on (3) 

and recognizing that IfoCi = EoCio we obtain 

(PH'SP- E/PSP)C;' = 0, El = E;- Eo. (4) 

Here and below we shall denote S(O) simply by S. 
Integration with respect to T transforms the ma­
trix SP into 

00 

SoP=P, 
!a=O 

Sn=(-1)n 1 H' f 
Ho- Eo"'7""in6 Ho- Eo- i(n- 1) 6 

X d. .. H i H'P. 
o-Eo- i6 

(5) 

When (5) is substituted in (4) we obtain in the ex­
pressions for PSP and PH'SP singularities of the 
type o-n as o- 0. It is shown in [ 4J that when Ifo 
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is quadratic in the electron operators the matrix 
SP can be represented in the form 

SP = SnPSP = Sn V, V == PSP, (6) 

where the matrix SR is regular when o- 0, and 
all the singularities are contained in the matrix V. 
It is shown in the Appendix that (6) is valid for 
arbitrary H0 and H'. We can then rewrite ( 4) in 
the form 

(PH'SnP- E;') VC;' = 0 (7a) 

or 

(PH'SnP- E;')Ci = 0. (7b) 

Equation (7b), obtained in [ 4] for Ho quadratic 
in the electron operators, has, however, an essen­
tial shortcoming. Inasmuch as V is not a unitary 
matrix, the effective Hamiltonian of the secular 
equation ( 4) 

h' = PH'SnP (8) 

is in general not hermitian, and its eigenfunctions 
are not orthonormal. From 

PS+SP = V+PSJiSnPV = 1 

it follows that the unitary matrix will be 

U= (PS;SnP)'I•V= (VV+)-''•V. (9) 

Denoting (VV+)t/Z by r, we obtain V = ru and 
from (7a) 

(h'- E/) rue;' = o. (10) 

Putting here UC{ = Ci and multiplying (10) from 
the left by r-1, we obtain a secular equation with a 
hermitian effective Hamiltonian 

(h- E;')Ci = 0, h = r-1PH'SnPf = r-1h'r. (11) 

The exact wave function corresponding to the 
energy Ei is 

'I'i = SC;' = Sn VC;' = SnfCi. 

Therefore the matrix elements of any operator G 
for states lJ!i can be found with the aid of the func­
tions Ci. The operator G projected on the space 
C is 

g = fPS ~GSnPf. (12) 

To calculate the perturbation-theory series for the 
effective Hamiltonian h, it is convenient to use 
the somewhat different form given in [ SJ for the 
singular Hamiltonian hs, 

as 
h. = i6PS-1- p 

&'A ' 
(13) 

where A is a parameter of H', which will be set 

equal to unity in the final results. Using (6) and 
separating from (13) the singularities with the aid 
of the unitary matrix (9), we obtain 

av 
h = Uh.U-1 = i{jf-1- V-1r. (14) 

&'A 

We write out the perturbation-theory series for 
(14) accurate to third order in H' inclusive: 

h1 =PH'P, h2=PH'·i-P H'P, 
Ho-Eo 

~'=PH' 1-P ·H'P, 
(Ho- Eo) 2 

hs=PH' 1-P H' i-P H'P. 
Ho-Eo Ho-Eo 

If h1 = 0, then, accurate to fourth order in H' 

(15) 

(16) 

In the case of a quadratic zero-order Hamiltonian, 
the terms in h3 and h4, corresponding to non­
connective diagrams, cancel out similar terms in 
the last terms of (15) and.(16). No complete can­
cellation takes place for Ho from (1). The re­
maining terms are written out below (see (20)). If 
we deal with a nondegenerate level E0 of the zero­
order Hamiltonian, then (14) yields the perturba­
tion-theory series for the energy in the Rayleigh­
Schrodinger form. [ 3 J 

CURRENT AND ELECTRON DENSITY IN 
QUASI-HOMOPOLAR STATES 

Let us investigate with the aid of the series for 
the effective Hamiltonian h and the projected 
operators the current and the electron density of 
the quasi-homopolar states in the approximation 
H = Ho + H1• Let the ion lattice be such that any 
closed line made up of segments joining the near­
est neighboring centers contains only an even num­
ber of these segments (such are the lattices of 
most molecules and antiferromagnets). Then the 
series for h contains only even powers of H1, and 
h is an even function of {3 = {3( ll '). r, Eh and Ci 
will also be even functions of {3. Let us consider 
the parity with respect to {3 of the operators of 
other quantities. It is clear that the electron den­
sity at the ceil.ter l is nl ( {3) = n l (-{3), but if we 
project the current operator J on the space C in 
the nearest-neighbor approximation 

