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A static nonlinear differential equation for the characteristic parameter (gap) D. in a super
fluid Fermi gas at finite temperature is derived by taking into account the motion of the 
normal component and the presence of a magnetic field. The behavior of the gap D..(r) at 
large distances from the vortex line is determined for arbitrary temperatures. 

IN an earlier paper by the author and Pitaev-
skil [1 J, a nonlinear differential equation was ob
tained for the characteristic parameter D. in a 
superfluid Fermi gas at absolute zero temperature. 
It was assumed that D. varies little in space and in 
time. The purpose of the present paper is to ob
tain a similar equation for finite temperatures. 
We shall consider here only the static case, when 
D. does not depend on the time. 

Such an equation was obtained for temperatures 
close to the transition temperature (the Ginzburg
Landau equation) from the microscopic theory first 
by Gor'kov[2J, and in the general case by Tewort[3J 
and Werthamer[ 4J. All these authors have assumed, 
however, that the nominal part of the liquid is at 
rest. Yet the form of the equations for the case 
when Vn ~ 0 is of considerable interest in connec
tion with the question of the Galilean invariance of 
the equations. As seen from [1 J, this question is 
very important for a description of the properties 
of the system. In particular, without introducing 
Vn, we cannot ascertain whether the change of D. is 
connected with the motion of the superfluid part 
relative to the normal part or relative to the lat
tice. We note also that there are discrepancies 
between the results of Tewort and Werthamer, so 
that the question remains unclear even when Vn = 0. 

The method which we use is an extension of the 
method of the earliest papers [1] to finite tempera
tures. The most essential difference consists in 
the fact that now, in addition to the superfluid veloc
ity Vs, there is a velocity Vn of the normal com
ponent. In order to take Vn into account, it is 
necessary to add in the Hamiltonian of the system 
a term -p · Vn, where p is the operator of the total 
momentum of the system [ 5•6J. 

It is obvious that in the static case the equation 

for D..* can be obtained by minimization with res
pect to D. of the thermodynamic potential Q ex
pressed in terms of D. and its derivatives with 
respect to the coordinates. The expansion of Q with 
respect to Vn and the derivatives of D., accurate to 
second-order terms, has in the general case the 
form 

Q = ~ {Q(IIll 2)+12a4 (llll 2)+a1 (llli 2)[(V<p)2 

+ (V<p.)2] +a2(jlll 2) (V<p) (V<p•) 

+ a3( I lll 2) il(V<p- V<p•)} d3r. (1) 

Here rl is the thermodynamic potential of the homo
geneous system when Vn = 0, 1 = 2mvn and cp = ln D.., 
while the coefficients are unknown functions of 
D../T, which we determine from the microscopic 
theory. As in [1], in writing out (1) we took account 
of the fact that the potential Q should be invariant 
with respect to the transformation 

Therefore expression (1) contains derivatives of 
ln D. only. 

Equating to zero the functional derivative of Q 

with respect to D. at a constant velocity Vn, we ob
tain an expression for D..*: 

(fi' + Pa.'] I lll 2 - 2a1 V2<p- a2 V2q:>* + a/ I ,il2[ ( V<p*)2 

- (V<p)2- 2(Vrp) (Vrp*)]- az'Jilj 2(Vrp*)2 

- 2aa'JilJ 2ilVrp* = 0. (2) 

The primes denote here derivatives with respect to 
ID-1 2• We put, just as in [1], 

Ll (r) = [/i0 + ~ 1 (r)] eiqr (3) 

and assume that D..1 « D- 0• Going over now in the 
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usual manner to Fourier components We put 

F+(x, x') = F0+(x- x') + F,-h(x, x') ~ . d3k d3k 
~(r) = ~(k)e'kr__ ~· (r) =I~· (k)eikr (2n)3 (4) 

( 2Jt) 3' J 
and linearize ( 8) with respect to ~f and Fi. As a 

and substituting (3) in (2), we obtain after lineariza- result we obtain 
tion an equation for l 0: 

{Q' + Fa4' + qz[ -2a/ + az'] - 2a/ (lq) }Lio* = 0 

and an equation for 3:1 (k): 

~oLit'(k) {Q' + l~oi 2Q" + P[a{ + l~ol 2a,"] 

(5) 

+ a2l ~o 1-W· + [ -2at' + a2'- 2at'' I ~ol 2 + a2" l~o 12] q2 

+ [ 4at' - 2a2'] kq + 2aa'lk + [ -2a3' - 2a3" I ~o 12] lq} 

+ K/L\t(k) {fi" I ~o 12 + zz I ~o l2a•" - 2a,l ~o l-2k2 

- [21 ~()l 2at''- I ~o l2a2"] q2- 21 ~o l2a3" (lq)} = 0. (6) 

{[-_!_-/ Vn, V+~)+(V+iq/2)2 +~-t]~1 [!__ 
a. \ 2 2m ~o· a. 
( iq) (V-iq/2)2 J 

+i Vn, V-2 + 2m +~-t 

( iq) (V-iq/2)2 J 
+ i Vn, V -2 + 2m + J..t 

-'Li1 (x) }Fo+(x-x'). (10) 

The coefficients S1, a1, a 2, ••• are determined from 
a comparison of (5) and (6) with similar equations 
obtained from the microscopic theory on the basis 
of Gor'kov's equations. 

