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Through the fluctuation-dissipation theorem the characteristic features of the Brownian mo
tion near the critical point of a pure substance are determined entirely by the features of the 
dependence of the mobility b(w) of a particle on the frequency of the force acting on it. For a 
macroscopic particle finding the mobility is a hydrodynamical problem, and in solving it near 
the critical point one must take into account, first, the effect of the great compressibility of 
the liquid, and second, the possible influence of the large density-correlation radius. General 
formulas are derived for the mobility and the Brownian displacement, and the characteristic 
frequencies that are important for the critical region are calculated. It is found that for the 
displacements during times larger than the characteristic time T 1 = I w01 l-1 [w01 is the char
acteristic frequency, see (31)] the mean square displacement of a Brownian particle is given 
by the usual Einstein formula (33). For times smaller than T 1 the formula involves an addi
tional coefficient which depends on the ratio of the shear viscosity TJ and the volume viscosity 
t [cf. (38)]. The presence of a large correlation radius of the density fluctuations near the 
critical point also does not significantly affect the character of the Brownian motion, andre
duces essentially to a renormalization of the radius of the Brownian particle. These conclu
sions are based on the assumption that there is no strong frequency dependence of the viscosity 
(for periods of vibration of the order of the times of displacement of the Brownian particle 
which are of interest to us). 

1. STATEMENT OF THE PROBLEM 

As is well known, the study of the Brownian mo
tion which was made in the last century gave one 
of the first proofs of the existence of atoms and 
made possible a determination of Avogadro's num
ber. Since that time physicists have very rarely 
engaged in experiments on the Brownian motion. 
However, as has been pointed out by Krichevski'l 
and others, [ 11 the study of the Brownian motion 
can be useful for the investigation of the critical 
state of matter. 

sponds to an increase of characteristic relaxation 
times, and so on. 

The liquid-vapor critical point of a one-compo
nent liquid is fixed by the conditions [ 21 

(ap 1 ap)T = (fJ2p 1 op2)T = o. (1) 

The infinite increase of the compressibility 
p - 1(Bp/8J>)T as the critical point is approached 
leads to a number of peculiarities in the behavior 
of a substance near its critical point, in particular 
to a large increase of the correlations between the 
positions of different particles [the correlation ra
dius is proportional to (Bp/BP)Tl, which corre-

As has been shown by Leontovich, [al the fluc
tuation-dissipation theorem reduces the problem 
of the Brownian motion to finding the dependence 
of the mobility of a Brownian particle on the fre
quency-that is, for a macroscopic particle, to a 
hydrodynamical problem. The hydrodynamics of 
the critical phase is of a very special kind, since 
here (Bp/BP)T- oo, whereas ordinarily the com
pressibility of a liquid is small. Besides this, the 
solution of the hydrodynamical problem depends 
strongly on the magnitude of the viscosity at the 
critical point and on its frequency dependence. 

The fluctuation-dissipation theorem connects 
the susceptibility a = a' + ia" of a system to the 
action of a perturbing force f with the fluctuations 
of the quantity x(x = af). In the classical region[ 21 

we have 
00 

x(t) = J x.,e-ioot dro, 

722 

-- kT a"(ro) 
x.,x.,, = -----· b(oo + ro'). 

n ro 

(2) 
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In our case the susceptibility a(w) is simply re
lated to the frequency-dependent mobility b(w), 
namely b(w) = -iwa(w). 

In the problem of the Brownian motion of a sin
gle particle one studies the mean square displace
ment of this particle 

XZ('t) = ·[x(t)- x(t + -r) )2, 

and in the stationary case it is easy to get for it 
the following expression: 

2. Since under the action of a constant force 
the motion is with constant velocity, we have 

lim ( -iwa) = Ao, Ao > 0, (5) 
01.....0 

where Ao is a real positive constant. 
3. The function a(w) can have branch points at 

w = 0 and w = oo, 

4. On the real axis 

a"(-w) = a(w). (6) 

2kT 'f a" ( w) 
XZ(-r) =- J -- (1- cosw-r)dw. 

n w 
-00 

As will be shown in Sec. 3, a(w) is a rational func
(3) tion of w112 , which can be expanded in terms of 

simple fractions: 
For this there are the obvious relations 

.XZ(O) = 0, XZ(--r) = XZ(-r). 