J = L il ( ll') { aza +'a,z,a - ataata), (17) 
I, I', a 
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then the projected operator is j(/3) = -j(-{3). 
We now proceed to the hole representation, 

choosing as vacuum the state in which all the lo­
calized states are occ!lpied by two electrons. The 
homopolar functions C in the new representations 
are obtained from the functions C by replacing 
the operators a ia by the hole-creation operators 
b i, -oo. In the operators Ho, H1o N z, and J it is 
necessary to replace the electron operators by 

hole operators bza = aia and bia = aza· It is easy 
to see that in Ho and J this substitution is equiv­
alent to the substitution aza - bz -a and ala 
- bz, -a• and in H1 it is necessary in addition to 
reverse the sign of {3. For the number of holes IJZ 
we have IJZ = 2 - n z . Denoting the operators G in 
the hole representation by G, we obtain for the 
current 

j(~) = fPSR +JSRPf 

= r <- ~> PsR+(- ~> JSR (-~) r <-~> 
= j(-~) = -j(~) = 0. (18) 

The current for quasi -homopolar states becomes 
different from zero if allowance is made for H2 in 
(1), and for the contribution of the non-nearest 
neighbors in the current operator J. Apparently, 
Kohn did not take these terms into account and ob­
tained j = 0 for the quasi-homopolar states. [ 61 

The momentum is proportional to the current, 
and therefore for molecules with conjugated bonds 
the result (18) shows that the matrix elements of 
allowed transitions between quasi -homopolar 
states in an electromagnetic field is determined 
by the terms H2 and by the overlap of the non­
nearest neighbors in the current operator. The 
corresponding absorption lines will be approxi­
mately two orders of magnitude weaker thart the 
lines of other allowed transitions. 

For the electron density at the center l we 
have 

nz(~) = 2- vz(~). = 2- nz( -~) = 2- nz(~) = 1. (19) 

This result is nontrivial for those ,molecules for 
which the same conclusion does not follow from 
considerations of spatial symmetry. 

SPIN HAMILTONIAN OF ANTI-FERROMAGNETS 
AND MOLECULES 

The functions in the space C differ from one 
another only in the spin coordinates, therefore the 
effective Hamiltonian and all the operators (12) 
projected on C can be expressed in terms of the 
spin-1/ 2 operators Sz. [1] For a cubic lattice with 
H2 = 0, accurate to fourth order of perturbation 

theory in H', we obtain from (16) 

h = ~?~ ( s~s~,- ~ )+ ~,.12'( slsl"- ~) 

+ ~ • .12" ( S1St , -;) + ~ 4~4 [u1 (61 + 62) -l'h62] 
1, lei d ll'*I.Z,'Ut3 (2ut+6t) (2u2 + 62) 

x(s~s~,- ~)( Sz,S1,,- ~). 

.11 = 2~2- 8~4 + 8~ (-1 - ~) + 32~4 (~- 1 ) 
Ut Ut3 Ut2 u{' u 1 u12 ·u2' u~, ' 

u{ = F(llll)- F(ll"l"l), u2" = F(llll)- F(zz;z;z). (20) 

The summation in the second term of (20) goes 
over l "-the neighbors of l next to the nearest 
neighbors l' along the directions (100), (010), and 
(001) of the lattice. In the third term, the summa­
tion is over ld-the nearest neighbors of l in the 
directions of the diagonal faces of the cube (the 
directions (110), (101), and (011)). 61 and 62 are 
the differences between the energies of the inter­
mediate states with two pairs of electrons on the 
two holes at the centers l, l ', l1 and li and the 
energies 2u1. For four centers located one behind 
the other along a line, 61 = -62 = 2u2 - u1 - u3, 

where u3 is the energy of a state with a hole at the 
first center and a pair of electrons at the fourth 
center. The values of 61 and 62 decrease rapidly 
with increasing distance between centers (ll') and 
( l1lO, and therefore the contribution of the last 
term of (20) to the energy is proportional to the 
total number of electrons N. The foregoing results 
are valid, with simple modifications, also for 
crystals containing ions with several electrons in 
the unfilled shell. In this case the space C con­
sists of functions with higher spins. 