F+o (x- x') satisfies equation (8) with ~0 in lieu of 
Gor'kov's equations in the temperature approach, 

3:(x). We go over in ( 8) to the Fourier components 
in the presence of Vn, are of the form 

(- ~ + vz + PVn + 1-1 )G(x, x') + ~(x)F+(x, x') ar: 2m .· 

= 6(x- x'), 

( a v2 ) 
ar: + 2m -pvn+~-t F+(x,x')-~*(x)G(x,x')=O, (7) 

where T is the Matsubara "time" and x = (r, T). 

Eliminating from (7) the function G(x, x'), we obtain 

Making now the substitution 

F+(.x,x') =F+(x,x') exp[-i(q,r+r')], (3') 

we obtain 

[ - !_ - i ( V n, V + ~) + ~(_V_+_:__iq.:.:./_2:._)2_ 
a, 2 2m 

+ ~-t]~[!__ +i( Vn, V- i2q) 
~·(x) a, 

(V- iq/2) 2 J 
+ 2m +~-t F+(x,x')+i(x)F+(x,x') 

=6(x-x'), (8) 

with 

Li*(x) = lgiF+(x, x). (9) 

with respect tor, r' and T -r'. Equation (9) in 
terms of Fourier components becomes 

Li*(r)=lgi2}F+ (r,r), 
"'n n 

(9') 

where Wn = (2n + 1)rrT is the discrete frequency 
which arises when F+ is expanded in a Fourier 
series in T - r'. Expanding further in powers of 
k, q, and 1 up to second-order terms, we get after 
calculations similar to those given in [1] an equa
tion for lf (k): 

mpo { 1 vF2k2 [ 1 1 
= 2n2 - -2- -1 ~0 12/' + -3 - - 2 · 3 I ~o f2 
+ 1 Pn1 + l~ol 2 Pn" +2-l~ol 2f" 

4 p 12 p 3 

+~I t1o I'/"']+ VF
2q2 [_!_ Pn' + I ~ol 2 Pn"l 

6 3 4 p 4 P-

vF2(kq) Pn' VF2l2 [ 1 Pn1 l~ol 2 Pn" ]}~ • 
- 6 p + -3- _4_p_ + -4--p- ~~ (k) 

+ mpo {- _1_ -I~ l2/' + VF2k2 [ .~ _1 _ + ~f Pn" 
2n2 2 ° 3 12 l~ol 2 12 p 

+ l~ol 2 f" + l~ol 4 /'"] + VF2q2 l~ol 2 Pn" _ 
6 6 3 4 p 

VF2lq l~ol 2 Pn" VF2l2 l~ol 2 Pn" }- -~o· -------+----- ~t(k)-;=-. 
3 2 p 3 4 p ~0 (11) 
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Here p = mp~/37T 2 is the total density of the gas, 

2 i an r an 
Pn = --- J P2 - d3p = - p ' - ds 

(2n)3 fJe _;;., fJe 

is the density of the normal component; 

f= r ~d6, 
e 

-co 

1 
n = e•IT + 1' 

where n is the Fermi distribution function; Po is 
the Fermi momentum. Comparing now (11) with 
(5) we obtain equations for the coefficients n' a1, 
a2, ... : 

- 1 mpo f ( 1 n) 
Q'=--+- J ds ---

lgl 2n2 -oo 2e e ' 

(12) 

The equation for .6: 0 yields nothing new compared 
with (12). Substituting in the second equation of 
(12) the expression for a1 and a 2, we obtain the con
dition 

~ Pn" +f"+~l~ol2f"'=0; 
4 p 2 

(13) 

It is easy to show that this condition is an identity .1 > 

We must stipulate that the form of the functional 
Q can be established from the equation for .6. only 
accurate to a factor which does not depend on .6.. 
This factor was already chosen by us in (12) in 
such a way as to make n coincide with .6.-dependent 
part of the thermodynamic potential of the Fermi 