Since 1- cos wT is an even function, (3) can 
be rewritten in the form 

2kT ?' a(w) 
XZ(-r)=-. J --(1-cosw-r)dw, 

n£ w -oo 

(4) 

and because a(w) is analytic the integral (4) can 
be calculated as a contour integral. The relations 
(3) and (4) are valid for arbitrary generalized co
ordinates x, including cyclic coordinates, for ex
ample for the angle of rotation in rotatory Brown
ian motion. For cyclic coordinates it is necessary 
that X 2 « 1. For small 7" we have: 1- COS WT 

~ w2.,. 2/2, and therefore 

kT 11" 
XZ(-r) ~ --'t2 ~ w·a"(w)dw = vo2-r2• 

n -1/t: 

The motion occurs with constant velocity v0• The 
function X2(T) is completely determined by the 
singularities of the analytic function a(w), and it 
is much easier to analyze these than to investigate 
the cumbersome formulas for X 2(r). The features 
of the behavior of X 2(r) which follow from the 
analyticity of a(w) are studied in Sec. 2. The 
form of the function a(w), which is determined in 
our case from hydrodynamics, will be derived in 
Sec. 3. The mean square displacement of a Brown
ian particle for certain types of motion of the liq
uid is examined in Sec. 4. Peculiarities of the 
Brownian motion near the critical point and some 
conclusions are discussed in Sec. 5. 

2. CONSEQUENCES OF THE ANALYTICITY 
OF a(w) 

For any stable physical system it is easily ver
ified[ 21 that the function a (w) has the following 
properties: 

1. All poles and other singularities at which 
a = oo lie in the lower half plane. 

a=-Ao+~~+~ B • . 
iro k w - O'k • r w - ~. 

(7) 

We do not consider the case of multiple poles. 
From the relations (6) it is easy to get a condi

tion on the location of the singularities in the w 
plane, and also on the coefficients of the expansion: 

cr,.• = -cr,.; ~.2" = -·fls2, A,."= -A,., B; =-B •. (8) 

As can be seen from (8) the singularities of the 
function a(w) are located symmetrically with re
spect to, or else on, the imaginary axis. When a 
cut is made along the real axis, 

0 < Re w < oo, Im w = -0, (9) 

the integrand in ( 4) is single valued. The integrand 
in ( 4) is finite at the point w = 0 , and therefore 
near zero the contour can be deformed into the 
upper half plane. 

Without loss of generality we can take T > 0. 
Then 

(10) 

The path of integration for I 2 can be closed 
with an infinitely large semicircle in the upper 
half-plane, where there are no singularities; 
therefore I 2 = 0, The path of integration for I 1 

gets closed in the lower half-plane; the integral 
reduces to integrals around the singularities of 
the function a(w) (w = 0, w = crk, w = {3~) and the 
integral around the cut. The singularities are en
circled in the negative direction; the pole w = 0 
for the first term in (7) has multiplicity two, and 
the other poles are simple. 

We finally get for I 1 

Ao-r A,. . Bs ( 1 . ) lt=-----(1-e-•ak")-2- 1--e-•ll,'"t 
2 2cr,. fl. 2 
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B. \ dffi ( 1 . ) +--J 1--e-'"'" 
2ni c w (l"w- ~.) 2 ' 

(11) 
The corresponding terms in (16) are then 

1lziA~t (cr~t-+0), (19) 

where C is a path which leaves the point +oo along B.l/-r:lin (~8 -+0). (20) 
the lower edge of the cut, goes around the point 
w = 0 in the negative direction, and then goes to 3. THE HYDRODYNAMIC APPROXIMATION 
+oo. 

Let us now consider the contour integral 

B. (!" dwe-i"'" B. 1 B, 
--J =-+---y(-r). 

2ni 0 l"ffi(w-~s2) !3s 2 ~. 

Differentiating under the integral sign, we can 
easily verify that 

dy . Bs ~ dw . B. -+ ~~.2y = -- J --=e-'"'" = -=-, 
d-r 2n 0 l"w 2l"im 

y (O) = B. r dw = B. . 
2ni 0 l"(J) ( w- ~.2) ,2~. 

