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A selfconsistent scheme of calculation is constructed for the study of the rotation of charged 
Fermi systems, taking into account the intrinsic magnetic field of the currents that arise when 
the system rotates. A generalized Larmor theorem is formulated. A detailed study is made of 
the rotation of normal and superfluid systems in this scheme. It is shown that the moment of in­
ertia of a London superfluid system is zero. Methods of Fermi-liquid theory are used to study 
the effect of the normal and superfluid interactions on the moment of inertia of a Fermi liquid. 
It is shown that the normal interaction in a normal Fermi system does not affect the moment of 
inertia. A consistent calculation is made of the effect of the normal interaction in the rotation 
of superfluid Fermi systems. Corrections associated with the intrinsic magnetic field are esti­
mated for the case of rotation of atomic nuclei. 

THERE have been a great many studies of the 
properties of Fermi systems in external magnetic 
fields. The analogy of the behavior of systems in 
a magnetic field and that of rotating systems must 
also be noted. By relying on this analogy and using 
methods of the theory of Fermi liquids, we can 
reach extremely general conclusions about the ro­
tation of normal and superfluid Fermi systems. 

1. Rotation of a system of charged particles 
gives rise to currents in it, which produce an in­
trinsic magnetic field acting on the system along 
with the external field. Therefore the Lagrangian 
of the system in a stationary reference system 
can be put in the form 

"'{mvi2 1 q '} 2=~ - 2-+2 c-v;A; +:tint• (1) 
t 

where the vector potential A' is determined by the 
currents produced by the motions of all particles 
except the i-th: 

V2A' = -4nc-1j = -4:rtc-tqvp, 

where p is the density of particles in the system. 
In order to get the Lagrangian 2' in a reference 

system rotating around the z axis with angular 
velocity fl0, it is necessary to replace the velocity 
Vi in the Lagrangian (1) by vi + [nori], where V' 

is the velocity of the particle relative to the ro­
tating reference system. We get 

2' = ~ {; (v/ +£Oor;]} 2 + ic {v/ + [Oord)A/ }+ 2int· 

Here the vector potential A' obeys the equation 

V2A' = -4nc-1pq(v' + [Oor]) = -4nc-t(j' + iTig), (4) 

where jrig is the current density of the rigid rota­
tion. In this case the generalized momentum Pi of 
the particle will be given by 

p/ = a::e' I av{ = mv{ + qc-1A; == Pi 

(we neglect the effect of retardation in the La­
grangian Xint). In (5) Pi is the generalized mo­
mentum in the stationary reference system, and 
the potential A = A0 + A' obeys the equation 

V2A 4:rt ( ., + pq2 A \ =-- l --2 o)' c , me 

(5) 

(6) 

where Ao is the effective vector potential of the ro­
tation, given by 

(7) 

The orbital angular momentum L' of the sys­
tem in the rotating reference system will coincide 
with the orbital angular momentum L in the sta­
tionary reference system: 

L' = L {r;p{] = ~ m [r;v;1 + ~.!_[r;A;] == L. 
i i i c 

(8) 

On the other hand the Hamiltonian 3£' in the rota­
ting reference system is connected with the Hamil­
tonian ;;e in the stationary system by the well 
known relation 

' (3)* 3£'= ~{p/2 
__ q_p{A{-.!Lp/Aio}+Jtint==J£-LOo, 

. 2m 2mc me 
t 

(9) 
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so that L = L' = - fJ::fe'/ fJD-0 and the moment of iner­
tia J is given by 

(10) 

In an external uniform magnetic field H0 de­
fined by the vector potential A0 = 1f2[Horl the La­
grangian of our system is of the form 

{ mv;2 1 q , q } 
!{t" = ~. ' 2-+ ·--z~A; V; + ~AiOvi + ~int, (11) 

' 
where the potential A' obeys the equation 

, 4n . 4n 
V2A = --J= --pqv. 

c c 
(12) 

A comparison of the Lagrangian (3) in the rotating 
reference system with the Lagrangian (11) shows 
that the usual Larmor theorem must be general­
ized: the behavior of a system of particles in a 
rotating reference system is equivalent in first 
order in the field to its behavior in a magnetic 
field which is the sum of the uniform magnetic 
field 

(13) 

and the magnetic field produced by the rigid-body 
rotation of the system. 