1lindeed 

.. ~n "'~no1; ~ .. o(n) f = 2 - d6 = 2 --;--de = -2 - - 6de . 
e e IJ8 il8 e 

0 1"1 1"1 

Taking now account of the fact that dE= [(E' - I~ I'] IE] d ~. we 
obtain 

r~d6 =- r[~-~-211\12-0-( _n_) J d£,, 
-co 8 ).. oe 8 oJ/\12 e 

that is, pn/p = -21 ~ l'f'. Differentiating the obtained identity 
with respect to I~ I' twice, we obtain (13). 

gas. Indeed, according to the first condition (12) 
we can write 

- 1 [ 1 mpo r ( 1 n )] 
Q= Jdl~lz --+- J ds ---- . 

lgl 2n2 _"" 2e e 

Charging in the last integral the order of integration 
and taking into account the fact that dl.6-l 2 = 2E:dE:, 
we obtain 

Q=-{~dl~l2[--1 + mpo r ds] 
I g I 2nz -oo 2e 

mpo r ) 
t 2:n;2 2T J ln(i+e-•iT)dsf-

-oo 

The last term in this formula coincides, as it 
should, with the usual formula for the thermody
namic potential of a gas of elementary excitations. 
The coefficients a 3 and a 4 are determined from (11) 
only accurate to a term that does not depend on .6.. 
It can be determined by noting that as T ....... 0 we 
have a 3, a 4 - 0, for when Pn- 0 the potential Q 

cannot depend on Vn· As a result we obtain 

The final expression for Q assumes after cer
tain transformations the form 

_ mpo Vp2 1 { 1 
Q = Q + 2Jr2_3_ J 8·3 [4(\lcp) (Vcp*)- (Vcp)z- (Vcp*)2] 

- 8 ~3 P~'[4(Vcp- 2imvn) (Vcp* + 2imvn) 

-(Vcp-2imvn) 2 -(Vcp*+2imvn)2]--1-1~12 Pn' 
8·3 p 

)\ (Vcp* + Vcp)2}d3r. (14) 

The nonlinear static equation for .6. is now 2>: 

[In-~o~T} +1(~)-/(~o(T)) J 1~1 2 

_ '!!'__ _ Pn I Al2("' • + z· )2 2 { 1 " 
- --- 1.1 v cp tmVn 

3 4 p 

2 lEquation (15) with v n = 0 does not coincide with the equa
tion obtained in [7]. This, as already indicated in ['], is prob
ably connected with the insufficient accuracy of the approxi
mations made in [7]. 
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In (15) the quantity ~0 (T) is the equilibrium value 
of~ for a given temperature in the spatially
homogeneous case, in the absence of a velocity 
difference Vn- Vs. 

Equation (15) is, of course, valid only when~ 
varies little over distances of the order of 
!; o = vF/ ~0(0). On the other hand, the velocity vn 
should be considered in the equation as a constant. 
Indeed, by definition Vn should vary little over dis
tances of the order of the mean free path of the 
elementary excitations l. Yet in a superfluid 
Fermi gas the inequality l »!; 0 is satisfied prac
tically in the entire range of temperatures. ( l is 
comparable with!; 0 only when (Tc- T)/Tc 
~ (Tc/J.L)6, that is, in the temperature region where 
the usual theory of superconductivity ceases to be 
valid because of the increase of the fluctuations at 
the transition point (see[ 5J, page 308).) 

Equation (15), as well as the initial equation (6), 
has Galilean invariance, admitting the transforma
tion group 

11 (r)- 11 (r) e2im(vr) 

with simultaneous substitution Vn------ Vn- v. 
Let us now consider on the basis of (15) the 

asymptotic behavior of~ at large distances from 
the axis of a vortex filament. Substituting in (15) 
the quantities ~ = I ~I eiJ. and Vn = 0, and neglecting 
the derivatives of I ~I , we obtain 

( 
VF2 Pn' 1 ) 11(r) = 11o 1----

3 Ps r 2 
(16) 

(we recall that (15) is valid only over distances 
much larger than!; 0). As T------ Tc, (16) goes over 
into the formula obtained first by Abrikosov [a]. As 
already noted in [t], when T ------ 0 terms of order 
1/r2 vanish, so that I ~1 2 changes only in a higher 
order. 