(12) 

(13) 

(14) 

Integrating the differential equation (13) and using 
the initial conditions (14), we have 

( ) - Bs ( "R?-) Bs r exp(i~i(u--r))d y "t - _,exp -~p.-L ---=- J u. 
2~. 2l"in 0 l"u 

(15) 

Accordingly, using (10)- (15), we get 

[ 1 A~t . B. 
X 2 (-r) = 4kT -Ao<--,-(1- e-"'k .. )--(1- e-ifl. 2t) 

2 2crlt 2~. 

+ B. ~ exp(i~s2 (u- <)) Jdu. (16) 
2l"in 0 l"u 

The fact that X 2(r) is real assures that the condi
tions (8) are satisfied. 

Let us make some asymptotic estimates. The 
pole terms in (16) are always of the form 

At the more complicated branch points only the 
last term in (6) changes. It has the asymptotic 
values 

(17) 

(18) 

The special case of zero roots is easily ob
tained from (16) by going to a limit O"k- 0, f3s- 0. 

The complete system of linearized hydrody
namic equations is 

po&v I at=- Vp + T)i1V + (T) I 3 + s) grad div v, 

ap I at= -po div v, Vp = (ap I ap)TVp. (21) 

In this equation the temperature is regarded as 
constant, which is a sufficiently good approxima
tion in the immediate neighborhood of the critical 
point. In fact, as the critical point is approached 
there is an unlimited increase of both the specific 
heat at constant pressure[ 21 and that at constant 
volume, [ 41 and therefore hydrodynamic processes 
are almost isothermal. Numerical estimates of 
the Peclet number give 

-~~ DpCv~1. 
"J../pCv ').., 

There is also no special difficulty in treating 
the general case. [ 61 The hydrodynamical problem 
of determining the susceptibility a(w) is solved 
only for one particle. In studying the correlation 
of the motions of several particles it is necessary 
to look for the correlation functions of the force. 
In the present section it is assumed that the speed 
of sound and all the parameters that appear in the 
equations are independent of the frequency. 

We shall regard the Brownian particle as a 
small sphere of radius R floating in a compressi
ble liquid. The boundary conditions for the equa
tions (21) are of the form 

Vlr=R = U = Uoe-irot, Vlr=oo = 0. (22) 

We shall look for the solution of the equations (21) 
in the form of the sum of lamellar and solenoidal 
parts: 

v = v, + v2, div v, = 0, rot v2 = 0. (23)* 

Applying the operations curl and a; at to the 
first of the equations (21) and using the other two 
equations, we get 

az ( ap \ ( 4 ) 1 a -a divv2= -) L1divv2+ -TJ+s - -L1divv2, 
t2 op T 3 Po at 

(24a) 

(24b) 
a TJ 

-rot v1 =- 11 rot v1• 
at Po 

*rot "'curl. 
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The solution of Eq. (24b) under the condition 
div v1 = 0 is given in [ 51 . Equation (24a) can be 
solved in analogous fashion. From curl v2 = 0 it 
follows that v2 = \7 <p and div v2 = D..cp, and the sca
lar function <p, with linear dependence on the polar 
vector u, can be represented in the form 
<p = u \7f(r). Then (24a) reduces to a biquadratic 
equation for the function f(r), which can be solved 
with the boundary conditions (22). 

The solutions of (21) so obtained for the time 
Fourier components v w of the velocity and Pw of 
the pressure are 

v., = Vtro + V2ro = {-C1/(k2r) + C2[k1rj' (ktr) 

+ 2/(ktr)]}u -[Ctf'(k2r)k2r + Cd'(ktr)kd (un)n, 

where the wave numbers can be determined from 
the dispersion equations (24): 

kt2 = iwpo, 
'YJ 

and the constant coefficients c1 and C2 are deter
mined from the boundary conditions (22): 

pw = Ct(ur)/(k2r)[(4/a1'] + 1;)k22 - rJk12], 

ix-1 
f(x)=~eix, 

The resistance force acting on the sphere mov
ing in the liquid can be found from (25) and turns 

(25) out to be 

We shall now show how from the quantity 1/Jw 
found in this section we can determine the function 
a(w) introduced in Sec. 2. The Langevin equation 
for the motion of a Brownian particle of mass M 
is 

(28) 

Comparing (28) with the definition of the func
tion a(w), namely xw= a(w)fw, we find 

(29) 

Substituting 1/J w from (27) in (29) and using the 
fact that M = 47rp1R3/3, where Pi is the density of 
the material of the sphere, we have 

