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A stationary theory of self-action of finite light beams in a nonlinear medium is developed in 
a quasi-optical approximation. The analysis has been performed both in the approximation of 
geometrical optics, and in the case where diffraction effects have been accounted for. The con­
ditions required for the nonlinear medium to produce a focusing effect on the beam have been 
determined. It has been established that the self-focusing effect is, in general, of the aberra­
tion type, with the exception of special cases. Self-trapping conditions have been determined 
for two- and three-dimensional beams in a nonlinear medium. It was shown that saturation of 
the nonlinear part of the refraction index plays a basic role in the self-trapping phenomenon. 
The dimensions of the focal spot have been computed for the self-focusing beam in the nonlin­
ear medium. The substantial influence of the nonlinearity on the structure of the focal region 
has been noted, particularly for the case of a cylindrical Gaussian beam. The discussion in­
cludes the self-focusing mechanisms that can be realized experimentally. 

1. INTRODUCTION 

THE self-action of electromagnetic waves in a 
nonlinear medium occupies a special place among 
the numerous problems in nonlinear optics that 
have recently come to the fore in connection with 
the development of high-power lasers. The self­
action effect arises out of the dependence of the 
complex dielectric permittivity (complex refrac­
tive index) upon the intensity of the propagating 
wave. It is described phenomenlogically by the odd 
terms in the expansion of the nonlinear part of po­
larization of the material medium with respect to 
the electric field E of the wave. Thus, if the i­
component of the nonlinear polarization vector is 
represented in the form of the expansions 

Pi(nl) = XijkEjEk + X~jklEjEkEl + x~jklmEjEkElEm 
+ XijklmnEjEkEzEmEn + ... , 

the self-action effects will be described by the 
tensors Xijkl• Xijklmn• etc. 

According to (1), the index of refraction for a 
wave propagating in a nonlinear medium can be 
written as 

(1) 

(2) 

where n2, n4, n6, are in general complex. Effects 
connected with the imaginary parts of n2 (two­
photon absorption) and n4 (three-photon absorp­
tion) have already been frequently observed exper-

imentally. Recent literature contains lively dis­
cussions of the effects due to the real parts of 
these coefficients, i.e., to the dependence of the 
phase velocity of the wave upon its intensity. An 
analysis of such effects is particularly interesting 
in the case of finite beams. The application of non­
linear corrections to the index of refraction causes 
the initially homogeneous medium to become opti­
cally inhomogeneous in the presence of a strong 
light field. Consequently, the beam path substan­
tially depends upon the electromagnetic field in­
tensity (see [i-41 and the brief review[ 5J).il 

As is shown in the papers cited, an extraordi­
narily interesting consequence of this inhomoge­
neity is the specific mode of propagation of a light 
beam in a nonlinear medium, the so-called self­
trapping mode, whereby the light beam creates, as 
it were, its own optical waveguide. Steady-state 
profiles of self-trapping light beaus were computed 
in ( 2, 31• The first experimental observation of this 
effect was reported in [ 71 • Although the theoreti­
cally determined power P cr of a self-trapping 

!)Nonlinear corrections to phase velocity in one-dimen­
sional problems have been treated in[•], for example, which 
discusses the effect of these corrections upon the generation 
of harmonics by plane waves and parametric amplificl}tion of 
traveling plane electromagnetic waves. 
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light beam (it weakly depends on beam diameter in 
the case of a three-dimensional cylindrical beam, 
and is inversely proportional to the linear dimen­
sion of the beam in the case of a two-dimensional 
beam) turns out to be comparatively low, no ex­
perimental work has as yet reported the self-trap­
ping effect in the form predicted in [ 31• The causes 
of this situation were dis cussed in [S • 91 , and it 
seems that specially selected boundary conditions 
are necessary to realize the self-trapping effect 
due solely to the n2 term in (2). 

