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The solution of the Kemmer equation in the field of a plane wave is found. The problem is
solved by the use of reducible representations of the Kemmer algebra and a projection-

operator technique.

FOR the relativistic electron this problem was
first solved by Volkov,[!] and was later investigated
by Schwinger in a more general form; the analogous
problem for bosons has been considered by F. I.
Fedorov (private communication) in the framework
of irreducible representations of the Kemmer al-
gebra. In the present note a solution in reducible
representations is obtained which contains the re-
sult for all types of Kemmer bosons (vector,
pseudoscalar, axial vector, and scalar). Besides
the well known rules of the Kemmer algebra, the
matrices of the reducible representations ﬁu( s),
where s = 1, satisfy the relations [3J

Bu(s)Bv(s’) = —Bv(—3)Bu(—s") + o (1 + s5")8l. (1)

The separating out of the irreducible cells from
the B, (s) (s =+1 corresponds to the vector and
pseudoscalar fields, and s = —1 to the axial-vector
and scalar fields) is accomplished with projectors
presented in a paper by Karpenko and Yaro-
shenko.[?]

The Kemmer equation (h=c =1)

(Brn(s)Dr+m)p =0, Dy =0, + ied,,

where the external magnetic field Ay depends on
the phase 0

0 = naza, (2)
(2. = 0) (3)

(ay is a constant unit vector), leads to the supple-
mentary condition

Aﬂv = al-'rf(e)v

a)ny — n;,z =

(Bx(—S)Dx +—2% Ba(—s) ﬂo(s)FM) Pp=0. (4

By raising the order of the wave equation and
the supplementary condition by repeated applica-

tion of the operator B) (%s)D), we get the second-
order equation
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(Ds2— m 4 28381 Fro
ie
g B (=) DaBo (—5) Ba(5) Pow ) = 0, (5)

Following [1d, we introduce a new function F ( 6):
o(z) = exp (ikaza) F(0), k224 m2=0 (6)

and then apply the following obvious relations:
(02 — m2) exp (ikaxs) F(0) = 2ikans, exp (ikono) dF [ d6,(7)
b(a, 0) = ka + ¢f(9), (8)
Mo = ikanag. 9

Equation (5) then reduces to the ordinary differen-
tial equation

aDyp = ib(a, 0) g,

dF
5+ S 0 = i~ B (5)7) + (B (5) Ba(9)]/
+ ::2 Bn2(s) Ba?(5) f2 + m~'Bx*(s) Ba (s) ") F
ie
+2—mﬁa(3)fp= 0, (10)
where
Bu(s) = Pa(s)m, Ba(s) =PB(s)a, f =df/de. (11)

To get rid of the matrices, we introduce the
projection operators Bg( s):

F=F,+F_, F,=pB2(s)F, (12)
so that we have the system of equations
dF, e
b ib —18.2(5)(2igf’2 — Ba /"
o Torm © f -+ m=*Bn?(s) (2182 — Ba(s) ")
+igBa () /) Fe = 32— But®(8) B (5)/F s (13)
ATLA
dF_g ie e
A F—s - = n ,Ba(_) Fs,
20 + 2kmxbf kaxﬁ (s)f (s) (14)
where
g=-¢e/2m, B,®(s,0)= Ba(s)kim-1b(6)F. (15)
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Introduction of the function

Go(0) = exp (5 Sb(ae')ﬂe’)de) (8)  (16)

enables us to express G_g(0) in terms of an in-
tegral containing Gg(0):
]

Goo(8)=— 5—Bn(5) § BaO(s,0)/(8) G (80" (17)
6,

e
2]€;JZ;,
and to get as the equation for Gg(9)

dG,
de

8
X § Bu)(s,0")1 (6)G.(07) B
8
Because Bﬁ(s) is present as a factor in Gg,
the removal of the matrices #4(s) is accom-
plished with the projection operators

Plel = 1o(I 4 7Ba(s)), Pyl Poriel = 1,

if there were no factor Bza (s), more complicated
projection operators would be required. These
operators have the properties

o (I 4 rBa(s)) Bn?(s') = Bn?(s)Y2(I — rBa(s)) (19)
[here use must be made of the fact that 82 (s)
+BL(-s)=0].

The splitting of Gg () into components Ggy (0)
Gsr(e) == ]/‘I2 (I + rBa(s))GS(e)

leads to a system in which only [3;( s) remains
(r ==1):

(18)

r= 41;

(20)

d irngsre . gl s
o-ires 2L - ©)__ 2kenx Bn2(s)[m~1(2igf2 4 rf") G5 (0)
(]
— g [t 4 i (B)f (011 (0) § 11 + irm=1b (0') 1 (07)]

6o

X J(0)) G, _,(e')de'] . (1)

In eliminating one of the functions, for example
Gg,-r (0), from this system, use must be made of
the fact that Bn( s) =0, and then the system (21)
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reduces to the form
d(e81G5(0)) e
do o 2k

Br2(s)MT(08)Ge*. (22)

Here
M (0) = m~1(2igf? + rf")— zTe_m [ + irm=1b.(0) ' (6)]

0

X 7(8) [4+ irm=1b(6)f (/)] d0/,

8

(23)

and the G5' are arbitrary constant matrices; if
they are chosen orthogonal to Bfl (s), the right
member of (22) vanishes and we can take

G:(0) = cos (g/(6)) G, (24)

0
Bn(s) | BuO (s, 0)cos(gf(67))d0’ G
% (25)
The solution of Eq. (5) is of the form

e
GO =~

0
@ = exp {ikm - { b(e’)f(e')de'}

2/6;‘71,;‘
6o

1®
Pa(s) ) B (5)cos (62)% | o

x [eos(er(e)) —

2k n,
(26)
For the Kemmer equation we get the solution
P = (Br(s)Dr — m) . (27)

The writers are grateful to A. P. Yaroshenko
for checking the calculations and for a number of
important corrections and remarks.
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