1 [ 1 (t) a(w)=--- 1+----
6nrJRiw 2~2 w- Wot 

- y v w ~ Wot ( 1 + ;~ v w ~ Wot) + ~2 w ~ Wot ] 

x{1-y(~+ 1/ w ) +y2[~ _w-
V w - Wot 9 w - Wot 

+~V--w-+_E+_E_!_(~13z+~ w )] 
w - Wot 9 Po 9 9 w - Wot 

3[ ~2 v w +2~ w 
- y 9 w- Wot 9 -W--CJ->o-1 

---
+ Pt 1/ w ( 2132 + 131/ w )] 

Po V w - Wot 9 9 V w ·- Wot · 

(30) 

(27) 

Here we have introduced the characteristic fre
quency I Woil and the dimensionless quantities y 
and {3: 

·( iwpo )''• y=~ --- R, 
4/a'YJ + 1; 

(31) 

The location of the roots of the denominator in 
(30) depends on the quantity w/(w- w0i), i.e., on 
the degree of closeness to the critical point, and 
two dimensionless parameters-the ratio of the 
densities Pi and Po of the sphere and the liquid, 
and also the ratio of the shear and volume viscosi
ties. For y - 0 we have 

a(ro) =- 1 (1 +-1- ro ) (32) 
6nrJRiw 2132 ro - Wot ' 

i.e., Woi is a pole of a(w) at small frequencies 
for spheres of small size. At large frequencies 
(w » w0i) we have approximately a(w) = -1/M 2 

-the inertial properties of the sphere are deter
mined by its mass M alone. In the case of an in
compressible liquid (woi- oo) 

a(w) = -[ (M + M')w2)-1, 

i.e., the inertial properties of the Brownian parti
cle come also from the apparent additional mass 
M' = 27rp0R3/3. 

This difference in the limiting values of a(w) 
for high frequencies, that is for small times, has 
the consequence that only for a compressible liq-
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uid does one get from (4) the theorem of equiparti
tion of energy Mv2/2 = kT/2, while for an incom
pressible liquid there is an effect of entrainment 
of the liquid and (M + M')v2/2 = kT/2 (on this point 
see also [ 71 ). 

4. BROWNIAN MOTION IN A LIQUID 

As an example of the use of the hydrodynamical 
calculation of Sec. 3 and the methods of Sec. 2 we 
shall consider various limiting cases of Eqs. (27) 
and (30). The general method for treating the 
Brownian motion is extremely simple. The gen
eralized susceptibility a(w) which appears in the 
fluctuation-dissipation theorem is to be found 
either directly or through the quantity 1/Jw accord
ing to (29). Then a(w) is to be expanded in the 
simple fractions (7), and by (16) the coefficients 
of this expansion [see also (17)-(20)] completely 
determine the mean square displacement of the 
Brownian particle. 

In the case of stationary flow of an incompres
sible liquid (27) reduces to the Stokes formula 
F w = 67T1JRuw, i.e., 1/Jw = 61r17R = 1/Jo· Exactly the 
same sort of result is obtained for stationary flow 
with finite, nonvanishing, compressibility. With 
neglect of the inertial terms in (30) we then get 
a(w) = -1/iwl/!0, i.e., by (7) A0 = 1/1/Jo, and accord
ing to (16) we get for the squared displacement of 
the Brownian particle the Einstein formula 

2kT 
X2('t) = ---·'t. 

6n'I]R 
(33) 

As the next example we turn to the case of non
stationary flow of an incompressible liquid 
[(Bp/Clp)T =co]. Equation (27) then reduces to 

F m = ¢mUm = 6n'I]RUm ( 1 - ik1R - k1J.R_2 / 9). ( 34) 

This formula agrees with the result of the calcula
tion made in (5). The corresponding substitution 
in (30) is w01 = co, and we get 

a(ro) =- 1 . [1- iR ( iporo )''' 
6n'I]R~ro 'I] 

_ iR2 (Po+ 2p1) ro J-1 
9'1] • (35) 

Let {31 and {32 be the roots of the quadratic 
expression in w1/ 2 in the denominator of (35). 
After expanding a(w) in simple fractions we get 
an expression of the form (7) with the coefficients 

i 1 
Ao = M + M' ~1~2' 

1 1 
B1=- M+M' (~1-~2)~12 ' 