Nevertheless, even if the self-trapping mode 
fails to materialize, the path of a focused (also, 
given sufficiently high power, of an unfocused) 
laser beam propagating in a material medium (in­
cluding a laser oscillator or amplifier crystal), 
differs substantially from that computed in a lin­
ear approximation. Therefore, the form of an in­
tense wave front, the diameter of the focal spot, 
and the extent of the focal region, can largely de­
pend upon the self-action effects. The above con­
ditions may be fairly important, particularly for 
the quantitative interpretation of such effects as 
stimulated Raman scattering,2> stimulated Mandel'­
shtam-Brillouin scattering, etc., since large power 
flows of ""1010 W/cm2 are required for their obser­
vation, and 

no-1 Re nif£2 ~ 104 - 10-5• 

The effect of the change in the beam path due to 
self-action will, from now on, be called the self­
focusing effect. 

The subject of this paper is, first of all, a the­
oretical investigation of the self-focusing effect. 
These effects will be analyzed here both in the ap­
proximation of geometrical optics (giving the 
method for integrating equations of nonlinear geo­
metrical optics for the case of a two-dimensional 
beam, and an example of computing rays in a non­
linear medium with n2 -/:. 0, n4 = 0), and when dif­
fraction effects are accounted for. It is shown that 
the higher-order terms in expansion (2), describ­
ing the saturation of nonlinear polarization, is par­
ticularly significant in the case of three-dimen­
sional beams. In particular, when n4 <0, self­
trapping of a three-dimensional beam takes place 
within a sufficiently wide class of boundary condi­
tions. The theory is based on a quasi-optical ap­
proximation and on the method of slowly changing 
amplitudes, which we have previously used to ana-

2 >It will be recalled that, according to recent papers, the 
experimentally determined gains for Stokes components materi­
ally exceed values determined theoretically[t•]; at the same 
time, the self-action effect was not accounted for. 

lyze the generation of optical harmonics in con­
vergent beams (see [ 1u ). 

2. BASIC EQUATIONS 

The analysis of the self-action effect starts 
with the wave equation, 

1 c'J2E 411: c'J2P'< l) 4:rt c'J2P (nl) 
rotrotE+& at2 +cz-~+& ~=0(3)* 

and the material equations (harmonic waves are 
discussed below), 

P<ll = ~E, 

p (nl) = x<3lEEE + x<s>EEEEE, 

p(nl)f p(l)~ 1. 

(4) 

(5) 

(6) 

The solution of Eq. (3), for a finite, weakly con­
verging, or weakly diverging, beam, will be sought 
in the form, 

E = eA (!Lrz0; fl~lrzo]) exp {i( rot- kz)} (7) t 

(only the self-action effect is being considered; in 
the linear approximation, the medium is assumed 
homogeneous and incident wave harmonics are ne­
glected. The problem is considered stationary.) 
Here, J-1. is a small parameter. 

Since, according to the conditions of the prob­
lem, the beam is finite, Eq. (5) accounts for a var­
iation of complex amplitude across as well as 
along the ray directed along the z axis. The varia­
tion across the ray is faster, since it involves 
transition into the shadow region. Substituting (7) 
into (3), and considering that nonlinear polariza­
tion is of the order of JJ., we limit the analysis to 
the first-order terms with respect to JJ., arriving 
at a simplified equation describing the self-action 
effect of a harmonic wave: 

Here, ~l is the two-dimensional Laplace operator 
in the plane perpendicular to the ray (z axis). 
When n2 = n4 = 0, Eq. (8) becomes the parabolic 
equation used in the approximate diffraction theory. 
In this manner, (8) corresponds to the so-called 
quasi-optical approximation, and can thus describe 
the self-action of the normal wave in both an iso­
tropic and an anisotropic medium. Introducing the 
eikonal s, 

A =Aoexp (-iks), (9) 