In oxides of iron-group transition elements [ 21 
1 ' f3 ui ~ 0.1 and u2 and u2' are close to u1. There-

fore the corrections to the Heisenberg spin Hamil­
tonian, calculated in second order of perturbation 
theory in H', are small, and the coefficients in 
them do not exceed 0.05.11. The first non-vanishing 
contribution to the current j, calculated from for­
mula (12), is made only by the terms of second 
order in H', which contain H2 or the overlap of 
the non-nearest neighbors in the current operator 
J [1 7] . . ' On the basts of the result (18) we can state 
that the corrections of next order perturbation 
theory contain an additional factor {32ui2 ~ 0.01. 

In hydrocarbons with conjugated bonds, f3u11 

~ 0. 7 [Sl and we cannot confine ourselves to lowest 
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order of perturbation theory. However, for a per­
turbation H' = H1 + H2 with H2 small it is possible 
to sum that infinite set of terms of perturbation­
theory series which gives the main contribution to 
the effective Hamiltonian and the projected opera­
tors (12). To this end we calculate exactly the con­
tribution made to h by the interaction of the near­
est lattice points ( ll'), summing in the series all 
the terms containing the operators of these two 
points only. The summation can be performed with 
the aid of the series for (14), but there is no need 
for this. The same result can be obtained by solv­
ing exactly the Schrodinger equation with Hamil­
tonian (1) for two centers ( ZZ') and finding the en­
ergies Ei and the functions 'l!i of the quasi-homo­
polar states of the two electrons. Projecting 'l!i on 
the space C, we obtain a non-orthonormal system 
of functions P'l!i = PSRrci =rei. Extracting the 
root of the matrix (r2hk = (rC/(rCk), we get r 
and with the aid of the operation r-1(rCi) we ob­
tain the required system of eigenfunctions Ci of 
the secular equation (11). Knowledge of Ei and Ci 
allows us to find the spin Hamiltonian of the two 
centers: 

hw = .11(S1SI' - 1/4), 

."11 = 112{[ [ (u 1 - F(ll'll') P+ 16u1-2[~- F(llll') pp- u1} 

(21) 

Summing over all the centers (lZ'), we obtain h(2)­
the effective Hamiltonian in the nearest-neighbor 
approximation. 

We now determine the contribution of those 
terms of the perturbation-theory series, which 
contain tht operators of the three centers (ll'Z"). 
To this end it is necessary to solve the Schrodin­
ger equation with Hamiltonian (1) for these three 
centers, obtain the spin Hamiltonian by the pro­
gram indicated above, and subtract from it the 
contribution of the nearest neighbors ( ZZ') and 
(l'l")Y If we disregard H2, we get 

hwl" = - (2/3e' + .1,) (S1S1' + sl.sl"- 1/2) 

+ '(1/381
- 811

) (S1S1"- 1/4). 

(22) 

and E' is the smallest root of the equation 

83 - 82(u, + u2) + 8(u,u2- 8~2) + 6u2~2 = 0. 

Summing over all triplets (ll'l"), we obtain h(3)-

1 )For two and three centers, the parameters of the spin 
Hamiltonian are determined only by the values of the energies 
Ei of the quasi-homopolar levels. 

the contribution made to h by the triple interac­
tions. Continuing further, this process yields for 
h a series in the interactions of the pairs, triplets, 
etc.: 

N 

h = ~ h(n). (23a) 
n=2 

The series (23a) contains the spin operators S z in 
the following combinations: 

It is possible to obtain in similar fashion the se­
ries for the projected operator of any other physi­
cal quantity (12). 