If the system as a whole is electrically neutral, 
such as a metal, for example, composed of a rigid 
positively charged crystal lattice and the conduc­
tion electrons, then the total rigid-body current is 
zero (jrig = 0), and we can use the ordinary Lar­
mor theorem. For such systems the current mo­
ment of inertia Jcur defined by the first term of 
(8) can be expressed in terms of the orbital mag­
netic dipole moment of the system in an external 
magnetic field Ho given by (13), 

normal Fermi system, in which the current den­
sity j' is zero in first order in the field. In such 
a system the moment of inertia is the sum of two 
terms: 

(17) 

where the definition of the rigid-body moment of 
inertia is 

!rig= ~0 ~ p[r[!lorlJz dV = m ~ p (x2 + y2) dV, (18) 

and the moment of inertia JM associated with the 
magnetic field of the rigid-body-rotation current 
is given by 

]" = __i_Q ~ p [rA']zdV. 
c 0 

(19) 

For systems satisfying the ordinary Larmor 
theorem JM = 0 and the moment of inertia is that 
of a rigid body. For those systems that do not obey 
the ordinary Larmor theorem we shall look for a 
solution of the equation (4) for the potential A', 
satisfying the usual boundary conditions, in the 
form 

A' (r) =~I. irig(r:) dV' = _1_ I P[Qor'] dV'. (20) 
c J jr-r I c J jr-r'l 

For simplicity we consider a spherical system 
of radius Ro· Choosing the z axis in the direction 
of the radius vector r and taking the vector 0 0 in 
the zy plane (we denote the angle between the vec­
tors r and 0 0 by e0), we get 

r ;:;::.Ro 
A'(r) = (21) 

M = _q_~ {r;v;] 
2c . · ' 

1 

by a relation of the form 

(14) where oL is the London penetration depth, 

I'lL= (4nprcoul)-11'· (22) 

4m Mz 4m \ 
leur=---=---) :x(r)dV, 

rCoulHo rCou! 

Then the magnetic moment of inertia can be 
(15) represented in terms of the rigid-body moment of 

inertia: 
where x(r) is the local coefficient of orbital mag­
netization and rcoul is the Coulomb radius of the 
particle 

(16) 

If, on the other hand, the system is not electri­
cally neutral, such as an atomic nucleus, for ex­
ample, then its current density of rigid-body rota­
tion is not zero and it is necessary to use the gen­
eralized Larmor theorem. 

2. Let us consider the case of rotation of a 

(23) 

It can be seen from this that if the size of the 
system is sufficiently large in comparison with 
the London penetration depth the moment of iner­
tia of a normal system can be considerably larger 
than the rigid-body moment of inertia. There is, 
however, only one type of stable systems existing 
in nature that do not obey the ordinary Larmor 
theorem-atomic nuclei. As will be shown below, 
for the proton components of an atomic nucleus 
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the London penetration depth is approximately 4R0, 

so that 

JM ~ 0.006J rig <g;;Jrig• (24) 

3. Let us now consider the rotation of super­
fluid Fermi systems which are large enough so 
that the effect of the boundary of the system on the 
moment of inertia can be neglected. For such sys­
tems the current density j' is not zero, but is a 
linear functional of the vector potential A: 

j'(r)=~ K(r-r')A(r')dV'. (25) 

In this case the equation (6) for the potential A 
can be rewritten in the form 

f 4n 1 J 4n. 
l V2A+--jK(r-r')A(r')dV' =--]rig. 

c c 
(26) 

The solution of this equation is the sum of a solu­
tion A1 of the homogeneous equation and a solution 
A2 of the inhomogeneous equation. 

