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A method is developed for calculating the probability of ionization of a bound state under the 
action of an alternating electric field. The method can be applied under the conditions F « F0, 

w « w0 (wand F are the frequency and amplitude of the external field; w0 = K2/2 and F0 = K3 

are appropriate atomic quantities). It uses the quasiclassical character of the motion of a 
particle in a homogeneous electric field, and is a generalization of the usual quasiclassical 
approximation to the nonstationary case. Preliminary attention is given to the adiabatic ap­
proximation in the problem of ionization (the range of frequencies w « wt where Wt = F /K is 
the tunneling frequency), and Eqs. (7) and (9) are derived for the probability of ionization of an 
arbitrary atom by the fields of waves with plane and elliptical polarizations. A detailed study 
is made of a model problem of the ionization of a bound level in a homogeneous a-potential for 
arbitrary values of the "adiabaticity parameter" 'Y = wlwt· In Sec. 4 formulas are derived for 
the probability of ionization of an arbitrary bound state under the action of an alternating elec­
tric field. The cases treated are those of plane [Eq. (54)] and of circular [Eq. (72)] polariza­
tion of the electromagnetic wave. [The Coulomb interaction between the electron and the atomic 
residue at large distances (Kr » 1) is neglected.] The total probability of ionization is a sum 
over many-photon processes. In the low-frequency limit (w « wt> the formulas derived here go 
over into those of the adiabatic approximation. 

1. INTRODUCTION 

IN recent years, owing to the development of 
laser techniques, light beams with field intensities 
F,.., 106-101 V/cm have become attainable. When 
light beams of such large intensities pass through 
matter, phenomena of excitation and ionization of 
atoms are observed (cf. e.g., the review arti-
cles [ 1• 21 ). 

There are a number of papers[ 3- 51 on the theo­
retical treatment of these effects, the most com­
plete being the work of Keldysh. [ 41 The formulas 
derived for the probability of ionization of an atom 
in the radiation field correctly represent the main 
features of the effect: the exponential dependence 
of the probability of ionization on the amplitude of 
the field, and threshold peculiarities at frequencies 
corresponding to thresholds for absorption of n 
quanta. The coefficient before the exponential in 
[ 41 is incorrect, however, in particular because 
at low frequencies (w - 0) there is no connection 
with the well known formula [ 6 1 for the ionization 
of a hydrogen atom in a constant field. 

As can be seen from the solution of the corre­
sponding problem for a constant field (cf. [ 61 , 

page 327), to get the correct coefficient before the 
exponential it is necessary to know the exact qua­
siclassical wave function of the electron, taking 

into account both the effect of the external field 
and the interaction of the electron with the atomic 
residue. Therefore we need to generalize the usual 
quasiclassical method to the case of alternating 
fields. It is clear, however, that in this way we 
cannot get such general and convenient formulas 
as in the stationary case, since the solution of the 
classical Hamilton-Jacobi equation for the action S 
cannot be expressed in terms of quadratures in the 
case of an arbitrary alternating field. It is possible 
to find the quasiclassical solution of the problem of 
ionization of an atom by an alternating field only 
owing to the following simplifying circumstances: 
1) we are confining ourselves to the case of not too 
high frequencies w and field strengths F (w « w0, 

F « F0, where w0 and F0 are quantities charac­
teristic of the atom, see the next section), for 
which the ionization occurs slowly in comparison 
with atomic times; 2) the wavelength of the light is 
much larger than the radius of the atom, so that 
the electric field can be treated as uniform; 
3) since the speed of the electron is nonrelativis­
tic, the effect of the magnetic field of the wave can 
be neglected. 

In Sec. 2 of the present paper we consider the 
region of small frequencies [ w « Wto where Wt is 
the so-called tunneling frequency, see (2)], in 
which the adiabatic approximation is correct. 

924 
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In Sec. 3 we study a model of extreme simplic­
ity (ionization of a bound level in a one-dimensional 
o-potential), which admits of asymptotically exa.ct 
solution (for F - 0) for arbitrary frequencies of 
the external field. In spite of the extreme simpli­
fication of this model, it reflects the main features 
of the effect [in particular, the formula for the 
ionization probability wF(w) contains the same 
exponential as in the three-dimensional problem]. 
Moreover, the method developed in Sec. 3 for the 
one-dimensional case can also be directly trans­
ferred to the more complicated three-dimensional 
problem. 

In Sec. 4 this method is used to derive asymp­
totically correct (in the limit F « F0 ) formulas 
(54) and (72) for the probability of ionization of an 
atom in which the electron undergoing ionization is 
in a state with binding energy K2/2 and orbital an­
gular momentum l [Eq. (54) is for the case of 
ionization by a plane-polarized wave, and Eq. (72) 
for the case of circular polarization]. The case 
considered is that in which the interaction between 
the electron and the rest of the atom falls off at 
large distances (Kr » 1) more rapidly than 1/r 
(this occurs, for example, for singly charged neg­
ative ions of the type of He-, or for the process of 
dissociation of the hydrogen molecular ion, H2 
- H + p). To get the correct factor before the ex­
ponential in the case of ionization of neutral atoms 
it is necessary to take into account the Coulomb 
interaction, which decidedly distorts the electron 
wave function at large distances from the nucleus. 
We shall treat this case in a subsequent paper. 