B _ 1 1 
2-M +M' (~1--~2)~22' ~0 = O, 

~12 = 9(i'l]/po)'l• { 1 ±[ 1-~( 1 + 2p1 )]''•} . (36) 
' 2R(1 + 2ptfpo) 9 Po 

Substituting these coefficients in (16), we have 
finally 

XZ('t) = 2kT {'t + i ~1 + ~21/ m _ i ~1z + ~22 + ~1~2 
6n:'I]R ~1~2 V i ~12~22 

_ i~2 exp(-i~1~) [~- 1 1 exp(i~12U) du] 
~1(~1- ~2) ~1 zt'ni 0 'fu 

+ i~1 exp ( -i~2~) [ -~ _ 1 . ~ exp (i~22u) du]} . 
~2(~1- ~2) ~2 2'fni 0 ju 

(37) 

This formula had been obtained previously[ 7 1 in a 
different way. The paper[ 71 was based on a theo
rem of Vladimirskil, [ 81 which for the classical 
case is equivalent to the fluctuation-dissipation 
theorem. Vladimirskil was evidently the first to 
construct a hydrodynamical theory of the Brownian 
motion. 

5. PECULIARITIES OF THE BROWNIAN 
MOTION NEAR THE CRITICAL POINT 

In experiments on the Brownian motion it is in 
principle possible to measure both the asymptotic 
slope of the straight line X 2(r) for r- co and the 
characteristic times of the nonstationary proc
esses. As has been shown above, the poles of the 
function a(w) provide a complete characterization 
of the Brownian motion. The characteristic relax
ation time is simply the reciprocal of the distance 
of a pole of a(w) from the real axis, and the pole 
w = 0, which is always present, determines the 
asymptotic behavior. 

A specific feature of the critical region [cf. 
Eq. (1)] is that the compressibility increases to 
infinity as the temperature approaches the critical 
temperature, and the correlation radius of the den
sity fluctuations increases; also, because of the 
increase of the characteristic times, a frequency 
dependence of the viscosity coefficient may appear. 

The force of resistance for w - 0 depends on 
which of the conditions w » I w01 l or w « I wo1l 
holds. For displacements of a Brownian particle 
during times larger than T 1 = I w01l-1 the resist
ance force has the Stokes value, and for times 
smaller than T 1 

Fm = 6n:Ru., 'l]eff, (38) 
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Accordingly, the formula (33) holds as before, but 
with the effective viscosity 7Jeff• and 1 ~ 1Jeffi1J 
~ 0. 7. We note that (38) corresponds to the case 
in which we take p = canst and v p = 0 in the basic 
equations (21). 

The nonzero poles of a(w) can be divided into 
two groups- "hydrodynamic" poles, determined 
by the fourth-degree equation in the denominator 
of (30) for 17(w) * 0, and poles caused by zeroes of 
the shear viscosity. 

Since all of the dimensionless coefficients of 
the equation that determines the hydrodynamic 
poles of a(w) are of the order of unity, it is to be 
expected that for the roots of this equation I Yi I 
~ 1, i.e., for the characteristic relaxation times 

-1 
T2 = w02 we have 

I Y I ~ 1, <il02 ~ (''lsTJ + ~) I poR2• (39) 

We note that whereas the characteristic time r 1 
is determined only by the properties of the liquid, 
mainly by the distance from the critical point (in 
the temperature scale), the characteristic time 
r 2 "' R2, so that it depends strongly on the size of 
the Brownian particle. Therefore for sufficiently 
small radius R the Brownian motion is determined 
solely by the properties of the liquid and does not 
depend on the size and shape of the Brownian par
ticle. 

For small frequencies a(w) is of the form (32). 
Resolving (32) into simple fractions, we get for the 
coefficients of the expansion [cf. (7)] 

Ao = 1 I 'lj)o, A1 = -1/2i~21j)o, 0'1 = wo1 (40) 

and, according to (16), we find for the mean square 
displacement of the Brownian particle 

}(2('t')= 2kT['t'--1_1-exp(-lwod't')l· 
6:rtTJR 2~2 I WO!I - ( 41) 

In the derivation of (41) we have dropped the "hy
drodynamic" terms in the denominator of (30), 
and also have not taken into account a possible 
frequency dependence of the viscosity coefficients. 
The "hydrodynamic" terms are important only 
for times t « r 2 which [cf. (43)] cannot be 
reached experimentally. 