The solution A1 of the homogeneous equation 
coincides with the vector potential of the system 
in question when it is in the uniform magnetic 
field (13). In this case there are two limiting cases 
for superfluid Fermi systems. 

a) the London case, in which the penetration 
depth OL of the field into the system, Eq. (22), is 
much larger than the dimensions of a Cooper pair 

(27) 

(where v0 is the Fermi velocity and ~ is the en­
ergy gap). In this case the current density is very 
simply related to the field: 

pq2 
j'(r)= --A(r); 

me 
(28) 

b) The Pippard case, in which the penetration 
depth 

4 ( mc2v0 \ 'h ( r )''' bp=-=- -~--J =0.6<k ~ 
3l'3 - 3rr2r!J2L\ : -- <'>L 

(29) 

is much smaller than the dimensions of a Cooper 
pair. In this case the dependence of the current j' 
on the field is of the nonlocal character (25). E 
Equations (25) and (28) join approximately at 
oL ~op ~ rc. 

The solution A2 of the inhomogeneous equation 
can be looked for in the form 

4:n: I 
A2(r)= --.\ G(r-r')lrig(r')dV', 

c 
(30) 

where G(r - r') is the Green's function of Eq. (26). 
In the London case the Green's function G(r- r'), 
which is finite and continuous in all space, can be 
calculated by means of an integration in the com­
plex plane: 

G(r _ r') = _ -~ exp{-lr- r'I/11L} 
4:n: lr-r'l 

(31) 

The solution A2, Eq.(30), is then of the form 

A2(r) = ___!__ \ lTig (r') ex~{ -I r'~ r'l I 1\d_ dV'. (32) 
c J r- r 

This solution goes over into the solution (20) for 
the normal Fermi system in the limit <'>L- oo, In 
the Pippard case the calculation of the Green's 
function is much more complicated, but it can be 
expected that G(r - r') will be qualitatively of the 
form (31) with <'>L replaced by op. The magnitude 
of the potential IA2(r) I in (32) is smaller than the 
magnitude of the potential I A' (r) I given by (20). 
Therefore by (24) we can neglect the effect of the 
magnetic field of the currents of rigid-body rota­
tion on the properties of the system and use the 
ordinary Larmor theorem, even in the case of 
superfluid atomic nuclei. 

We point out an extremely important peculiarity 
of the London case. If we substitute the current 
density j' from (28) in the formula (8) for the orbi­
tal angular momentum, the current moment of in­
ertia is exactly cancelled by the term associated 
with the potential A, so that the orbital angular 
momentum, and along with it the moment of iner­
tia of the system, are equal to zero. Accordingly 
the presence of a nonzero moment of inertia of the 
system must be due either to the system's belong­
ing to the Pippard case, or else to the effect of the 
finite size of the system on the superfluid proper­
ties. 

4. The inclusion of an interaction between the 
particles can have an important effect on the mo­
ment of inertia of a Fermi system. Two types of 
interaction are distinguished in the theory of 
Fermi liquids: the superfluid interaction, deter­
mined by a diagram with four external lines, irre­
ducible with respect to the particle-particle chan­
nel, and the normal interaction, determined by a 
four-line diagram which is irreducible with re­
spect to the particle-hole channel. Among the pa­
pers devoted to the effect of the normal interac­
tion on the moment of inertia of a Fermi liquid, we 
must point out a paper by Amado and Brueckner, [ 1 l 

in which it is shown in first order of perturbation 
theory that the normal interaction does not change 
the moment of inertia of a system (this result can 
be extended easily to the case of a Fermi system 
of gaseous density), and a paper by Rockmore, [ 21 

in which this same result is derived in the high­
density approximation. The solution of this prob­
lem has not been obtained, however, in the most 
interesting case of intermediate density. The the-
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ory of the Fermi liquid developed in papers by 
Migdal [31 allows us to solve this problem in all 
orders of perturbation theory in a very simple 
way. 