2. IONIZATION BY A CONSTANT FIELD AND 
THE ADIABATIC APPROXIMATION 

Let us consider an atom which is in the field of 
a plane electromagnetic wave of intensity much 
smaller than the intraatomic electric field strength 
F0• Under these conditions the mean time of ioni­
zation is large in comparison with characteristic 
atomic times, and the probability of ionization is 
determined by the behavior of the distant "tail" of 
the wave function of the valence electron. Let us 
denote1> the binding energy of the electron by Wo 
= K2/2 and its orbital angular momentum by l. 
Far from the nucleus (Kr » 1) the field acting on 
the electron reduces to a Coulomb field V c = - Z /r 
(Z is the charge of the atomic residue) and the 
electric field of the wave, F(t) = F cos wt. We in­
troduce distances characteristic for the problem: 

l)In this paper we use atomic units: 1i = m = e = 1. 

(1) 

At the point r...., r 1 the external field is of the same 
order as the Coulomb "tail," and at r ...., r 2 the 
electron comes out from under the potential bar­
rier; F0 is a typical intraatomic field. In ioniza­
tion of the atom (for F « F0) there is leaking out 
of the electron through a very broad potential bar­
rier, and moreover its width varies periodically 
from r 2 to infinity. 

For sufficiently small frequency w the change 
of the field during the time of passage of the elec­
tron through the barrier can be neglected; ac­
cording to [ 41 the condition for validity of the adia­
batic approximation is of the following form: 

(I) 

v=-~1 
OOt 

( rot=.!_=}:!____ roo) 
x Fo 

(2) 

(here 1/ Wt is the time of free flight of an elec­
tron of momentum K through a barrier of width 
r 2). The parameter 'Y characterizes the degree of 
adiabaticity of the motion through the barrier. The 
calculation of the probability of ionization of the 
atom in the case 'Y « 1 reduces to averaging the 
probabilities of ionization in constant fields over 
a period of the external field. 

The ionization of a hydrogen atom in a constant 
field has been treated by Oppenheimer[ 71 and by 
Lanczos; [ Sl a simpler formula, based on the quasi­
classical approximation and asymptotically valid 
for weak fields (F « F0) has been given by Landau 
and Lifshits (see [61 , page 328): 

u; stat (F)= 8roH 7: exp{- ~ ~H } ' (3) 

where Fn = m2e5n-4 = 5.142 x 109 V/cm is the elec­
tric field strength at the first Bohr orbit, and WH 
= 2.07 x 1016 sec-1 = 13.6 eV is the ionization en­
ergy of the hydrogen atom. 

Analo~:ous calculations for an arbitrary atom 
have been made recently by Smirnov and Chibi­
sov. [ 9 l For the case in which the electron is in a 
state with orbital angular momentum l and its 
projection along the direction of the field is m, 
the formula for the probability of ionization can be 
put in the following form:2> 

(l+lml>l 
WstadF) == roo!C,.zl 2 (2l + i) 21m1 ( !ml}l(l-!ml}! 

( 2F( )2~-lml-1 { 2 Fo} 
X 7 - exp - 3 1i , (4) 

2)There is an inaccuracy in the derivation of the numerical 
coefficient in Eq. (11) of [•]. The corrected value of the coef­
ficient is used in our Eq. (4). 
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where w0 = K 2/2, F0 = K3, A.= Kc/K (Kc is the 
Coulomb momentum; KC = me2Z/n-in atomic 
units KC = Z). It is convenient to express the 
field F0 and the parameter A. for an arbitrary 
atom in terms of the quantities for the hydrogen 
atom: 

( ro )-'/• lv=Z - 0- • 
roH 

(5) 

The dimensionless constant C K z and the power­
law index A. that appear in (4) have simple physical 
meanings: in the region K-1 « r « r 1 the intra­
atomic field is already small and reduces to Vc(r), 
and the external field can still be neglected. There­
fore in this region the l)! function is the same as 
the asymptotic wave function for the free atom: 

'ljl (r) = C,.1x't• ( xrr-te-xrytm (r I r). (6) 

If the interaction between the electron and the 
atomic residue falls off more rapidly than the Cou­
lomb interaction for Kr » 1 (for example, in the 
case of negative ions of the type of He-), then 
A. = 0 and the asymptotic form of l)!(r) is ~e-Kr;r 
-the usual form for potentials with a finite range. 
The presence of a Coulomb "tail" at infinity 
changes the exponent of r in (6) (for example, for 
a hydrogen atom in a state with principal quantum 
number n we have A. = n). The exact value of C K z 
can be found only in the simplest cases. For the 
hydrogen atom in the ground state C0 = 2; for an 
s level in a three-dimensional potential well of 
radius r 0 and depth V0 we have 

Cxo = e"r{ 1 :xro ( 1- 2x;o )T'. 
Determination of the constant CK z requires the 
exact solution of the Schrodinger equation in the 
entire region 0 ::::: r < co. 

We denote the probability of ionization of the 
atom in an alternating electric field with ampli­
tude F and frequency w by w(F, w). The value of 
w(F, w) for 'Y « 1 can be found by averaging (4) 
over a period of the external field. The result is 
the following formula for the probability of ioniza­
tion in the field of a plane-polarized wave: 

w(F, ro) = (3F / nFo)'l•wstat(F) (ro~rot). (7) 

Comparing ( 4) and (7), we see that the only change 
is in the coefficient, and the main factor 
exp (-2F0 /3F) remains unchanged. This means 
that in the adiabatic case the ionization of an atom 
occurs mainly at the times when the field reaches 
its maximum values, and the ionization current 
consists of sharp peaks. 

