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The solution of the Kemmer equation in the field of a plane wave is found. The problem is 
solved by the use of reducible representations of the Kemmer algebra and a projection
operator technique. 

FoR the relativistic electron this problem was 
first solved by Volkov,[t] and was later investigated 
by Schwinger in a more general form; the analogous 
problem for bosons has been considered by F. I. 
Fedorov (private communication) in the framework 
of irreducible representations of the Kemmer al
gebra. In the present note a solution in reducible 
representations is obtained which contains the re
sult for all types of Kemmer bosons (vector, 
pseudoscalar, axial vector, and scalar). Besides 
the well known rules of the Kemmer algebra, the 
matrices of the reducible representations {3J.l ( s ), 
where s = ±1, satisfy the relations [3] 

The separating out of the irreducible cells from 
the {3J.l ( s ) ( s = + 1 corresponds to the vector and 
pseudoscalar fields, and s = -1 to the axial-vector 
and scalar fields) is accomplished with projectors 
presented in a paper by Karpenko and Yaro
shenko.C4J 

The Kemmer equation ( li = c = 1 ) 

where the external magnetic field AJ.l depends on 
the phase e 

A,.= a,./(8), 8 = n,.x'J.., 

a'J..n'J.. = n,.2 = 0 (a4 = 0) 

(2) 

(3) 

( aJ.l is a constant unit vector), leads to the supple
mentary condition 

( 4) 

By raising the order of the wave equation and 
the supplementary condition by repeated applica
tion of the operator f3A. ( ±s ) DA_, we get the second
order equation 

( 5) 

Following [t J, we introduce a new function F ( e): 

q;(x) = exp (ik,.x,.)F(fl), k'J..2 + m2 = 0 (6) 

and then apply the following obvious relations: 

(0 2 - m2) exp (ik,.x1.)F(8) = 2ik,_n,. exp (ikpnp)dF / d8,(7) 

a,.D'J..q; = ib(a, 8)q;, b(a, 8) = ka + ef(S}, (8) 

n,.a,.q; = ik,_n,.q;. (9) 

Equation (5) then reduces to the ordinary differen
tial equation 

dF +-e- (ib(f- im-i Pn(s)f')+ [Pn(s)pa(s)]f' 
de 2k,.n'J.. 

+ __!!____ Pn2(s) Pa2(s)f'2 + m-tpn2(s)Pa(s)f")F 
mz 

ie + 2m Pa(s)f'F= 0, (10) 

where 

Pn:(s) = P'J..(s)n'J.., Pa(s) =·fl(s)a, f' = df / d8. (11) 

To get rid of the matrices, we introduce the 
projection operators {3~ ( s ): 

F = Fs + F_,, F, = ~a2 (s)F, 

so that we have the system of equations 

where 

(12) 

(13) 

(14) 

g = e/2m, Ba<±>(s, 8) = Pa(s) ± im-1b(8)f'. (15) 
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Introduction of the function 

G.(e) = exp ( 2~e ~ b(a, e')t(e')de') F.(e) (16) 
:~.n:~.e. 

enables us to express G_ s ( 0) in terms of an in
tegral containing Gs ( 0): 

0 

G_.(e) =- 2: ~n(s) ~ Ba<->(s, e')f(e')G.(e')de' (17) 
:~.n:~. e, 

and to get as the equation for Gs ( 0) 

reduces to the form 

d(eirgJGsr(e)) =- _e_ ~n2(s)Mr(e)Gosr. (22) 
de 2k:~.n:~. 

Here 
e 

.IIIr(e) = m-1(2igf'2 + rf")--- [1 + irm-tb(e)j' (e)] 
2k~:~. 

0 

X !'(e) ~ [1 + irm-tb(e')j'(;e')]de', (23) 
e. 

and the G~r are arbitrary constant matrices; if 

dG. + .!_(2ig~n2(s)f'2 _ ~n2(s) ~a(s)f" + 2ik-.n:~.~a (s)f')G. they are chosen orthogonal to /3~ ( s ), the right 
de k:~.n:~. member of (22) vanishes and we can take 

0 

X ~ Ba<->(s, e')j'(e')G.(O')d9'. (18) 
e. 

Because pJ_ ( s ) is present as a factor in Gs, 
the removal of the matrices f3a ( s ) is accom
plished with the projection operators 

P.rJal = 1/z(/ + r~a(s)), P.rJal + P.-rla! =I, r = +1; 

if there were no factor /3~ ( s ), more complicated 
projection operators would be required. These 
operators have the properties 

1/2(/ + r~a(s))~n2 (s') = ~n2 (s') 112{/- r~a(s)) (19) 

[here use must be made of the fact that /3~ ( s) 
+ /3~ ( -s) = 0]. 

The splitting of Gs ( 0) into components Gsr ( 0) 

G.r(e) = 1/2(1 + r~a(s))G.(e) (20) 

leads to a system in which only p2 ( s ) remains 
n 

( r = ±1 ): 

G.(e) =cos (gj(e))Go, (24) 

0 

G-.(e) = - _ke Pn (s) \ Ba<->(s, e')cos (g/(e')) de' Go. 
2 :~.n:~. J 

e, (25) 

The solution of Eq. (5) is of the form 
9 

cp=exp{ik:~.x:~.--ke ~ b(e')j(e')de'} 
2 :~.n:~.e, 

f(O) 

X [cos(gf(e))- 2k:n:~.~n(s) ~ Ba<->(s)co.s(g6)d6 J <po. 
f" 

(26) 

For the Kemmer equation we get the solution 

1jJ = (~:~.(s)D:~.- m)cp. (27) 

The writers are grateful to A. P. Yaroshenko 
for checking the calculations and for a number of 
important corrections and remarks. 
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X/' (8') G •. -r(e') de'] . (21) 

In eliminating one of the functions, for example 
Gs,-r(O), from this system, use must be made of 
the fact that (3~ ( s) = 0, and then the system (21) 

Translated by W. H. Furry 
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