Let us consider a normal Fermi system con­
taining a sufficiently large number of particles so 
that the quasiclassical approximation can be ap­
plied (Ro » 1/p0, where Po is the Fermi-system 
momentum). The moment of inertia of the system 
is given by the formula 

Lz 1 A 

J =-Q = -Q-Sp(Lzp'), 
o -o 

(33) 

where p' is the change of the one-particle density 
matrix under the influence of the perturbing Ham­
iltonian 

Expressing p' in terms of the complete vertex 
part T(-qA•p/Q0mc), we get in the momentum 
representation 

_ ~ a(Lz)pptrp,p(np,-np) 
J- 2 P:; (p'2- p2) /2m* ' 

(34) 

(35) 

where m* is the effective mass and a is a renor­
malization constant. 

Since only states in the neighborhood of the 
Fermi surface are important in the sum (35) and 
the bare field does not depend on the time, the ver­
tex T in (35) can be replaced by the static vertex 
Tk. If we use the facts that in a sufficiently large 
system 

Tk (- _'!_Ap) =- ____5-A(r)T"(P) 
Qomc Qomc 

(36) 

and that owing to gauge invariance[ 3l 

aG-1 (p) mp 
T"(P)= -a op = m*' (37) 

we easily get the following expression for the ver­
tex~: 

Substituting (38) in (35), we get a formula for 
the moment of inertia J of the system which is 
the same as the formula for the moment of inertia 
of a system of noninteracting particles. Since in a 
system of noninteracting fermions the current den­
sity j' is zero, [ 41 the normal interaction does not 
change the value of j' and does not affect the mo­
ment of inertia of the system. 

5. The effect of the superfluid interaction on 
the moment of inertia of a Fermi system has been 

investigated in a number of papers, in particular 
in one by Migdal. [ 51 In these papers, however, the 
perturbation Hamiltonian chosen as a starting 
point was not the self-consistent Hamiltonian (34), 
which takes into account not only the bare rotation 
but also the intrinsic field of the currents, but the 
Hamiltonian 

(39) 

moreover, the normal interaction was not consis­
tently taken into account. 

To include the effects of the normal interaction 
in the equations of Migdal, [ 51 it is necessary to 
insert instead of the bare vertex Lz the exact 
vertex T (qA · p /mcQ0), and to solve, instead of the 
equation for D.~1t.. 2 , a system of equations for D.~ 1t..2 
and Tt..1t..2: 

'tl.,'-, = T~"' + a2 :
1= ~ <J\,jA21 r(i) I),'),"> {K1-''-" 't!A" 

It"'"" 

~ (~~'A" N;.'~c" + 01-''-" TJc'A") QJ1.·* (r) QJ1.•' (r) = 0, 
'-''-" 

where 

K'-'1.'' = - [1 - g(x)] - g(x) (1 + P) /2, 

(P is the time-reversal operator). 

(40) 

(41) 

(42) 

In Eqs. (40)-(42) all of the calculations are 
made in an arbitrary A. representation, the choice 
of which is determined by the properties of the 
concrete system. We can look for the solution of 
Eq. (41) for Ll~'A." in the form 

(43) 

When we substitute (43) in (40) and use the fact that 
PT = - T, the terms in g(x) cancel, and the equa­
tion for T, Eq. (40), goes over into the analogous 
equation for the normal liquid. 

By means of the requirement of gauge invari­
ance the vertex T k can again be put in the form 
(38). We note that in the paper of Migdal[ 51 the 
perturbation Hamiltonian was chosen not in the 
form (39) but directly in the form - (m/m*) L • 0 0 , 

which allowed inclusion of the effects of the normal 
interaction. 
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6. We shall estimate the correction to Migdal's 
calculations [ 5] of moments of inertia of atomic 
nuclei which are due to the difference between the 
potential A and the bare potential A0• 

As was shown in Sec. 3, for nuclei we can ne­
glect the effect of the magnetic field of rigid-body 
rotation and take as the potential A the quantity 
A1o which is the solution of Eq. (26) without the 
right member. To estimate the behavior of the po­
tential A1 it is necessary to know to what type of 
superfluidity the atomic nucleus belongs. 