*rot= curl. 
t[r z0] = r x z0 • 
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a system of two equations for Ao and s is obtained z = 0 
instead of (8); for a two-dimensional beam and a 
three-dimensional cylindrically-symmetrical f3(0) = 1 I R, <p(O) = 0, f(O) = 1; (15) 
beam, these equations are 

2 {}s + ( {}s ) 2 = ~o2 + n~o' + _1 _ ( {}2Ao + .!!!._ aAo) , 
{}z ar no no k2Ao {}r2 r ar 

(10) 

{}Ao + {}s aAo + _!_Ao ( {}2s + .!!!._ {}s) = 0. (11) 
{}z ar or 2 ar2 r ar 

Here m = 0 corresponds to the two-dimensional 
beam and m = 1 to the three-dimensio:p.al beam. 
General solutions of (9) and (10) involve consider­
able difficulties. Therefore we first determine the 
path of the rays in a nonlinear medium in the ap­
proximation of geometrical optics (k - oo), and 
then consider the diffraction effects. 

3. GEOMETRICAL OPTICS IN A NONLINEAR 
MEDIUM 

Setting k- oo and n4 = 0 in (10) and (11) (the 
saturation effect, ~ -# 0, as will be shown below, 
is significant only in the discussion of phenomena 
near the focus, where the geometrical optics ap­
proximation loses its validity in any case), wear­
rive at the equations for the eikonal, 

as ( OS ) 2 n2 
2-+ - =-Ao2 

az ar no 
(12) 

and for the amplitude A0 (after multiplying by Ao). 

aAoz as BAoz +A z ( azs_ + .!!!._!!!._) = 0. (13) 
az + ar ar 0 ar2 r ar 

It should be noted that the derivation of general 
solutions is difficult even for (12) and (13). There­
fore we consider certain particular solutions that 
are of interest in the comparison of theory with 
experiment. 

When n2 = 0 (zeroth approximation: linear me­
dium), Eqs. (12) and (13) are clearly satisfied by 
cylindrical and spherical waves (they are ex­
pressed here in a form corresponding to the quasi­
optical approximation: see, for example, [ HJ). 

Thus when n2 -# 0 (first approximation: weakly 
nonlinear medium), cylindrical and spherical 
waves with a variable radius of curvature will con­
stitute a natural generalization of these solutions. 
Here, 

f3(z)r2 
s=--+~p(z), 

2 

(as before, m = 0 corresponds to the cylindrical 
wave and m = 1 to the spherical wave). When 

(15a) 

and consequently R < 0 corresponds to converging 
waves incident upon the boundary of the nonlinear 
medium, and R > 0 corresponds to diverging 
waves; within the nonlinear medium the phase 
front of the wave undergoes changes. 

Substituting (14) into (12) and (13), we arrive at 
the equations for functions cp(z), {3(z), and f(z): 

~(z) I dz = n~o2 I 2nof1+m(z), 

f3(z) = j-1 (z)df(z) I dz, 

iflj(z) I dz2 = -~02 I noro2f2+m(z). 

(16) 

(17) 

(18) 

When boundary condition (15) is accounted for, (18) 
has as a first integral 

( df ) 2 2n~o2 - = +C, 
dz . ( 1 + m) noro2/ 1+m 

(19) 

For the case of a spherical wave (m = 1) we have, 
after integration of (19), 

(20) 

When f(z) = 0, by virtue of (14), ~- oo and the 
corresponding point Zf on the z axis is a focal 
point. 