Let us consider the general case of a mono-

chromatic wave with elliptical polarization: 

F(t) = F(ex cos rot+ eey sin rot), 0:::::;;; e:::::;;; 1 (8) 

(for E = 0 the wave is plane-polarized, and for 
E = ± 1, circularly polarized). By the same method 
as before we get 

w(F, ro, e) = A(F, ro, e)Wstat(F) (ro ~rot), (9) 

where 

A(F,ro,e)= [e(1:e)rt.a( 13ee ~~· 

a (x) = e-xJ0 (x) (10) 

[here I 0(x) is the Bessel function of imaginary 
argument]. a(x) is a monotonically decreasing 
function: a(O) = 1, a(x) ~ (27!X) - 1/ 2 for x » 1. 

It follows from (10) that in cases in which the 
polarization of the wave is not too nearly circular 
the law of dependence of the probability of ioniza­
tion on the field strength F is the same as for a 
plane-polarized wave: 

( 3 1 F )'t. 
w(F,ro,e)= n1-e2Fo W.stat(F) 

for (1 -E) » F / F0• For a circularly polarized 
wave we have from (10) 

w(F, ro, +1) = Wstat(F), 

(11) 

as is natural, since in this case the amplitude of 
the wave is constant. Finally, in the narrow transi­
tion region (1 - E) ~ F /F0 « 1 the dependence of 
w(F, w, E) on F is a complicated function and can­
not be put in a simple power-law form. Accord­
ingly, the case of a circularly polarized wave is 
in a sense an exceptional one, and is characterized 
by an "instability": for small deviations of the 
degree of polarization E from unity there is a 
rapid change of the coefficient of the exponential. 

3. A ONE-DIMENSIONAL MODEL 

For w » wt the adiabatic approximation does 
not apply, and to find w(F, w) one must solve the 
time-dependent Schrodinger equation. To avoid 
complications which are of no importance in prin­
ciple, we first consider a model of the simplest 
sort-the one-dimensional motion of a particle in 
the field of short-range forces (in the limit we re­
place them by a o-potential). As is well known, in 
the potential V(x) = - KO(x) there is one bound 
state with energy w0 = K 2/2. Let us consider the 
ionization of this level by a uniform electric 
field f(t). 

It is not hard to find the probability of ioniza-
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tion of this level by a constant field and in the adi­
abatic case (for 'Y « 1): 

W,stat(F) = 2wo exp {-2Fol 3F}, 

w(F, oo) = 2wa(3n-1F I Fo) ''• exp {-2Fo I 3F} 
(12) 

(w « wt>· We now go to the case of an alternating 
field. The Schrodinger equation is then 

i 81jl = {--.!.~- x<'l(x)- f(t)x}'IIJ 
at 2 ax2 ' 

and the initial condition (t = t0) is 

'1j1(x, to) = l'x exp {-xlxl + ix2t I 2}. 

Equation (13) can be reduced to an integral 
equation. To do so we rewrite it in the form 

(13) 

(14) 

{ a 1 aa } i-at+ 2 axz +f(t)x '1j1(x, t)= -x<'l(x)'IIJ(x, t). (15) 

The solution that satisfies the initial condition (14) 
can be written formally in the form 

00 

1Jl(x, t)= ~ dx'G(x,t; x',t0)1Jl(x',to) 

, 
+ ix ~ dt' G (x, t; 0, t') 'lj1 (0, t'), (16) 

to 

where the Green's function G(x, t; x', t') corre­
sponds to the motion of the particle in the uniform 
field depending on the time, and can be found easily 
by going over to the momentum representation: 

. 9(t-t') 00 
{ [ G(x,t;x',t')= \ dpexp i n(t)x-n(t')x' 

21t • 
-oo 

1 t J 
- - ~ 1t2 ( 't') d-r } . 

2 t' 
(17) 

Here 
t 

n(t) = p- A (t), A (t) =- ~ j(t')dt', 
to 

and 1r(t) is the generalized momentum for the mo­
tion in the uniform electric field; in what follows 
we also use the quantity 

' 6(t)=- ~ A(t')dt', 
to 

which is the classical trajectory of the particle in 
the field f(t). 

Equation (16) is the exact integral equa.tion for 
1/J(x, t). For our purposes it suffices to find an ap­
proximate solution valid under the condition that 
the mean time of ionization is much larger than 
atomic times. In this case, in calculating the cur­
rent we can neglect the damping of the ¢-function 
in the region I xI .S K- 1; that is, we insert in the 

right member of (16) instead of the exact wave 
function 1/J(O, t) its unperturbed value 

'IIJ(O, t') = Yx exp {ix2t' I 2}. 

The first term in (16) describes the smearing 
out of the initial state; it falls off as [K2(t- t0)]-1/ 2 

and does not contribute to the current. Since we 
are interested only in the stationary part of the 
current, we let to go to -oo and assume that the 
field was turned on adiabatically. Then 

( { ix2t'} 'IIJ(x, t) = ix'l• J dt' G(x, t; 0, t')eX!p - 2- . (18) 
-oo 

Using (17), we get from this the expression for the 
current: 

t ( ~· ·~) j(x t)=- 'IJl--'IJl-' 2 ax ax 

= 8~2 r dp,dp2[n,(t)+na(t)]exp{i(pz-pi)(x-6(t)) 
-<X> 

. t 

+ ; (p,2- pz2) t} ~ dt, dta exp {i [x (pa, ta)- x(p,, lt)]}, 
-oo 

(19} 

where 

x(p, t) = ! [ (p2 + x2) t + 2p6(t) + ~ A2 (-r)d-r J. (20) 
0 

We make the further calculations for an alter­
nating field which oscillates according to the har­
monic law 

f(t) = F cos wt. 

