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The solution of the Kemmer equation in the field of a plane wave is found. The problem is 
solved by the use of reducible representations of the Kemmer algebra and a projection­
operator technique. 

FoR the relativistic electron this problem was 
first solved by Volkov,[t] and was later investigated 
by Schwinger in a more general form; the analogous 
problem for bosons has been considered by F. I. 
Fedorov (private communication) in the framework 
of irreducible representations of the Kemmer al­
gebra. In the present note a solution in reducible 
representations is obtained which contains the re­
sult for all types of Kemmer bosons (vector, 
pseudoscalar, axial vector, and scalar). Besides 
the well known rules of the Kemmer algebra, the 
matrices of the reducible representations {3J.l ( s ), 
where s = ±1, satisfy the relations [3] 

The separating out of the irreducible cells from 
the {3J.l ( s ) ( s = + 1 corresponds to the vector and 
pseudoscalar fields, and s = -1 to the axial-vector 
and scalar fields) is accomplished with projectors 
presented in a paper by Karpenko and Yaro­
shenko.C4J 

The Kemmer equation ( li = c = 1 ) 

where the external magnetic field AJ.l depends on 
the phase e 

A,.= a,./(8), 8 = n,.x'J.., 

a'J..n'J.. = n,.2 = 0 (a4 = 0) 

(2) 

(3) 

( aJ.l is a constant unit vector), leads to the supple­
mentary condition 

( 4) 

By raising the order of the wave equation and 
the supplementary condition by repeated applica­
tion of the operator f3A. ( ±s ) DA_, we get the second­
order equation 

( 5) 

Following [t J, we introduce a new function F ( e): 

q;(x) = exp (ik,.x,.)F(fl), k'J..2 + m2 = 0 (6) 

and then apply the following obvious relations: 

(0 2 - m2) exp (ik,.x1.)F(8) = 2ik,_n,. exp (ikpnp)dF / d8,(7) 

a,.D'J..q; = ib(a, 8)q;, b(a, 8) = ka + ef(S}, (8) 

n,.a,.q; = ik,_n,.q;. (9) 

Equation (5) then reduces to the ordinary differen­
tial equation 

dF +-e- (ib(f- im-i Pn(s)f')+ [Pn(s)pa(s)]f' 
de 2k,.n'J.. 

+ __!!____ Pn2(s) Pa2(s)f'2 + m-tpn2(s)Pa(s)f")F 
mz 

ie + 2m Pa(s)f'F= 0, (10) 

where 

Pn:(s) = P'J..(s)n'J.., Pa(s) =·fl(s)a, f' = df / d8. (11) 

To get rid of the matrices, we introduce the 
projection operators {3~ ( s ): 

F = Fs + F_,, F, = ~a2 (s)F, 

so that we have the system of equations 

where 

(12) 

(13) 

(14) 

g = e/2m, Ba<±>(s, 8) = Pa(s) ± im-1b(8)f'. (15) 
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Introduction of the function 

G.(e) = exp ( 2~e ~ b(a, e')t(e')de') F.(e) (16) 
:~.n:~.e. 

enables us to express G_ s ( 0) in terms of an in­
tegral containing Gs ( 0): 

0 

G_.(e) =- 2: ~n(s) ~ Ba<->(s, e')f(e')G.(e')de' (17) 
:~.n:~. e, 

and to get as the equation for Gs ( 0) 

reduces to the form 

d(eirgJGsr(e)) =- _e_ ~n2(s)Mr(e)Gosr. (22) 
de 2k:~.n:~. 

Here 
e 

.IIIr(e) = m-1(2igf'2 + rf")--- [1 + irm-tb(e)j' (e)] 
2k~:~. 

0 

X !'(e) ~ [1 + irm-tb(e')j'(;e')]de', (23) 
e. 

and the G~r are arbitrary constant matrices; if 

dG. + .!_(2ig~n2(s)f'2 _ ~n2(s) ~a(s)f" + 2ik-.n:~.~a (s)f')G. they are chosen orthogonal to /3~ ( s ), the right 
de k:~.n:~. member of (22) vanishes and we can take 

0 

X ~ Ba<->(s, e')j'(e')G.(O')d9'. (18) 
e. 

Because pJ_ ( s ) is present as a factor in Gs, 
the removal of the matrices f3a ( s ) is accom­
plished with the projection operators 

P.rJal = 1/z(/ + r~a(s)), P.rJal + P.-rla! =I, r = +1; 

if there were no factor /3~ ( s ), more complicated 
projection operators would be required. These 
operators have the properties 

1/2(/ + r~a(s))~n2 (s') = ~n2 (s') 112{/- r~a(s)) (19) 

[here use must be made of the fact that /3~ ( s) 
+ /3~ ( -s) = 0]. 

The splitting of Gs ( 0) into components Gsr ( 0) 

G.r(e) = 1/2(1 + r~a(s))G.(e) (20) 

leads to a system in which only p2 ( s ) remains 
n 

( r = ±1 ): 

G.(e) =cos (gj(e))Go, (24) 

0 

G-.(e) = - _ke Pn (s) \ Ba<->(s, e')cos (g/(e')) de' Go. 
2 :~.n:~. J 

e, (25) 

The solution of Eq. (5) is of the form 
9 

cp=exp{ik:~.x:~.--ke ~ b(e')j(e')de'} 
2 :~.n:~.e, 

f(O) 

X [cos(gf(e))- 2k:n:~.~n(s) ~ Ba<->(s)co.s(g6)d6 J <po. 
f" 

(26) 

For the Kemmer equation we get the solution 

1jJ = (~:~.(s)D:~.- m)cp. (27) 

The writers are grateful to A. P. Yaroshenko 
for checking the calculations and for a number of 
important corrections and remarks. 
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In eliminating one of the functions, for example 
Gs,-r(O), from this system, use must be made of 
the fact that (3~ ( s) = 0, and then the system (21) 

Translated by W. H. Furry 
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