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The change in the nature of the electron bands of K, Al and Fe upon variation of density is 
considered. Results of calculation of the cold pressure are analyzed in detail and are compared 
with the data of the statistical theory in which quantum corrections are taken into account. The 
values of the electron specific heat and of the Gruneisen coefficient Ye are calculated for K, Al 
and Fe. A considerable rearrangement of the electron bands in Al due to compression is pre
dicted, which should lead to the appearance of negative Ye· Energy overlap of the 4s and 3d 
bands, due to compression and resulting in a first-order phase transition in the region of nega
tive Yeo is observed in potassium. 

INTRODUCTION 

WE have presented earlier[ 11 the results of a 
quantum-mechanical investigation of the equation 
of state of Fe (reference [ 11 will henceforth be 
cited as I). It turned out that allowance for the 
concrete filling of different bands in metals makes 
it possible to calculate more accurately the p(p) 
curve than the statistical theory with quantum cor
rection. [ 2 • 31 We were able at the same time to ex
plain the anomalously large electronic specific heat 
of Fe, something impossible in the framework of 
the statistical theory. Further calculations have 
made it possible to predict the transformation of 
metallic Ni compressed by a factor 6. 5 into a di
electric[ 41 and the transformation of solid argon [51 

compressed by a factor of 3 into a metal. The the
ory developed in I has now been noticeably im
proved and makes it possible to calculate with suf
ftcient assurance the cold-pressure curve p(p) for 
many metals at a relative compression o > 2. This 
yields interesting data on the structure of the elec
tronic energy bands at different o, shedding light 
on many properties of metals at high pressures 
and temperatures. 

The purpose of the present work was to explain 
in detail recent results on Al, Fe, K, and solid Cl. 
In Sec. 2 we consider the change in the structure of 
the energy bands following change in density, in 
Sec. 3 we present results of calculations for the 
pressure, and in Sec. 4 we analyze in detail the 
electron specific heat and Gruneisen coefficient in 
a wide range of temperatures T and densities p. 

The procedure described in I was improved in 
order to find solutions of the Hartree equation for 

single-electron wave functions in a crystal in the 
Wigner-Seitz approximation. The influence of the 
exchange on the wave functions and the potential 
were not taken into account here. Subsequently ex
change was taken into account approximately in the 
calculation of pressure. 

To solve the Hartree equation, it is very im
portant to use a successive-approximation proce
dure in which the first approximation is the 
Thomas- Fermi potential of the compressed atom. 
From the obtained first-approximation wave func
tions one finds the effective potential and the wave 
functions of the electron for the second approxima
tion, etc. until the succeeding potential and wave 
functions do not differ from the preceding ones. 
We developed a procedure for improving the con
vergence of the successive approximation, making 
it possible to get along with four or five succes
sive approximations. 

1. ELECTRON BAND STRUCTURE AND ITS 
DENSITY DEPENDENCE 

All the results on the dependence of the energy 
E on the quasimomentum k will be presented for 
the final solution of the Hartree equation. It must 
be noted that even in the first approximation the 
character of the bands E(k) is qualitatively the 
same as in the final solution. This quantitative dif
ference, however, greatly influences the absolute 
value of the pressure. 

Henceforth the relative compression o = p /p 0 

will always be given relative to the normal experi
mental density of the substance. 

We start the description of the band structure 
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with aluminum. The configuration in the aluminum 
atom is ls22s22p63s23p, and the 3d level lies 
0.148 at. un. above the 3p levelY In the aluminum 
metal, however, the last electron is at 3d and not 

l)One atomic unit~ 27.23 ev = 3.16 X 10' °K. 

FIG. 1. Plot of E(k) for aluminum at different densities: 
a) 8 = 1.48, b) 8 = 2.95, c) 8 = 4.18. 

FIG. 2. Energy bands in K at different degrees of 
compression: a) 8 = 1, b) 8 = 3, c) 8 = 5, d) 8 = 10. 