The values of A(t) and ~ (t) are then3> 

A (t) = -Fsin wt, 
(J) 

s<t> = -F cos ~t . 
(J) 

(21) 

(22) 

Substituting in (19) the expansion of exp{ix(p, t)} in 
a Fourier series 

exp {ix(p,t)}= ~ fn(p)exp{ ~ [ p2 

n=-oo 

(23) 

+ x2 ( 1 + +) -2nw J t} 
(here we have introduced the coefficients fn(p), 
which are important for what follows), we calculate 
the integrals over t1 and t2 and find (o- +0): 

3 >To remove ambiguities arising in the integrals for A(t) and 
e-(t) for t0 -+ -oo, one must affix to f(t) a factor eEt, E -+ +0. This 
corresponds to turning the field on adiabatically. 
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v3 .., 

i(x,t)= 81T2 )dptdP2lPt+P2-2A(t)] ~/n,*(Pt)/n,(P2) 
-oo n1, n2 

X exp {i [ (p2- Pt) ( x- ~ (t)) + (nt- ~)rot]} 

X {(1/2(Pt2 + x2(1 + 1/2v2))- ntro +ill] 

X (1/ 2(p2Z+xZ(1 + 1/2v2))-n2ro- i6]}-1• (24) 

The integrand has poles at the points p = ± Pn• 
where 

Pn = [2nro- x2(1 + 1/2~) ]''•. (25) 

We set 

for n < v the pole p = Pn lies on the imaginary 
axis, and for n ~ v it lies near the real axis. 

(26) 

The probability of ionization w(F, w) is deter­
mined by the current j (x, t) at infinity. Setting 
I x 1- oo in (24) and using the relation 

lim (eiP"'/(pZ-K-ill)] 
x-++oo 

={:rtiK-'l•exp {i.K'hx}6(p-K'I•), K>O 
0, K<O' (27) 

we get 
3 ... 

.,~~ooj(x, t} = ~ Joodptdpz(Pt + p2- 2A(t)} 

X ~ /n,"(pi}/n,(Pz} exp{i(Pn,-Pn,}(x-~(t)} 
n,n,;;;.v PtPz 

The integration over p1 and p2 in (28) can be car­
ried out by means of the o functions, and the re­
sult is a double sum over n1 and n2• For x - oo 

the nondiagonal terms of this sum (n1 * n2) oscil­
late rapidly and cancel each other; there is a finite 
contribution only for n1 = n2• Averaging j (x, t) over 
a period of the external field and multiplying by 
two (the flux of electrons goes in both directions 
from the "atom"), we find that the probability of 
ionization is a sum of the probabilities of many­
photon processes: 

~ 12/n(Pn) 12 
w(F,ro}=LJWn(F,ro), Wn(F,ro)=roo / . (29) 

n;;;.v Pn X 

wn(F, w) is the probability of ionization with the 
absorption of n quanta of frequency w; the law of 
conservation of energy holds, 

1/zpn2 = - 1/2x2 ( 1 + 1/2~) + nro 

[the term K2/4y2 = 1/ 2 A2(t) is the mean kinetic en­
ergy of the oscillatory motion of the electron in 

the field F cos wt]. For the concrete calculation 
of w(F, w} we must know the function fn(Pn>· As is 
clear from (23), it can be put in the form of a sin­
gle integral. In what follows we confine ourselves 
to the case w « w0 = K 2/2, for which this integral 
can be calculated by the method of steepest de­
scents. 4) This gives 

l/n(Pn)l 2 = :rr::z ( 1 ~v2 r exp{- ~ [( 1+ 2~2 )Arshv 
(1 + r)''• ( V ) Pn2 ]} 

- 2v + Arsh '\' - ( 1 + '\'2) ''• 7 

X [ 1 + ( -1)noos c:~n (1 + v2) ''• )] • (30)* 

We present the formula for w(F, w) in final 
form: 

( 3 F )''• { 2 Fo } w(Jt',ro)=2(J)o n Fo exp - 3 yg(v) R(ro,v), (31) 

( 2 y )''• 
R(ro,v)= 3:rr: 1+v2 

, co e-a<n--v) 
X~ U+(-1}ncos(b(n-v)'l•)]. (32) 

n;;;.v ( n - v) 'I• 

Here we have introduced the following notations: 

g(v)=- 1+- Arshv- " 3 [( 1 ) ( 1 + 2) ,,, J 
2v 2v2 2v 

[the function g(y) decreases monotonically with 
increasing y, see Fig. 1]; 

(33) 

a(v) = 2 [Arsh v- '\' J-{2
/ 3y3

, 'V ~ 1 
( 1 + v2) ''• - 2 (ln 2v - 1}, v ~ 1; 

(34) 

b = 4 [ roo ( 1 + ~)]''• , 
(I) \ '\'2 

roo( 1 ) v=- 1+-
ro 2y ' 

(35} 

Let us discuss the physical meaning of Eq. (31). 
For y- 0 the main contribution to the sum in (32) 
comes from large n. Replacing the summation 
over n by an integration, we get R(w, y) = 1 
+ o(y 312), so that [compare this with (12)] 

( 3F )''• { 2 Fo ( 1 )} w(F,ro)=2roo :rr:Fo exp - 3 F 1-wvz+ ... , . 

(36) 

4>For a detailed exposition of the calculations see [••]. Ac­
tually the integral for f n had already occurred in a paper by 
Nikishov and Ritus, [11] but the formula obtained in [11] is not 
entirely convenient for our purposes. 