The quadratic equation obtained from (20) with 
f = 0 defines in the general case two focal points 
Zf1 and Zf2, where 

z f1 = Rro -vn;;02 [ R- To -v ,:;02 ]-l · (21) 

When n2 > 0, the nonlinear medium exerts a focus­
ing action upon the light beam; it has a defocusing 
effect when n2 < 0. The parameter characterizing 
the focusing effect of the nonlinear medium on a 
beam with an amplitude distribution described by 
(15) is 

(22) 

The meaning of this quantity can be readily made 
apparent by writing (21) in the form, 

1 I zc, = 1 I R n.t - 1 I R. (23) 

Equation (23) shows that Rnz determines the dis-
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tance over which the light beam with a plane phase 
front (R- 00 ) and amplitude distribution (15) is 
self-focused in the nonlinear medium. In the case 
of a converging beam (R < 0), the focal length de­
creases in a nonlinear medium with n2 > 0. More­
over, an initially diverging beam (R > 0), becomes 
self-focused after entering the nonlinear medium, 
if R is not too small (the initial divergence is not 
excessive). The critical value is Rcr = Rnz· 

The position of the second focal point is deter­
mined by the relationship, 

1 I Zf = -1 I R - 1 I R l 
2 n • 

(24) 

The second focal point exists only if R < 0, with 
Zf2 > Zfl (see Fig. 1). Equations (12) and (13) can 
also be used to determine the paths of rays in the 
nonlinear medium. 

FIG. 1. Ray paths of a three-dimensional light beam with 
initial amplitude distribution A2 = Eo'(l - r2 /r0 2). In all dia­
grams, section z - z01 corresponds to the entry into the medium 
of a converging wave, R < 0. For this case, a-1 Rl > Rnl• weak 
beam converg~nce (a single focus appears); b-l Rl = Rnl• criti­
cal convergence (a single focus remains); c-IRI < Rnl• strong 
convergence (two foci appear). Section z = Zo2 corresponds to 
the entry of a diverging wave, R > 0. For this in a-R < Rnz (no 
focus), b- R = Rnz (no focus), C-R > Rnz (one focus appears). 

A somewhat more general analysis can be made 
in the case of a two-dimensional beam (m = 0). 
The geometrical-optics equations for this beam 
are: 

Introducing new variables 

u = 8s I 8x, 

(25) 

(26) 

(27) 

the above expressions are reduced to a system of 
first-order equations: 

au au op 
-+u--y-=0 
8z 8x 8x ' 

where 'Y = nd2n0• 

It should be noted that Eqs. (28) are of the same 
form as those describing a nonstationary flow of 
barotropic fluid (the z coordinate in (28) assumes 
the role of time, see [ 121), and differ from the lat-

ter only in the sign of 'Y. This difference is admit­
tedly quite significant, because a change of sign in 
'Y converts the equation from hyperbolic into ellip­
tical. System (28) can be reduced to a linear form 
by a hodographic transformation. This affords the 
opportunity to design a sufficiently general meth­
odology of analyzing equations of nonlinear geo­
metrical optics. 

In our case, however, we shall use a simpler 
approach: a substitution of variables, 

X- UZ = S, zp = TJ, 

converts system (28) to the system, 

op +au =O 
&rr iJ6 • 

System (30) has a partial solution in the form, 

u = _ 2:zp th ( x a uz ) , 

-[ +y(zp) 2 ] h-z(x-uz) P- Po --- c --- . 
a2 a 

(29) 

(30) 

(31)* 

In the approximation of geometrical optics, Eqs. 
(:n) describe a wave propagating in a nonlinear 
medium and having in the z = 0 section a plane 
phase front (u = 8s/8x = 0) and an intensity dis­
tribution 

p(x, 0) = Po ch-2 (x I a). (32) 

Using (31), one can determine the paths of rays 
and the beam profile in various sections of the 
nonlinear medium; it should be remembered here 
that 

A A 
tan SoZo ~ Sozo ~ as I ox = u (33) 

i.e., the angle between a ray vector S0 and the z 
axis (unit vector z0) approximately equals u for 
near-axial rays. 

Figure 2 shows paths of rays plotted by the iso­
cline method and described by (31). Figure 3 gives 
the corresponding graphs of intensity distribution 
in various sections of the beam. As follows from 
Fig. 2, the rays at first approach the beam axis 
and self-focusing occurs; however, in contrast to 
the above case of a self-focused spherical wave 
with initial profile (15a), in the present case the 
self-focused beam is subject to fairly strong aber­
rations. The peripheral rays cross the z axis 
later than the near-axial rays. 