3p. To be sure, the sub-band 3cJo, at which the last 
electron is located, is directed downward, i.e., the 
energy E decreases with k, and in the case of 
large k the wave function of the electron contains 
a large admixture of p-states. Figures la-c show 
E(k) curves for aluminum at o equal to 1.48, 2. 95, 
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Table I. Dependence of pressure (in 106 atm) on the density 
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at T = 0 

Fe, P0=7,8 g/cm ' AI, Po=2.7 g/cm' 

8 I p I P stat 8 I p I P stat 

0.746 -0,072 0.35 1.01 0.551 0,10 
1.073 o:958 1,00 1.480 1,660 0.30 
2~005 7;434 9.20 1.961 3.510 1,10 
3.00 21; 130 28,50 2.950 7~240 4,50 
4.00 41,00 60,50 3,500 11.08 7,40 
5.00 77.42 115,8 4.180 17.95 12.30 
6,00 127.50 175.60 5.500 35.60 25:70 
8,00 219;oo 339,00 7.001) 60,35 46,00 

and 4.18. We see clearly that at o = 2. 95 the 3do 
band has reversed direction and goes upward. This 
greatly influences the level density near the Fermi 
surface and the electronic specific heat of alumi
num. 

Figures 2a-d show the energy bands in K for 
o equal to 1, 3, 5, and 10. In the normal state 
(Fig. 2a, p0 = 0.862 g/cm3) of solid K, the outer 
electron is at the 4s band. At a compression cor
responding to o = 3, the important overlap of the 
4s and 3d bands already takes place and exerts a 
great influence on the external properties of the 
electrons; it will be considered in greater detail 
in Sec. 4. 

Subsequently, at o = 5, the 4s band is very little 
filled, and at o = 10 only the 3d band is filled. This 
lowering of the d bands and the rising of the s 
bands upon compression is very characteristic of 
many metals, and takes place in particular in iron. 

The same effect, the approach of the 3d band, 
but now to the 3p band, is observed in solid Cl. (It 
must be borne in mind that normal molecular Cl2 

, 3 
is not described by our theory.) At P = 1.9 g/cm 
and k = 0, the 3p band has an energy -0.115 at.un. 
and the 3d band an energy +0.084 at.un. At 
p = 3.8 g/cm3 and k = 0, the energy of the 3p band 
is 0.044 at.un. and that of the 3d band 0.015 at.un. 
At p = 5.7 g/cm3 and k = 0, however, the 3p band 
is 0.127 at.un. above the 3d band. 

2. DEPENDENCE OF THE PRESSURE ON THE 
DENSITY AT T = 0 

It was shown in I that the pressure consists of 
two parts: kinetic, containing an integral over the 
unit-cell surface, and Coulomb, of the exchange
correlation type, which contains the interaction be
tween electrons in different cells. The latter part 
of the pressure, Pexch• is very difficult to calcu
late and is evaluated for the time being by the 
free-electron-gas formula: 

K,p,=0,862 gjcm' Solid Cl,, 
Po=l.65 gjcm 

8 I 
0. 75 
1.00 
2.00 
3.00 
4.00 
5.00 
6:5o 
8.50 

10.00 
20,00 

p I Pstat 8 I p I Pstat 

-0.001 0.75 -0,010 
0,006 1.00 0.021 
0,087. 2.00 0~565 -0.070 
0.200 -0.155 3.00 2:130 0.325 
0.193 
0.134 0.067 
o:4oo 
0,960 
1. 750 3.00 

22,53 23:to 

pexch= -1-~ W2 = 3,15W2 106 atm, 
3:n:3 ao4 

where W is the difference between the Fermi en
ergy EF and the potential at the boundary of the 
cell (in atomic units). 

Calculation of the kinetic pressure shows that 
the method of successive approximation improves 
the results noticeably. For example, in Fe at 
o = 2 Pk' = 15 1 x 106 atm in first approximation, • 1n · -
and the final value is Pkin = 10.4 x 106 atm; at 
o = 3, we have Pkin = 27.5 x 106 atm in first ap
proximation and 21.1 x 106 atm ultimately. In the 
case of aluminum the first approximation calcula
tions are closer to the final calculations than for 
iron. 

Table I presents the results of the calculation 
of the pressure at different compressions for Fe, 
Al, K, and solid Cl, as well as a comparison with 
the data of the statistical theory with quantum cor
rections. [Sl We see that the results differ marked
ly. In aluminum the statistical theory gives too 
low a pressure, but in iron, to the contrary, the 
pressure is too high. 

However, at large o "' 10-12, for all metals 
there is naturally agreement between our results 
and the data of the statistical theory. [Sl This was 
verified on Fe and Al. 