*Arsh = sinh-1 • 
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g(y} 

1.0 

0 10 20 30 40 50 60 70 
v 

FIG. 1. Curve of the function g(y) which determines the fre· 
quency dependence of the exponent in the formula for the proba­
bility of ionization 

Now let w increase (for a fixed field strength 
F). For 'Y » 1, as can be seen from Fig. 1, 
exp {-(2F0/3F)g(-y)} increases rapidly, i.e., in 
general the ionization by an alternating field with 
w » wt is much greater than for a constant field 
of the same amplitude. The increase of w(F, w) 
is not monotonic, however, because of the uneven 
behavior of the factor R(w, 'Y) before the exponen­
tial. For 'Y » 1 the sum in (32) reduces to the 
first term (i.e., the probabilities Wn fall off rap­
idly with increase of n). The coefficient R(w, -y) 
has threshold singularities at the points w 
= wn (v = n) which correspond to thresholds for 
absorption of n quanta, and in addition it oscil­
lates rapidly as w varies (for details see r 101 ). 
We note that these oscillations are characteristic 
of the one-dimensional case only. 

4. IONIZATION OF A LEVEL BOUND BY 
SHORT-RANGE FORCES. CASES OF LINEAR 
AND CmCULAR POLARIZATION OF THE 
INCIDENT ELECTROMAGNETIC WAVE 

Proceeding to the consideration of the actual 
three-dimensional case, we note first that the gen­
eral course of the calculations is the same as in 
the case of the one-dimensional model. This al­
lows us to avoid repetition of the developments of 
Sec. 3, and point out only some new points which 
are of importance in principle. 

The integral equation for the quasistationary 
process in the alternating field F(t) is of the form 
[compare with (16) and (18)] 

t 

'ljl(r, t) = -i ~ dt' ~ dr' G(r, t; r', t') V(r')'ljl(r', t'), (37) 

where it is assumed that the field was turned on 
adiabatically at t0 --co. Here G(r, t; r', t') is the 
Green's function of the electron for motion in the 
uniform field F(t): 

, , e (t- t') 
G(r,t; r,t)= (2n:) 3 

• X~ dp exp {i [n(t)r- n(t')r'-~ ~ n 2 (-r)d't]}, (38) 
2 t' 

where 7T(t) is the generalized momentum: 

r 

n(t) = p- A(t), A(t) =- ~ F(t')dt'. (39) 
-ao 

Our main approximation is that in (37) the func­
tion lf;(r', t') is replaced by the wave function of 
the bound state for the free atom: 

'ljl(r, t)-+- IJlzm(r) eXip {ix2t /2} == '1jJ<0>(r, t), 

V (r) 'ljl (r, t) -+ V (r)'ljl<0> (r, t) 

= 1/ 2 (V2 - x2)1Jlzm(r)exp{ix2t /2}. (40) 

The justification for this is as follows. Since 
F « F0, the difference between the exact wave 
function lf;(r, t) and 1/!<0) (r, t) for Kr ,$ 1 is negli­
gibly small, 5) and owing to the rapid decrease of 
V(r' )1/!(r', t') large values of r' do not contribute 
to the integral (37). We emphasize that it is essen­
tial here that V(r) falls off more rapidly than 1/r 
for r - co; for potentials with a Coulomb ''tail,'' 
as can be seen from the calculation of Wstat(F) 
( cf. r 61 ), the integration extends to the region 
r...., Fo/FK, and to get the correct factor before the 
exponential one must take the behavior of the 1/! 
function at large distances into account more ac­
curately. 

Now let F(t) = F cos· wt be the electric field of 
a plane-polarized wave; we choose the x axis 
along the direction of F. The probability of ioni­
zation is determined by the total flux of particles 
through a plane perpendicular to the x axis: 

w(F, ro) = 2lim J(x, t) 
X-+00 

(the bar indicates averaging over a period of the 
field), and for the flux J(x, t) we have an expres­
sion analogous to (24): 

00 1 
l(x, t)= ~ dydzix(r, t)= 4n ~ dptdP26(Pu -p2.l.) 

-ao 
00 

s>calculations with perturbation theory show [••] that the 
first-order correction ·1jlC'l(r, t) is comparable in size with 
1jlC0J (r, t) only for xr- (F /F)Y. f(y); here f(y) ~ 1 as long as 

y ~ (F /F)\ and f(y) -(In y)/y for y ~ (F /F)\ For all 
frequencies that satisfy the condition w ~ W 0 this distance 

•1 
is much larger than the atomic radius x • 
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X exp {i[(P2>:- Pt.:)(x- ~(t)) + (nt- nz)rot]} 

X [1/z(Pt2 + x2 + x2/2y2)- ntro + ic'l]-1 

X P/z(pz2 + ,_z + x2/2y2)- nzro- il>]-•, 

where 
t 

~(t) =- ~ A(t')dt', 
-oo 

(41) 

p 1 denotes the transverse momentum, and the 
quantities F n<P) are the coefficients of the follow­
ing Fourier series: 

00 

~ F n (p) e-inmt = 1/z[:n:2(t)+ x2] ljlzm(x(t)) 
n==-oo 

{ . roo [ 2p., 1 . ]} X exp _, -;- xy cos rot + 4Y2 sm 2rot . (42) 

In (42) cpzm(7r) is the wave fWlction of the electron 
in the momentum representation: 

ljlzm(P)=(2:n:)-'l• Jdre-iPrcpzm(r)= ;~~~ Yzm(P/P), 

where rzm(p = iK) = (2K/7r) 112 cKl [here we have 
used the fact that the potential V(r) falls off more 
rapidly than r-1]. 