Two regions can be distinguished here: in the 
first region, the rays converge (intensity is in-

*ch = cosh, th = tanh. 
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zja 

2 

FIG. 2. Ray paths in a two­
dimensional light beam propa­
gating in a nonlinear medium with 
n2 > 0. When z = 0, u =as; ax= 0, 
p = p0 cosh-2(x/a), parameter 

PoY = 1/16. 

-1.0 -0.5 0 0.5 W :r;a 

creasing), and in the second, the rays diverge (in­
tensity is decreasing). The light intensity reaches 
maximum in a plane situated at a distance Zf from 
the boundary of the nonlinear medium: 

z f = a I 2l' PoY = ay2no I n&Eo2. (34) 

It should be noted that the integration of Eq. (19), 
which corresponds to the absence of nonlinear 
aberration, leads to 

rca 11---;;-­
z f = 2y2 V n&Eo2 

(see also Rnz in (22)). 
When z > Zf, the rays begin to intersect one 

another. Along the boundary rays in this region, 

u = ±2l'Povl'1- zc I z. 

The presence of discontinuities in the boundary 
rays is, of course, due to the use of the geomet­
rical-optics approximation. On the other hand, the 
effects on the beam boundary, and a correct inter­
pretation of the phenomena near the focal point 
(such an investigation is particularly needed in the 
case of the beam described by (14) and (15)), re­
quire the consideration of diffraction effects and, 
as shown by the analysis, of higher-order nonlin­
ear effects. These are the problems we consider 
next. 

4. PHENOMENA NEAR THE FOCAL POINT IN 
A NONLINEAR MEDIUM 

It is well known that allowance for diffraction 
effects in the linear theory eliminates discontinu­
ities and infinities which appear in equations de-

FIG. 3. Intensity dis­
tribution over the cross 
section of a two-dimen­
sional light beam propagat­
ing in a nonlinear medium, 
for various values of the 
parameter z/a. Beam 
parameters are the same as 
in Fig. 2. 

z=4a 

-[;zqs5 -1,0 -0,5 1.0 0.5- 1.0 1.5J:ja 

z-0 u,5 

I 

-1,5 1.0 0.5 0 0.5 (0 15 :xja 

rived in the geometrical-optics approximation. It 
is interesting to note that, in general, the situation 
becomes substantially more complicated in nonlin­
ear problems. 

Indeed, the presence of a positive coefficient n2 

in (2) may lead to a drastic "pinching" of the beam 
in the focal point (as illustrated in Fig. 1, the an­
gles between the rays and the z axis are close to 
90° in the vicinity of the focal point). In some 
cases, the expanding (defocusing) "forces" due to 
diffraction3> are unable to balance the self-action 
of the beam (this was pointed out in [ 81 ; see also 
[ 91 ), particularly in the case of a cylindrical beam 

described by (14) and (15). Consequently, a com­
plete analysis of near-focal phenomena in the non­
linear theory should, in general, include not only 
diffraction effects, but also other nonlinear effects 
not accounted for by the real part of coefficient n2• 

Minor effects of this type are those associated 
with the imaginary part of n2 (two-photon absorp­
tion) and effects associated with coefficient n4 in 
expansion (2). 

If n2 = n~ + in~ and n4 = 0 are used in lieu of 
(10) and (11), we have the system 

3 )The corresponding terms in the equations do not, of 
course, have the dimensions of force, and the expression 
"force" should not be taken literally. 