Let us investigate the convergence of the series 
(23a). If the centers are linearly arranged with 
H2 = 0, and the parameters of H0 and H1 are those 
characteristic of conjugated hydrocarbons 
(f3ui1 = 0.65, u2u11 = 1.7, u3u!1 = 2.2), then the co­
efficients at the spin operators (23b) amount to 
~ 0.13.11 in h(3) and to 0.03.11 and 0.01.11 in 
h(4) and h(5), respectively. In this case the main 
contribution to the spin Hamiltonian is made by the 
pair and triplet interactions of the centers. Allow­
ance for H2 changes the estimates significantly. 

For a ring of six centers we obtain the same 
relation between h(2), h(3), and h(4). However, 
owing to the specific nature of this lattice, the 
terms h(4), h(5), and h(6) are approximately equal, 
and taken together make a contribution of the same 
order as h(3). The pair interactions h(2) remain 
decisive, as before. This circumstance was 
noticed by Mattheiss, [ 91 who carried out numerical 
calculations for a ring of six hydrogen atoms and 
chose empirically a spin Hamiltonian with inter­
action of neighboring spins, which describes suf­
ficiently well the quasi-homopolar levels of the H6 

system at distances between centers R 2: 2 atomic 
units. 

Antiferromagnets constitute that limiting case 
of Hamiltonian (1), in which the term H' is small 
compared with Ho· In this situation, the rapid con­
vergence of the series (23a) is attributed to the 
fact that h(n) contains the perturbation H' raised 
to the power n. We investigate, for a linear lattice, 
another limiting case, when H0 and H2 are small. 
When Ho = H2 = 0 the spin Hamiltonian, in the ap­
proximation of paired and triple interactions is 
({3=1). 

(24) 

The coefficients in h(4) amount approximately 
to 0.1. With the aid of the Hamiltonian (24) we can 
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now find the energies of the quasi-homopolar 
states for a cyclic lattice with N = 2 (2n + 1) cen­
ters at n » 1. An exact solution for the one­
dimensional spin Hamiltonian with the nearest­
spin interaction is known. [ 10 • 111 Estimating the 
contribution of the second term of (24) by the 
method proposed in [ 121 , we obtain for the ground­
state energy per center Eo and for the first­
excitation energy E 1: 

eo = - 0.69.11 + ( :2 - ! ) .12 ~ - 1,23, 

1 ( 8 ) n 2.16n 
e1 = 2 n .11 - n2 .12 sin 2n + 1 ~ 2~ + 1 . (25) 

The exact solution of the Schrodinger equation with 
Hamiltonian (1) yields for Ho = H2 = 0 

4 
eo=--~ -1.27, 

n 
nn n(n+ 1) 2n 

e1 = 2 cos 2n + 1 - 2 oos 2n + 1 ~ 2n + 1 . (26) 

From a comparison of (25) with (26) we see that in 
this limiting case the series (23a) converges quite 
rapidly. 

In all the cases under consideration the term H2 

is small, and this explains the rapid decrease of 
the terms of the series (23a). Indeed, H1 couples 
by transitions only the neighboring centers of the 
lattice. This property is retained also in the pro­
jected Hamiltonian h-only the interaction of the 
nearest neighboring centers is large in the latter. 
The interaction H0 decreases the role of the tran­
sitions for the quasi-homopolar states, and there­
fore the convergence of the series (23a) improves 
with increasing Ho· With increasing parameters in 
H2, the terms of the series (23a) no longer de­
crease so rapidly. Therefore the approximation of 
paired and triple interactions is not applicable, for 
example, to metals or to the ring H6 at distances 
between centers R = 1 atomic units (in this case 
{J = -0.67, {J(l, l + 2) = 0.15, and {J(l, l + 3) 
= -0.20). [ 91 

Thus, if we are interested only in quasi-homo­
polar states of the Hamiltonian (1), then informa­
tion concerning them can be obtained by solving the 
Schrodinger equation with spin Hamiltonian. At 
this stage, the proposed method is similar in form 
to the Heitler-London method. Essentially, how­
ever, they are different since the Heitler- London 
method is confined only to the space of homopolar 
functions, while the proposed method allows us to 
take into account, with the required degree of ac­
curacy, the addition of polar states. As in the 
Heitler-London method, the solution of the Schro-

dinger equation with spin Hamiltonian becomes 
simpler if we use Young's scheme[ 131 for breaking 
down the space C into subspaces with definite total 
spin of the system. 