After the same manipulations as used in Sec. 3, 
we arrive at the formula for the probability of 
ionization: 

00 

roo ( 1 ) 'V=- 1+- . 
ro 2y2 ' (43) w = ~ w,.(F, ro), 

wn(F, w) is the probability of ionization with the 
absorption of n quanta: 

w,.(F, ro) = 2n ~ dpl>G [ p2 +x2+ 2~]- nro) IF,.(p) 12. 
(44) 

Accordingly, the task reduces to the calculation 
of the quantities Fn(P) for p = Pn= Pn is defined 
in (25). It follows from (42) that for this we need 
to know the exact expression for cpzm(P), which 
cannot be found for an arbitrary atom without nu­
merical calculations. We shall show, however, 
that in the most interesting case w « w0 (when the 
absorption of a large number of quanta is needed 
for ionization of the atom) it is sufficient for the 
determination of F n<P) to know only the asymp­
totic form of the wave function, Eq. (6). 

In fact, we have from (42) 

1 n' 

F,.(p) IP=Pn = 2l't ~ Xlm(n(a)) 
-n 

X exp { -i :: ~ [ :n;2x~y) + 1 J dy} da, 
(45) 

where we have set 

(46) 

Making the replacement a - {3 = 1r /2 - a, expres­
sing n in terms of p~ by using (25), and intro­
ducing the primed variables 

y' = yr, m' = ro /r2, 

p' = p., I r, r == (i + p2 J.l x2) ''•, 

we put (45) in the form 
·n n 

Fn(P) IP=P,. = ;n ~ df\xzm(n(j:\)) 
-n 

. { . roo [( p'2 1 ) X exp _,----;;; ---;z + 1 + 2y,2 1:\ 

2p' 1 ]} + xy' sin p + 4y,2 sin 21:\ • 

(47) 

(48) 

Owing to the factor w0/w' » 1 the exponential in 
(28) is a rapidly oscillating function, which enables 
us to calculate this integral by the method of 
steepest descents (cf. analogous calculations in 
[4,111). 

The equation for the saddle points can be put in 
the form 

which shows that the quantity Fn(P) lp=pn is deter­

mined for w « w0 only by the behavior of the wave 
function <Plm (7r) in the neighborhood of the pole 
1r 2 = - K 2; the exact form of cpzm (7r) for all values 
of 71' is unimportant. This means that in the x 
space it suffices to know the asymptotic behavior 
of cpzm(r) for Kr » 1. Using (6) (with 71. = 0), and 
also ( 46), we get 

'X.zm(,;)J,.,=-x' = ( ~ )"' CxrSzYzm(n), 

for f ,;2 = ix. 

for y ~2 = - ix 

(50) 

(50 a) 

The unit vector n = 71' /(71' 2)1/ 2 becomes complex at 
the pole 7r 2( {3) = - K 2• From (49) we get (under the 
condition Pl I K 2 « 1) 

x(l:\t, z) ( PJ.2 )''• • PJ.. 
nt,z= (n2(Pt,z))''•=e., 1+--,ea =F'---;-· 

(The indices - and + refer to the two saddle 
points {31 and (3 2.) From this we have 

Czm= 1 [(2l+1) (l+lmi)IJ''• 
21mqmp 4n (l-lml)! · 

(51) 

(52) 
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In the integration over {3 in (48) we must allow 
for the fact that the effective values of Px and p 1 
are much smaller than K [this can be seen from 
the result, see (53)], and owing to this all quanti­
ties that occur in the argument of the exponential 
in (48) must be expanded in powers of Px/K, P!/K 
to and including quadratic terms. The final ex­
pression for IFn(P)I~=Pn is 6> 

!Fn(P) I!=Pn = ! :2 1Cmi 2 Ctm2 Cilo(1 ~'\'2)'" 
X eocp{-! Fo g(v)} exp{- 2roo [P.1..2 Arshv 

3 F ro xa 

+ ~2 ( Arsh 'Y- (1 +"v2) '/• ) ]} ( P: tml 

X [ 1 +(-1)n+lml cos( 4:: (1 +'Yv2
)''• ~ )] • (53) 

The function g(-y) is defined in (33); Pl and Px 
are connected by the condition Pl + p~ = p~ . 

The expression (53) is to be substituted in (44), 
and integrated over the angles; in doing this we 
can neglect the term that contains the rapidly os­
cillating factor 

oos ( 4roo ( 1 + V2)''• p..,) . 
Cil '\' X 

The result is the following formula for the ioniza­
tion in the field of a plane-polarized wave, from a 
level with binding energy K 2/2, orbital angular 
momentum l, and projection m in the direction of 
the field: 

Wzm(F, ro) = roojC,.zl2 (~)''• (2l +1) (l + lml> I 
n 21mljml!(l-lml)l 

( F(1 + ~)'/• )lml+'/• { 2 Fo } 
X 2Fo Am(ro, v)exp - 37c(v) . 