(35) 
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OAo as &Ao 1 ( fJ2s m as ) 
-+---+-Ao -+-- +Mo3 =0 (36) 

ar ar or 2 8r2 r or ' 

where 6 is a nonlinear absorption coefficient de-
" termined by n2 • An analysis of (35) and (36), car-

ried out for the near-axial region of the beam, 
shows that in this approximation nonlinear absorp­
tion has no significant effect on the path of rays in 
the near-focal region and, in particular, does not 
prevent pinching (turning the field to infinity) of 
the three-dimensional beam. Therefore, further 
analysis is based on Eqs. (10) and (14) which, 
along with a nonlinear second-order field term, in­
clude a fourth-order field term. According to the 
above considerations, the most interesting case 
here is that of Im n2 = Im n4 = 0, Re n2 > 0, Re n4 
< 0, since the n4 term thus defines the nonlinear­
polarization saturation effect. 

As in Sec. 2, the eikonal is represented in the 
form, 

s = ~(z)r2 I 2 + <P(z), (37a) 

and a Gaussian distribution is assumed for the 
amplitude 

A02 (r, z) = Eo2 
{ r2 } (37b) 

f1+m(z) exp - ro2f2(z) ; 

it should be noted that the general solution of (11) 
is of the form, 

1 df 
f dz = ~. 

Boundary conditions (15) will be used, as before. 
Substituting (37) into (10) and (11), and limiting 
the region under consideration to the vicinity of 
the beam axis (for this purpose, the nonlinear 
terms are expanded in powers of r up to terms 
containing r 2), we arrive at the equations, 

d2f 
--=- (39) 
dz2 

Considering boundary conditions (15), we can 
write the first integral of (39). For the most in­
teresting case of the three-dimensional beam 
(m = 1), the first integral has the form 

(40) 

Using (40), we can readily verify that when 
n 4 = 0 and 

(41) 

the paths of the rays, computed by taking diffrac­
tion into account, do not differ qualitatively from 
those determined in the approximation of geometri­
cal optics; the expanding force due to diffraction is 
not able to compensate for the focusing force asso­
ciated with the term containing n2 (see also [S, 91 ). 

From now on, the beam intensity corresponding to 
the equality, E8 = no/n2k2 r~ (equilibrium between 
the expanding and focusing forces), will be called 
the critical intensity. 4> 

The presence of a defocusing effect (however 
weak) due to saturation substantially changes the 
picture. Weakly converging (or weakly diverging) 
beams at z = 0 (c < 0), such that 

R2 > roz 
n~o2/no- 1/k%2 

become self-trapped in a medium with n2 > 0 and 
n4 < 0. The diameter of such a self-trapped beam 
oscillates; its maximum and minimum values are 
determined by the following expressions: 

(42) 

Beams strongly focused at the boundary of the 
nonlinear medium cannot be self-trapped; the min­
imum cross section of such a beam in a nonlinear 
medium corresponds to df/dz = 0, and is deter­
mined by 

(43) 

For the sake of comparison, we note that the diam­
eter of the focal spot obtained when the beam is 
focused in a linear medium is 

(44) 

where a = r 0/R is the angular aperture. 
Using (43) and (44), we can determine the ratio 

4 )It should be noted that the intensity determined by 
E0 2 = n0 /n,k2 r0 2 , corresponds to the steady-state intensity of 
a self-trapping beam with R = "", computed in['1. 
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of focal sections of a three-dimensional beam fo­
cused in a linear and in a nonlinear medium (in the 
case of the strongly focused beam under consider­
ation, one can assume with a sufficient degree of 
accuracy that C = 1/R2): 

[( P )2 n4 no ( p )2]''•}-1 + --1 +4a2-- -·-
Per nz nz Per 

(45) 

Here, P /P cr is the ratio of beam power to criti­
cal power, defined by (41). 

A similar analysis can be performed for the 
case of a two-dimensional beam. Setting m = 0 in 
(38) and (39) and considering boundary conditions 
(15), one can write the first integral as 

(46) 

Here, in contrast with the case of the three-dimen­
sional beam, it is not necessary to account for 
n4 I= 0; f(z) nowhere turns to zero when the diffrac­
tion term is taken into account. 