The presence of an external magnetic field can 
be taken into account in the usual manner, by 
making in (14) the substitution 

V<p- V<p- 2ieA, 

in accordance with the requirements of gauge in
variance (here e is the charge of the gas particle). 
As a result we obtain 

- mpo VF2 1 { 1 
Q = Q + 2Jt2 3 .l 8 _3 [4(V<p- 2ieA) (V<p* + 2ieA) 

- (V<p- 2ieA) 2- ( V<p* + 2ieA) 2]- ~- £..:':. [4( V <p 
8·3 p 

- 2imvn- 2ieA) (V<p* + 2imvn + 2ieA) 

- (V<p- 2imvn- 2ieA) 2 - (V<p* + 2imvn + 2ieA)2] 

--1-1111 2 Pn' (V<p+V<p*)2}d3r. (14a) 
8·3 p 

Then the equation for~ for a transverse potential 
gauge (divA = 0) will take the form 

1111 2 [ ln l1o~T) + !(11)- f(l1o(T)) J l11j 2 

v 2 { 1p' 
= ; - -4 -;-I111 2(V<p* + 2imvn + 2ieA)2-

-. 1-1111' Pn" (V<p* + V<p)2+_1 ~[ V2<p* _1_ V2<p l. 
3·3 p 6 p 2 -' 

__ 1_11112 Pn' (V2<p* + V2<p)}. (17) 
4-3 p 

Of course, we could arrive at the same result by 
starting directly from Gor'kov's equations with ac
count of the magnetic field. 

Varying now (14a) with respect to A, we can use 
the well known formula 

bQ = - ~ jbAd3r 

to obtain the current density j: 

ie 
j = 4m2[Ps( V<p*- V <p + 4ieA)- Pn · 4imvn], (18) 

which when Vn = 0 coincides, to an appropriate de
gree of approximation, with the result of Suhl and 
Stephen [9]. In the spatially-homogeneous case, 
when Vn = 0 equation (18) coincides with the London 
equation. Subtracting from (17) the complex-con
jugate expression, we obtain the current conserva
tion law 

div j = 0. 

Let us see now what form will be taken by the 
equation for ~ at temperatures close to absolute 
zero, and at temperatures close to critical. When 
T « Tc, so that Pn « p, we have from (17) 

[ _1 __ mpoln 2~ l11112=mpo vF2[v2 ·-~-V2 J. 
I g I 2n2 I 11 I _ 12n2 3 <p 2 ~ 

This equation coincides with the static part of the 
equation obtained in [t]. We see that when T = 0 in 
our approximation the magnetic field does not enter 
in the equation explicitly. However, the expression 
for the current does change and consequently also 
the connection between~ and the superfluid veloc
ity vs. In a magnetic field, a superfluid current 
appears in the superconducting system. At finite 
temperatures, the motion of the ruperfluid part 
relative to the normal part leads to a change in ~. 
This explains the explicit presence of A in (17). At 
absolute zero there is no such effect, since the mo
tion of the superfluid part as a whole cannot change 
~. and the magnetic field appears in the equations 
only in the higher approximations. 
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At temperatures close to critical we obtain an 
equation of the Ginzburg-Landau type. Indeed, for 
IT-Tel «Tc 

~= 1-~1~12 n<3>, 
P 2 6n2Tc2 

(19) 

where ?; (x) is the Riemann ?; -function. The left side 
of (17) is equal to 

Thus, (17) takes the form 

{ 1 6n2T 2 [ T - T 
4m [V + 2imvn + 2ieA]2 + 8F7~(;) ·T 

- n(3) 1~12}t...•(r)= 0. (20) 
8n2Tc2 

When Vn = 0 it coincides exactly with the Ginzburg
Landau equation. 

In the absence of a magnetic field (18) goes over 
into the equation obtained by Pitaevskil from 
phenomenological considerations [1oJ. Expression 
(14) was obtained, from the nature of the deriva
tion, for Vn = const. It is natural, however, to as
sume that it is valid also for variable Vn, accurate 
to first-order derivatives of Vn with respect to the 
coordinates. In this case terms containing div Vn 
appear in the equations. In the right side of (15) 
and (17) there is added the expression 

. mvF2 Pn . 
-t----dlVVn 6 p , 

and in the left side of (20) there appears a term 

i p -
----f.. • divvn. 

2 Ps 

These terms ensure the correct form of the con
tinuity equation for variable Vn. We note that there 
is no such term in the equations in [1o] 

In the quasiclassical approximation 

A= If... I exp {2i(mvs + eA, r)}, 

and the thermodynamic potential takes the form 

Q = Q + 1/2(Ws2 - 1f2,Pn (vn - Vs)2. 

The equation for Ll reduces to the form 

mpo[ ~o(T) (T)·l 1 '( )2 -2n2 ln-f...- +/(f..)- /(f..a } ~ = 2 Pn v,- V8 , 

and the current density has the usual appearance 

. e 
J= -(psvs+ PnVn). m 

The method proposed here can be generalized 
to the nonstationary case, to obtain time-dependent 
equations. It is necessary, however, to carry out 
here analytic continuation from discrete frequen
cies to continuous ones. 

The author thanks L. P. Pitaevskil for great 
help in the work and A. A. Abrikosov, A. F. 
Andreev, and L. P. Gor'kov for useful discussions. 
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