(54) 

Here 

co 

X ~ exp{-a(n-v)} wm(l'J3(n-v}}, (55) 

s~ :z;21ml+1 ! e-:x:'ttlml 
w (x} = e-"" e'li' (x2- y2) lml dy = -- r dt 

m 0 2 ~ ( 1- t} 'I• · 

(56) 

The parameters a, {3, 'Y are functions of the fre­
quency w and the field strength F; a(-y) is de­
fined in (34), and {3 = 2-y(1 + -y2) -1/ 2 • 

Let us discuss the physical meaning of the for-

6)For a more detailed exposition of the calculations see [••]. 

mula (54). As has already been pointed out in [ 41 , 

the probability of ionization is the sum of the prob­
abilities of many-photon processes, each of which 
corresponds to the absorption of a whole number 
(n ~ v) of quanta. The main factor in w(F, w) is 
the exponential, which increases rapidly for 'Y » 1. 
A comparison with (31) shows that the exponential 
is the same here as in the one-dimensional case. 
This exponential in the expression for wzm(F, w) 
was first derived by Keldysh. [ 41 7> 

Let us now examine how the coefficient of the 
exponential in (54) varies with the frequency. For 
'Y « 1 there is a large number of important terms 
in the sum (55), and owing to this the representa­
tion of Am (w, 'Y) in the form of a series is in con­
venient. Using the formula (56) for the function 
Wm(x), we can put Am(w,-y) in the following form: 

1 1 f 2v )lml+'!. 
Am(Cil, 'Y) = 2l'3:n: I m I! Y(1 + '\'2) 't. 

~~ xlml exp {-(a+ J3x)ll} 
X dx «<> ( e-<a.+P:x:>O 

0 (1-x)''• 

-jmj-1/2, II), (57) 

where <5 = [v] + 1- v (0 ~ <5 ~ 1), [v] means the 
integer part of the number v, and cfl(z, s, v) is a 
generalized t function which has been studied in 
detail in the mathematical literature: [ 12 1 

oo n 

«l>(z, s, v) = n~o (n ~ v)• lzl < 1'. (58) 

For 'Y « 1, Am (w, -y) - 1, and (54) goes over 
into the corresponding formula of the adiabatic 
approximation: 

( 6 )''• .~2l+ 1) (l+ I m I)! ( F )lml+'ll 
Wtm(F)= roojC,.zl2 n 21mljml!(l-lml)1 2Fo 

X exp{- 2Fo( 1-~v2)} 3F 10 . 
(59) 

7>we note that the formula for Wn(F, w) derived in [4] differs 
from the exact formula (44), in that in the integral (45) for 
Fn(P) instead of the function Xzm(P) = 1/2(p2 + X2)qltm(P) it has 
the matrix element 

Vtm (p) = S e-iprFrqJtm (r) d3r ~ FV p(illm (p). 

Unlike Xzm (p), which in the case of short-range.potentials 
is finite at the saddle point, Vzm (p) has a pole of second order 
there. The result of this is that the coefficient of the exponen­
tial caculated in [ 4] is incorrect for high frequencies (y ;;:::, 1). 
If y -+ 0, however, the result becomes correct. The Keldysh 
method is a direct extension of the method of Oppenheimer [•] 
to the case of an alternating field, and gives the correct value 
of Wstat for short-range potentials. 
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In the opposite case of high frequencies ('Y » 1) 

(F / 2Fo) (1 + y2)'" = w I 4wo, 

and the function Am(w, y) reduces to the first 
term of the series: 

Am(w,y)= 4 - 1-( 2y)-26wm(l'26); 
y3n lml! e 

(60) 

o = [v] + 1- v, e = 2. 718 ..•. In this frequency 
range the coefficient of the exponential is a rapidly 
varying function, with singularities at the thresh­
olds for absorption of n quanta. 

As is seen from (54) and (60), the probability of 
ionization changes rapidly with increase of I m I ; 
the largest probability of ionization is that for the 
state with m = 0. For the mean probability of ioni­
zation of unpolarized atoms we get 

1 I 

wz = 2l+ 1 ~ Wzm(F,w) 
m=-1 

= woiCxd 2 ( ~ )"'( ~( 1 t/2
)'/• )'" A0 (w, y) 

' :J't I ' 0 

{ 2Fo } 
X exp - "3P~- g(y) . (61) 

The function w0(x) = w(x) which appears in 
A0 (w, 'Y) is related to the error integral, and there 
are tables for it. [ 131 A plot of the function w(x) is 
given in Fig. 2. 

W(J:) 

0.5 

0.25 

0 2 3 4 s 6 7z 

FIG. 2. Curve of the function w(x) 

The nature of the variation with frequency of the 
coefficient of the exponential in (61) is shown qual­
itatively in Fig. 3 (for the case 'Y » 1). The points 
w = wn at which this coefficient has singularities 
of fractional-exponent type, correspond to thresh­
olds for absorption of n quanta. We have nwn 
= K2/2 + K2/4y 2, that is, an n-th order resonance 
(K 2/4y 2 is the mean kinetic energy of the electron 
moving in the field of the plane wave). The maxi­
mum values are -('}' 3/ln '}') 1/ 2 , and occur near 
the threshold frequencies: ( w~ax - Wn) 

- wn(4n In y)-1. 

Let us now consider ionization by a circularly 
polarized wave 

F (t) = F(e., cos wt + ey sin wt) (62) 

(as is clear from the results of Sec. 2, this is the 
most exotic case). To obtain w(F, w) it is neces­
sary to integrate the radial component of the par­
ticle flux over a cylinder of radius R (R - oo) with 
its axis along the z axis (the direction of propaga­
tion of the wave). The result is8> a formula for 
w(F, w) which is of the same form as (43). Now, 
however, the threshold for ionization (the mini­
mum number of quanta) is v = (w0/w)(1 + 1/y2). 

The difference from ( 43) is due to the fact that the 
mean kinetic energy of the electron in the field of 
the circularly polarized wave is twice its mean 
energy in the field of the plane-polarized wave. 