Figure 3 shows a comparison of the calculated 
pressure with the data of the statistical theory for 
Fe. Starting with o > 2.5, our calculated data are 

. . t 1 [ 6 ] • in fair agreement w1th the expenmen a ones m 
almost all metals. 

In the low density region (o "' 1), the foregoing 
method gives both positive and negative pressure, 
and makes it possible to determine the calculated 
density of the substance at p = 0. Oscillations of 
the normal density Po with variation of Z are also 
obtained. For example, the calculated normal den
sity of K is found to be 0.68 g/cm3, as against the 
3.95 g/cm3 obtained from the data of the statistical 
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FIG. 3. Plot of pressure vs density: curve l-out data, 
curve 2-calculation by statistical theory (log p = 1 denotes 
p = 106 atm). 

theory in the calculation of Kalitkin. [3J 

For iron, the error in the determination of the 
normal density reaches 20%. Further progress in 
this direction calls unconditionally for a more ac
curate calculation of the exchange pressure. At 
the present time much effort is expended on devel
oping a procedure for calculating the exchange 
pressure from the obtained electronic wave func
tions. The next step forward is to take into ac
count the influence of the exchange on the wave 
functions themselves. It is proposed for this pur
pose to find methods of solving the Hartree-Fock 
equation in crystals. This work is presently also 
under way. 

Inasmuch as the employed quantum mechanical 
procedure does not describe the Vander Waals 
forces, the calculation should give a small positive 
pressure for the close-packed solid Ar at all den
sities (p0 = 1.9 g/cm3-experimental density of 
solid Ar), as is indeed the case. 

Figure 4 shows the calculated curve of cold 
pressure in K, the abscissas representing 1/6, 
which is proportional to the volume. We see on 
the curve a clearly pronounced minimum at 1/6 
= 0.21 and a maximum at 1/6 = 0.29. Such a behav
ior is distinct proof of the presence of a first
order phase transition, and in reality a jump of 
density at constant pressure will be observed. 
This constant-pressure line is shown in Fig. 4. 
The bounded areas above and below this line 
should be equal. The transition pressure is 
here 180,000 atm and a large jump in density, al
most by a factor of 2, is obtained. The feasability 

1.0 

0 1,0 

FIG. 4. Plot of p(l/8) forK. Line 1-2 is the constant-pres
sure line of the phase transition. 

of a first-order phase transition in alkaline metals 
was considered qualitatively by Arkhipov. [ 9J The 
accuracy of the calculation of p(6) in K is still in
sufficient to guarantee the accuracy of these fig
ures, but since this phenomenon is connected with 
rearrangement of the electron band in K, which 
we have already mentioned, there is no doubt that 
such a phase transition in K is possible. It would 
be very desirable to investigate this question ex
perimentally. The reliability of the electronic 
phase transition is confirmed also by the fact that 
the predicted region of negative and small positive 
Gruneisen coefficient of the electrons, connected 
with the rearrangement of the band upon compres
sion, was confirmed experimentally, as will be re
lated in detail in the next section. 

3. THERMAL ENERGY AND THERMAL 
PRESSURE OF ELECTRONS 

At relatively low temperatures, knowledge of 
the electronic bands E(k) is sufficient to find the 
thermal energy and thermal pressure of the elec
trons. We shall find first the chemical potential 
J1. as a function of the temperature, after which 
we shall calculate the thermal energy ET and the 
thermal pressure PT. 

We introduce the notation 

'Ye = PTV JET. 

The quantity 'Y e is called the electron Gruneisen 
coefficient. Using the thermodynamic relation 

T 1 iJET 
PT=T~ T2 ( av )TdT, 

0 

we obtain 

iJlnll ll 
'Ve = - a ln t'l 1f ' 

- 1 T 

ll = y ~ jldT. 
0 

At very low temperatures {3 = {3 and 'Y e 
= -8 ln {3/8 ln 6. 

At very low temperatures the calculated value 
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of {3 is in fair agreement with the experimental 
data; for example, for aluminum we have {3 = 517 
and f3exp = 500; for potassium {3 = 456 and f3exp 
= 560 ({3 is in erg/g-de~). 