For the proton component of an atomic nucleus 
the London pentration depth, calculated for an 
average distance between particles r 0 = 1. 2 
x 10 -l3 em and for Z /A~ 0.4 is ol, ~ 26 r 0, which 
is four or five times the dimensions of heavy nu­
clei. If in the spirit of the theory of the Fermi 
liquid we introduce an effective electric charge of 
the neutrons, which arises owing to the interaction 
of neutrons with protons and is approximately 
0.1 e, then the London penetration depth for the 
neutrons is of the order ot ~ 260 r 0, forty to 
fifty times the dimensions of heavy nuclei. In the 
Pippard case, on the other hand, the penetration 
depths for protons and neutrons are o1> ~ 15 r 0 

n 
and Op ~ 150 r 0; here we have used the fact that 
the size rc of a Cooper pair is 

rc= Vr.l ~ ~ roA'Is ~ 25 ro > Ro. 

For the proton component of atomic nuclei 
ol, ~ 0~ ~ rc, so that we have the intermediate 
case. For the neutron component of atomic nuclei 

n 
oL » rc, so that we have the London case. Since 

n 
for the neutron component oL » Ro, we can ne-
glect the difference between the field A and the 
bare field A0, and in this case there is no correc­
tion to Migdal's calculations. [ 5 J For the proton 
component of atomic nuclei, on the other hand, 
(~/6) ~ 0.3, so that there can be a finite correc­
tion to Migdal's calculations in [ 5]. 

To get a qualitative estimate of the size of this 
correction, we solve a model problem of the be­
havior of a spherical London superfluid system in 
the external field Ho of Eq. (13), for an arbitrary 
ratio of R0 to oL (this sort of problem has pre­
viously been solved in the limiting cases Ro » oL 
and Ro « oL[ 6• 7]). The vector potential A(r), 
which is the solution of Eq. (26) without the right 
member and with the usual electrodynamic bound­
ary conditions, is of the form 

A ( r) = Ao ( 1 + ~~ ) y3x-3 ( sh y - y ch y) - 1 ( s h x - x ch x) , 

(44)* 

*sh "' sinh, ch "' cosh. 

in the exterior region of the sphere; here 
x = r foL, y = R0/6L, and a is the volume mag­
netization coefficient of the sphere, Eq. (15), 

a= I x(r)dV =- ~t'f 1 + ~-~ cothy]. (45) 
.l 8:rt L y2 y 

In the limiting cases Ro » oL and R0 « OL the co­
efficient a goes over into the well known magneti­
zation coefficients for a massive superconducting 
sphere, a = -3V/87T, [ 6] and for a superconducting 
sphere of small radius, a =- (1/ 40 7T)(Ro/6L)2V. [7 J 

If we recall that the exact perturbation Hamil­
tonian (34) differs from Migdal's Hamiltonian by 
the replacement of A by A0 (sic), we can obtain 
the correction to Migdal's calculations by replac­
ing the bare angular velocity no by the effective 
angular velocity 0 (r) = (q/mc) curl A. Calculation 
of O(r) with the potential (44) shows that Q(r) is 
equal to Q0 for r = R0 and decreases to (1 - k)n 0 

for r = 0, where the coefficient k is positive and 
proportional to (R0/oL) 2• Owing to this we can ex­
pect that the proton moment of inertia of an atomic 
nucleus is diminished as compared with Migdal's 
results by a quantity of the order of (R0/6L) 2 

~ 0.09. Since the accuracy of the theory of Fermi 
liquids for atomic nuclei is to the order A - 1/ 3 

= 0.16, this correction is scarcely to be detected 
experimentally. 
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