The behavior of the cylindrical beam in a non­
linear medium is determined by the boundary con­
ditions (the C parameter). Self-trapping of the 
beam occurs when C < 0, i.e., when the initial di­
vergence (or convergence) of the beam is not very 
high. 

The width of the self-trapped beam oscillates 
within the limits 

r = _1_ { nZEo2 ± [( nZEo2 
)

2 
_ J£l] '''} . ( 4 7) 

I C I ro no no ko2 

Strongly focused (or strongly defocused) beams, 
for which C > 0, are not subject to self-trapping. 
The factor <I>, characterizing the decrease in the 
cross-section of the focal spot when a two-dimen­
sional beam is focused in a nonlinear medium, is 
expressed by 

(48) 

(as before, we let C ~ R -2 for a strongly focused 
beam). A marked decrease of the cross section of 
the focal region in a two-dimensional beam will be 
obtained when 

(49) 

5. DISCUSSION 

The results of the developed theory thus allow 
us to reveal many important features concerning 
the behavior of finite light beams in a medium 
whose refractive index depends upon the wave in­
tensity. It should be remembered at the same time 
that, as a rule, analytical results can be obtained 
only for the near-axial portion of the beam, using 
the first terms in the expansion with respect to 
r (see (15a), (39), etc.). A complete analysis of 
the behavior of peripheral rays and complex beams 
is possible, in general, only with the aid of com­
puters. Nevertheless, it is possible to obtain some 
notion on the behavior of beams of complex struc­
ture by means of the perturbation method, i.e., as­
suming that the variation in the amplitude and 
phase wave front, due to nonlinearity, is small. 

As an illustration, we shall consider such an 
analysis in the approximation of geometrical optics 
for the case of the two-dimensional beam. It will 
be convenient to use (28) for this purpose. Setting 
p =Po +p', where p'~J-1-', and u =Cls/ax~J-1-' (J-1-' is 
a small parameter characterizing the perturbation), 
we arrive at linearized equations for perturbations 
(p0 = const) in place of (28): 

op' au 
-+po-=0, oz az (50) 

which can be reduced to the corresponding ellipti­
cal equations. Setting p' = f(x) and u = l/J(x) at 
z = 0, we can find p' and lfJ at any section z. For 
example, we have for p ', 

p' (z, x) = .~ (f(x + vrz) + f(x- trz)] 

- 2~~ [¢(x + vrz) -'IJ(x- irz)], 

(51) 

where r 2 =Po 'Y ; f and lfJ are analytic functions. 
Analysis of the solutions (51) shows that if f(x) 

and l/J(x) are oscillating functions no self-focusing 
of the beam as a whole occurs, and the beam sep­
arates into filaments instead. Since the dimen­
sions of inhomogeneities in f(x) or l/J(x) are usu-

. [ 13] 
ally small (accordmg to Bakhudarova et al., 
these dimensions for a ruby laser are ~ 100J.i-) in­
dividual filaments are self-focused over distances 
which are smaller than the self-focusing of the 
beam as a whole (compare with Eq. (34)). s> How­
ever, the most interesting is the fact that a Gaus-

S)This may explain the stratification of unfocused laser 
beams in solids and liquids, observed in some experiments. 
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sian beam with a plane phase front reveals a ten­
dency toward stratification: 

'IJl (x) = 0, f(x) = Po exp { -x2 I ro2), Po = const. (52) 

Substituting (52) into (51), we get 

[ x2 + .r2z2 ·] rxz 
p'(x,z) = p0 exp - ·2 , cos 2-2-. 

ro · ro 
(53) 

Thus, consideration of effects on the periphery of 
the beam may disclose new phenomena. 