Thus, the Gruneisen coefficient is connected 
with the character of variation of the density of the 
electronic states on the Fermi surface, since the 
value of {3 is proportional to the density of the 
electronic states. Usually with increasing density 
the electronic bands broaden and {3 decreases, 
which leads to positive 'Ye· A typical example of 
such a case is Fe (see Table II). The calculated 
values of 'Ye at o = 1-2 for iron are close to 
unity, in good agreement with the experimental 
data. The anomalously large value of {3 of transi
tion metals is connected with the large density of 
the electronic states on the Fermi surface for the 
3d bands. 

In some cases the density of the electronic lev
els on the Fermi surface can increase upon com
p_ression, which leads to a negative 'Ye· Such a re
gion of negative Ye was found in K, as can be seen 
from Fig. 5. The reason for the appearance of 
negative 'Ye is connected with the fact that at a 
relative compression 2-3 the hitherto-unfilled 3d 

T 

0,004 
0.007 
0,010 
0.020 
0~040 
0.070 
0,100 

Table II. Ye(o) for Fe at different 
temperatures 

& 

0.746 I 1 ,Oi3 I 2,005 I 3.00 I 4,00 

1.434 1.439 0.953 0.572 0.509 
1 ~483 1.387 1.013 0.571 0.507 
1.607 1.369 1.068 0.566 0.497 
1.810 1.379 1.032 0.550 0.400 
1. 716 1.386 1.004 0.660 0.388 
1.462 1.282 1.040 0.810 0.605 
1,278 1.169 1.189 0.923 0.764 

I 5.00 

0.397 
0.395 
0.378 
0~240 
0.192 
0.308 
0~449 

rJ 

band begins to overlap energetically the 4s band, 
which leads to an increase of {3 upon compression, 
although the width of the fundamental 4s band in
creases at the same time. 

When the temperature increases to (20-30) 
x 103 deg, the calculated value of Ye reverses sign 
and becomes approximately equal to 0.15 in the 
same density interval 2. 5 < o < 3. 5. The Hugoniot 
adiabat calculated from this value of y e and from 
the extrapolated section of the cold curve is in 
reasonable agreement with experiment. At the 
same time, the large statistical values of 'Ye did 
not permit a noncontradictory interpretation of the 
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FIG. 6. Plot of Ye(B) for aluminum at different tempera
tures. 
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dynamic experiments (experiments with shock 
waves). All this shows that knowledge of the 
changes in the structure of the energy bands of 
metals with change in density is very important in 
the reduction of dynamic-experiment data. 

As seen from Fig. 6, a clearly pronounced re
gion of negative 'Ye is obtained theoretically in 
aluminum. This phenomenon is connected in this 
case with the rearrangement of the character of 
the electronic bands upon compression. At normal 
density and near it, the sub-band 3d0, on which the 
last electron of aluminum is located, is directed 
downward and at large k on the Fermi surface the 
wave function of the electron contains a large ad
mixture of p-states. Following a compression with 
o ~ 2, the sub-band 3do already has a maximum, 
and the level density on the Fermi surface is larg
er than at normal density. 

As a result of such rearrangement, the cold
compression curve has a noticeable inflection at 
o = 2. It is important here that as a result of the 
rearrangement the value of {3 increases with in
creasing density, in some region, reaching a maxi
mum at o ~ 2.4. Subsequently the sub-bands 3do, 
3d1> and 3d2 move upward simultaneously, their 
width increases with increasing o, and {3 begins 
to decrease. This means that there is a region of 
negative 'Ye at 1 < o < 2.4, after which 'Ye rapidly 
passes through zero, becomes positive; the Ye(o) 
curve has two extrema, in both the negative and the 
positive regions. The presence of a region of neg
ative Ye and of an inflection in the cold-pressure 
curve should lead to a turning of the shock adiabat 
of Al to the right at 6 = 2. The experimental data 
obtained in [ 7 • 8 1 show that apparently such a turn
ing of the adiabat does indeed take place near o ~ 2. 

Subsequently, on going into the region of large 
positive Ye, one should expect a sharp turning of 
the shock adiabat of Alto the left. These theoreti-

cal premises are presently undergoing a thorough 
experimental study. 

Summarizing the foregoing, we can see that the 
developed quantum -mechanical theory makes it 
possible to predict a large set of properties of 
metals in the compressed state. The developed 
method makes it possible even now to calculate the 
electronic rearrangement upon compression, the 
loss of metallic properties in a definite density in
terval, and thermal energy and thermal pressure 
of the electrons. 
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