Our general formulas (27)-(30) can also be ap
plied to the case in which there is frequency de
pendence of the viscosity coefficients, which leads 
to the appearance of new poles of the function 
a(w), but we do not know of any experiments which 
determine the form of the fooctions 17(w) and l;'(w). 

As has already been said, near the critical 
point there is a decided increase of the correla
tions between the motions of different particles of 

the liquid, and therefore, generally speaking, even 
for a sphere at rest there can be changes of the 
properties of the liquid in the region adjoining the 
sphere. For a general orientation we have con
sidered the following problem. 

A sphere of radius R in a spherical layer of 
thickness l > R is surrounded by liquid of density 
p and viscosity 17, and outside this layer the liq
uid has density p1 and viscosity 171• It is found 
that (for the case I w01 1 « w) the force acting on a 
uniformly moving sphere differs from the Stokes 
force by the factor 

[1+ (R/l) 8 (TJ/T)1-1)]-1 

so that the difference is small and reduces to a 
slight renormalization of the radius of the Brown
ian particle 

R err = R [ 1 + ~: ( ~ 1 - 1) r1 

It may be supposed that also for other types of re
normalization of the parameters of the liquid owing 
to increase of the correlations the corrections to 
the Stokes force will be small. The presence of 
the correlations also causes changes of the basic 
hydrodynamic equations (24) (in the terminology 
of [ 61 "spatial dispersion" becomes important). 

The addition of terms quadratic in the density 
gradients to the free energy of the liquid (''weak 
spatial dispersion") leads to a fourth-order equa
tion instead of Eq. (24a). [ 2, 61 It is easy to verify 
that this causes no change (for small frequencies 
w « w01) in the limiting Stokes value of the mobil
ity, nor in the expression (38), valid for frequen
cies w » w01 • In fact, owing to the equation of 
continuity div v = iwp, for w- 0 we have also 
div v - 0 -i.e., the liquid can be regarded as in
compressible, and consequently the Stokes expres-
sion for the mobility is valid. _ 

In the second limiting case of large frequencies 
it also follows from the equation of continuity that 
the density, and consequently also the pressure, 
remains unchanged, which again corresponds to 
Eq. (38). We make some quantitative estimates of 
the characteristic time r 1 = I w01 l-1• Assuming 
that (8p/8p)T decreases linearly as the tempera
ture approaches the critical temperature, [ 21 we 
have in order of magnitude 

where typical critical parameters are 

Pit = 50 atm; Pit = 1 g/cm3; T~t = 200° K. 

[The density is assumed to have its critical value-
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owing to the condition (1) the deviation of the den
sity from the critical value is less important than 
that of the temperature. 1 In this estimate we as
sume that the viscosity coefficients have no im
portant anomalies at the critical point and take the 
static values of these coefficients to be 
(4ry/3 + t)/p 0 = 0.1 cm2,/sec. Then for the charac
teristic time T 1 we have 

't'1 = 4·10-6 sec for T- T,. = 0.1°, 

't'1 = 4·10-' sec for T- T,. = 0.001°. (42) 

The other characteristic time -r 2 = w0l, which de
pends on the size of the Brownian particle, is very 
small: 

't'2 = 10-5 sec for R = 10-3 em, 

't'2 = 10-9 sec for R = 10-5 em, 
(43) 

For the characteristic frequencies of the vis
cosity coefficients it is hard to give quantitative 
estimates-experiments are necessary here. From 
what has been said it can be seen that measure
ment of the viscosity in the critical region will al
low us to draw a number of interesting conclusions 
from experiments on the Brownian motion. 

Other methods can also be indicated for study
ing the characteristic time near the critical point 
-measurement of the spectrum of modulation of 
light or sound passing through the critical phase, 
and also measurement of the cross-susceptibility 
of a suspension of elongated conducting particles. 
These more direct methods by no means exclude 
the study of the Brownian motion, which is of a 

local character and therefore can be used also to 
study the inhomogeneities near the critical point, 
whereas the direct methods give average values. 
Besides this, in the study of the Brownian motion 
it is evidently easier to approach the critical point 
very closely than in the direct methods. 

The writers are sincerely grateful to Acade
mician M. A. Leontovich for advice and discus
sions, without which this work could not have been 
carried out. 
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