In conclusion, it should be emphasized that the 
present work was limited to stationary (time­
independent) solutions; consequently, in a compar­
ison of these results with experiment, low-inertia 
effects, leading to a dependence n = n(E), should 
be first taken into account. The lowest inertia is 
possessed by the mechanism of the nonlinear elec­
tronic polarization (Tr"'"' 10-14-10-15 sec) and the 
high-frequency Kerr effect (Tr Rl 10-12 sec). 

Electronic polarization is characterized by a 
general relation of the type (see, for example, 
[ 14] ) • 

P (nl)/P (nl) _ E/E 
N N-1- aT, 

where ~l is the nonlinear polarization of the 
N-th order. 

(54) 

Equation (45) can be simplified by using (54), 
since it follows directly from (54) that (n4/n2) 

X (no/n2) Rl 1 (the signs of n2 and n4 depend in this 
case upon the relationship between the wave fre­
quency w and the resonance frequency w0 of the 
medium; when w0/2 > w >w0/3 the conditions of 
Sec. 4 are realized. s> 

When P =Per (for liquids, Per Rl 10-40 MW, 
powers typical of modern experimental nonlinear 
optics) we have 4> = a-1• When r 0 Rl 1 em and 
R Rl 5-10 em, we get 4> = 5-10; thus, the change 
in focal spot cross section, due to the self-focus­
ing effect, can be considerable. When P /P cr » 1 
we get 4> "'"' a -2 P cr/P. Plots of the function 
4> = 4>(P/Pcr> are given in Fig. 4 for various val­
ues of parameter a. On the other hand, the change 
in the focal cross section of the two-dimensional 
beam under the same conditions (see (48) and (49)) 

· is small. This means that the self-focusing effects 
must be considered in the interpretation of experi­
ments in nonlinear optics involving focused beams; 
from the viewpoint of revealing the self-focusing 

6)In the case of the high-frequency Kerr effect, always 
n < 0 which is due to saturation occurring when the molecules . , 
are "aligned" over the field. 

FIG. 4. Plots of the 
parameter 4> defining the effect 60 
of self-focusing upon the size of 50 
focal cross-section of the three- 40 
dimensional beam in nonlinear 
medium, as a function of P /P cr' 30 
The curve parameter is a = r0/R, 20 
denoting one-half of the angle of 10 ,.. I/-:-;;;7Ji-.:._ __ _ 
convergence of the beam focused 1 I....!~=*==F==r=~~==-

0 4 5 6 by a spherical lens. / 
p P cr 

effect, the comparison of the results of experi­
ments with cylindrical and spherical lenses would 
be of considerable interest. 

A correct allowance for the effect of inertial 
mechanisms (these consist primarily of electro­
striction and thermal effects, although the high­
frequency Kerr effect is also significant in the 
case of sufficiently narrow beams) requires the 
solution of the nonstationary problem. The mate­
rial equation (5) should be replaced in this case by 
an appropriate differential equation. We have re­
ported the results of an investigation of nonsta­
tionary self-trapping in [ 141 

Note added in proof (May 3, 1966). The analysis of the non­
linear polarization saturation effect, carried out to the first ap­
proximation in this paper, seems to furnish, at least qualita­
tively, an explanation of the results of recent experimental 
work on self-focusing of light in liquids[15 • 16]. The appearance 
of narrow wave channels in the propagation of unfocused laser 
beams in liquids having anisotropic molecules, observed in 
these experiments, is in agreement with the results of analysis 
which accounts for the presence of the n4 < 0 term in (2) (see 
(42)). Equations (42) also describe the oscillations of the ra­
dius of the self-trapped beam observed by C. Townes and his 
associates. In this connection, it would be of interest to de­
velop a theory of self-focusing that would completely account 
for the saturation effect of nonlinear polarization (for example, 
in the form suggested by Zel'dovich and Ra1zeJ•] for the Kerr 
effect). Finally, we may note that valuable experimental data 
on the role of the Kerr effect in the self-focusing of light can 
be obtained by additionally impressing a strong static field 
upon the liquid. 
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