The quantities Fn(P) are now the coefficients 
of the following Fourier series [cf. Eq. (42)]: 

n=-oo 

{ Wo [ 2p., 2py ]} exp - i- -- .. cos wt + --sin wt . 
w xy xy 

(63) 

Confining ourselves for simplicity to the case 
l = m = 0, we get 

- 1 ( X )''• ( F 0 p j_ l IFn(P) IP=Pn- /2 2:n;2 IC,.olln Fy2 --:;:), (64) 

where p 1 denotes the component of the momentum 
p which lies in the xy plane. When (64) is substi­
tuted in (44) we encounter the integral 
Pa 1 
(' ( Fo (Pn2 - Pz2) 'I•) \ v 
J dp,ln2 FVi X =2PnJ (i-v2 ),1,Jn2 (xv)dv, 

-Pn 0 

(65) 

where x = (F0 /F~)(pn/K). Substituting here the 
expansion of IJn(xv) 12 in power series (see [ 141 , 

FIG. 3. Frequency dependence of the factor before the ex· 
ponential in (61); the field strength F is assumed constant 

8>A more detailed exposition of the calculations will be 
found in the next paper of the writers, which is devoted to a 
treatment of the general case of elliptical polarization. 
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page 161) and integrating term by term, we get 

f vln2(xv) 1 r nxt,.n 
~ --== dv =- J l2n (y) dy = -· ~ l2n (2ny) dy. (66) 

,'1- v2 2x x 
0 , 0 0 

By the use of (66) the formula for the probability 
of n -quantum ionization can be reduced to the 
form 

1 + 'Y2 [(1-t'~U+V'll'/, 

Wn = 2wo!Cxol 2--- ~ 12n(2ny)dy 
y(1 +t) 0 

(n ~ Vc = Wow-1 (1 + 1/ y2) ~ 1). (67) 

Here we have introduced the variable t = 2vc/n-1, 
which is convenient in our further work and varies 
from 1 (at the threshold, n = v c) to -1 (for 
n- oo). For w « w0 we have n » 1, and the Bessel 
function in (67) has large values of the argument 
and index. Using an asymptotic formula derived 
for this case by Watson (see [ 14J, page 283), we 
transform (67) to the form 

Wn= wo!Cxol2 (1+t)[(1+~)(1-t)J'''( 1+y2)"' 
2"'in(2vc)'h y2 t2 + y2 

X exp {-4vccp(t,y)}, (68) 

where 

1 { ( [2 + y2 )''• ( [2 + y2 )'"} 
cp(t, y) = 1 + t Arth 1 + 'Y2 - 1 + 'Y2 . (69)* 

For given v the function qJ (t, 'Y) has a unique min­
imum in the range -1 ~ t ~ 1, at the point t = t0 (y) 
whose position is given by the equation 

f to2 + y2 )''• - _1 __ ( fo2 + y2 \ 'I• 
Arth ~ 1 +~ - 1 - to 1 + y2 (70) 

It is easy to see that 0 ~ t0 (y) ~ 1; the curve of 
the function to (y) is shown in Fig. 4. For 'Y » 1 
and 'Y « 1 Eq. (70) can be solved approximately: 

{
1;3y2(1-2Bj45y2+ ···) for y~1 (71) 

to (y) = 1 - 1 1 ln y + · · · for Y ~ 1 • 

The probability w n• considered as a function of 
the number n of absorbed quanta, has a flat maxi­
mum at n =no = 2vc/(1 + t0), the width of this max­
imum being of the order on"" vJI2 » 1. Replacing 
the summation over n with an integration, we ar­
rive at the following formula for the total proba­
bility of ionization of an s level by a circularly 
polarized wave: 

*Arth = tanh·'. 

0.50 

0~~~~~3~~4~~5~~6~~7·--s 

r 
FIG. 4. The root t0 (y) of the transcendental equation (70). 

gc(Y) = y2(f~ to2) [ (1 + y2) ( 1 + ~:) ]"', (73) 

[ (1+y2)(1-to2) 1'" 
h(y) =(i-to) (1+tNy2) (1 +to2 + 2tNy2) · (74) 

By means of (71) one can easily verify that for 
'Y- 0 we have gc('Y) - 1- y 2/ 15, h(y) - 1, and 
wc(F, w) goes over into wstat(F). For 'Y » 1 we 
have gc('Y) ,..., (3 'Y /2) In y, which leads to a rapid in­
crease of the probability of ionization. 

A comparison of (33) and (73) shows that the 
argument of the exponential in the formula for 
w(F, w) has different frequency dependences for 
plane and circular polarization-i.e., the exponen­
tial is not a universal function of 'Y. Therefore to 
obtain the complete picture it is necessary to con­
sider the general case of ionization in the field of 
an elliptically polarized wave; this will be done in 
the authors' next paper. 

There are always many values of n which con­
tribute to the probability of ionization wc(F, w). 
Therefore the threshold singularities in the coef­
ficient h(y), unlike those in the case of linear po­
larization, merge together and disappear. 

Lasers existing at present have a fixed fre­
quency; therefore for comparison with experiment 
it is convenient to rewrite the exponential in the 
formula for w(F, y) in the form 

exp {-2wow-1/(y)}, /(y) = 2/ayg(y). (75) 

The functions f(y) for linear and for circular po­
larization are shown in Fig. 5. For the light of a 
ruby laser the parameter 'Y has a value of 30 to 
50 for F"" 107 V/cm (see table in [ 10 J). Noting that 
under these conditions 2 w0 /w is of the order of a 
small multiple of ten, we see that linearly polar­
ized light should ionize atoms much more strongly 
than circularly polarized light. 

In conclusion we note that the formulas derived 
here for w(F, w) apply to the calculation of ioniza­
tion not only from the ground state, but also from 
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