In the scheme proposed above, the initial data 
for the numerical calculations can be the Wannier 
functions wn z(r). If they are known, then we can 
take into account, besides the transitions inside 
the lowest half-filled band, also transitions to 
higher energy bands. Such transitions change 
somewhat the values of the spin-Hamiltonian pa­
rameters. However, at the present time we cannot 
construct any complete system of single-electron 
wave functions of a crystal or molecule and find 
with its help the Wannier functions wnz(r). We can 
therefore follow a different path-determine the 
unknown parameters of the spin Hamiltonian and 
the projected operators from experiment. The 
rapid convergence of the series (23a) makes it 
possible to predict, from experimental data for 
molecules with a small number of centers, the 
properties of more complicated molecules made 
up of the same centers. Proceeding in this man­
ner, we partially take into account also the contri­
bution of transitions to higher energy bands. 

The proposed method makes it possible to take 
into account the 1r-a electron interaction and can 
be extended to include molecules with heteroatoms 
in the conjugation chain. 

The author is deeply grateful to D. A. Kirzhnits 
and G. M. Vagradov for a discussion of problems 
connected with perturbation theory for degenerate 
levels, and the participants of the seminars of 
V. L. Ginzburg and N. D. Sokolov for valuable 
remarks. 

APPENDIX 

It follows from the definition SP = SRPSP that 
PSRP = 1, so that it is sufficient to show that 
(1- P)SP = (1- P)SRPSP. If we expand SR and S 
in a perturbation theory series in H', then 

n 

(1-P)SnP = (1-P) ~ (Sn)mPSn-mP, (Sn)o = 1.(A.1) 
m=1 

From (5) we obtain 

(1-P)SnP = Fn1Sn-1P = Fn1PSn-1P + Fn1,('1-P)Sn-1P; 

Fn1 =-(1- P) (Ho- Eo- in 6)-W'. (A.2) 

Putting here n = 1, we obtain a matrix (SR)1 = F} 
which is regular in o. We continue further 
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+ Fn1 {1 - P)Sn-tP = (SR)tPSn-IP + Fn2Sn-2P, 

F 2 = (F t - Fti) 1 H' 
n n i(n-i)b 

-Fn1 (1-P)[Ho-Eo- i{n-1)6]-tH'. (A.3) 

Putting n = 2 in (A.3), we obtain (SRh· Continuing 
the process of separating (SR)m, we obtain the re­
currence formula 

pm+i = (F m- F m)--1--H'- F m(i- P) 
n n m i(n-m)b n 

X [Ho- Eo-- i(n- m) b]-1 H', (A.4) 

{SR)m= Fmm· 

Let us prove that F~ are regular operators. 
To this end it is sufficient to show that they are of 
the form (m ~ n!) 

n-m 
Fnm(b)= 2;Ak,mPk,m(n)b"+o(6n-m), (A.5) 

k=O 

where Pk m (n) is a polynomial of degree k in n, 
with coefficients that depend on m, and Ak m are 
operators of degree m in H' and do not depend 
on n. The proof of (A.5) is by induction from the 
recurrence formula (A.4). Indeed, F~ from (A.2) 
is of the same form as (A. 5): 

·n-1 

Fn1 =(1-P) ~ (Eo-Ho)-<k+1JH'nkbk+o(bn-l). (A.6) 
k=O 

On the other hand, if F~ is of the form (A.5), 
then in F~+ 1 from (A.4) the second term contains 
o and n only in the combination (n- m)o, i.e., it 
increases simultaneously the powers o and n 
without changing the form of (A. 5), and the first 
term equal to 

n-m p 
~ (-i)Ak,mH'Pk,m(n)- k,m(m) bk-1 + o(t'ln-m-1) 

n-m 
k=O 

n-m 

= ~ (-i)Ak,mH'P~<-t,mb"-1 + o(t'ln-m-1) 
k=l 

n-m-1. 

= L (-i)Ak+l,mH'Pk,m(n)b"+o(t'ln-m-1), 
k=O 

inasmuch as P 0m(n)- Pom(m) = 0 and Pk-1, m(n) 
= (n- m)-1 [Pk m(n)- Pk m(m)]. We see that 
even the first t'erm has the form (A.5). The regu­
larity of F~ and consequently of (SR)m = F~ is 
thus proved. 
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