
SOVIET PHYSICS JETP VOLUME 23, NUMBER 4 OCTOBER, 1966 

CONTRIBUTION TO THE THEORY OF DECAY OF ELECTROMAGNETIC WAVES IN A 

MAGNETOACTIVE PLASMA 

J. ROWLANDS, V. L. SIZONENKO, and K. N. STEPANOV 

Physico-technical Institute, Academy of Sciences, Ukrainian S.S.R. 

Submitted to JETP editor October 19, 1965 

J. Exptl. Theoret. Phys. (U.S.S.R.) 50, 994-1004 (April, 1966) 

Cerenkov and cyclotron decay of electromagnetic waves in an homogeneous magnetoactive 
plasma is considered in the quasilinear approximation, with account taken of collisions be­
tween resonant particles responsible for absorption of the waves and the remaining particles 
of the plasma. The velocity of the resonant particles along the magnetic field may be commen­
surate with or less than the thermal velocity. For three-dimensional wave packets it is shown 
that in the absence of collisions the system finally reaches a steady state in which either the 
oscillation energy vanishes or the distribution function has a plateau. In the case of Cerenkov 
resonance, diffusion of particles on the waves in velocity space occurs only along the magnetic 
field, whereas in the case of cyclotron resonance diffusion takes place along as well as across 
the magnetic field. The distribution function is determined for the quasistationary state when 
particle diffusion on the waves is balanced by collisions; the nonlinear decay decrement is 
determined. 

1. INTRODUCTION 

As is well known, [ 11 the reaction exerted by an 
electromagnetic field on the resonant plasma par­
ticles responsible for the attenuation of the field 
leads to deformation of the distribution function 
and to a decrease in the damping decrement. In 
the absence of collisions, a "plateau" is formed 
on the distribl,ltion function, and the absorption of 
the energy by the plasma stops. The collisions 
Maxwellize the distribution function and this leads 
to a certain quasi-stationary state of the distribu­
tion function, for which the damping decrement is 
smaller than the linear damping decrement. 

Cerenkov damping of Langmuir oscillations and 
cyclotron damping of the extraordinary wave prop­
agating along an external magnetic field were con­
sidered in the quasi-linear approximation, with 
allowance for the Coulomb collisions of the reso­
nant electrons with the remaining plasma parti­
cles, by Vedenov, Velikhov, and Sagdeev. [ 21 The 
Cerenkov and cyclotron damping of the electromag­
netic waves propagating at an arbitrary angle to 
the magnetic field were investigated by Yakimen­
ko. [ 31 These investigations concerned exponen­
tially small damping, due to resonant frequencies 
with velocity v 11 along the magnetic field much 
larger than the thermal velocity. In these investi­
gations, the collision integral of the resonant par-

ticles with respect to the velocity component v 1 
perpendicular to the magnetic field was averaged, 
and in addition it was assumed that the distribution 
function f(v l• vii) breaks up into a product 
f(v 1)f(v11). These assumptions, however, are in­
correct and therefore the expressions obtained in 
these papers for the distribution functions of the 
resonant particles and for the damping decrement 
are only of the correct order of magnitude. 

In this paper we consider the damping of elec­
tromagnetic waves and the quasi-linear approxi­
mation without the foregoing limitations. 

2. FUNDAMENTAL EQUATIONS 

The background distribution function of the res­
onant particles of species a is determined in the 
quasi-linear approximation from the kinetic equa­
tion 

(2.1) 

The term La(fa), which takes into account "dif­
fusion on the waves," is of the form [ 31 

:rtea2 "" ~ 1 { I In (a) La.(/"')=-, -,-2 L.J L.J-R v..L6(b+n) Etn--
Wa ma. k n=-oo V ..L a 

(2.2) 

661 
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where* 

wa = eaB0/mac is the gyrofrequency of particles 
with charge ea and mass rna in an external mag­
netic field B0, Jn(a) and Jri_(a) are a Bessel func­
tion and its derivative, k1 and k11 are the compo­
nents of the wave vector k perpendicular and par­
allel to B0 respectively, w = w(k) is the frequency 
of the oscillations, determined from the dispersion 
equation of the linear theory, and Ek is the Fou­
rier component of the electric field intensity. 
Equation (21) was derived for rather broad wave 
packets such that there are no captured parti-
cles [ 11 and the damping decrement is sufficiently 
small: 

y ~ I ro - kuvcz - nrocz J, 

where va = (Ta/ma)1/ 2 is the thermal velocity of 
the particles of species a. 

The interval of the Coulomb collisions sta{f /3} 
is of the form[ 41 

(2.3) 

where A is the Coulomb logarithm and 

'I"P = ~ jfl(v') lv-v'ldv'. 

For narrow wave packets (~ k « k), when the num­
ber of resonant particles is small, v1 <vii< v2 and 
~v = v2- v1 « v a• we can neglect the collisions 
between the resonant particles. In this case the 
collision integral becomes simpler. For resonant 
electrons with velocity v 11 much larger than the 
thermal velocity Vi of the ions, the collision inte­
gral is written in the form 

(2.4) 

where fKr is the Maxwellian distribution function 

lJfMe = ~ /Me,(v') lv- v'ldv' = V! Ve exp (- 2~:2 ) 
+ [ (ve2+ v2) ]a>(~)' 

V )'2 Ve· 

«D (x) = : ~ e-t• dt. 
)';t 0 

(2.6) 

The first term of De in (2. 5) takes into account 
the collision of the resonant electrons with the 
ions and the second, with the electrons. If v 11 » Ve, 
then the diffusion coefficient (2.5) takes the form 

(2.7) 

The collisions of resonant ions with the elec­
trons can be neglected. We then obtain 

stt {fi} =_!__{D. iJ(fi- IM') }. 
iJvu avu 

( via ) i}21Jf l',f 
De=-~ 

't'c avu2 ' 
(2.8) 

where Tc = mivV21r~Ano. and q,fw is determined 
by expression (2. 6), in which v e must be replaced 
by vi. When vii »vi, expression (2.8) simplifies 
to 

De=! (vN 't'evu3)·(v .L2 + 2vr). (2. 9) 

In the derivation of the collision integral (2. 4)­
(2.8) it was assumed that the electron and ion dis­
tribution functions in the resonant region (but not 
their derivatives with respect to v11 ) differ little 
from Maxwellian distributions, and we neglected 
the quantities 8(fa- f~)/8vl...., (fa- f~)/va com-

pared with 8(fa- f~)/8v 11 ...., (fa - f~)/~v. 
The time dependence of the oscillation ampli­

tude is determined from the equation 

(2.10) 

where the damping decrement 'Yk is determined by 
the linear-theory dispersion equation, in which the 
distribution function is taken from (2.9). 

As follows from (2.1) and (2.4)-(2.8), there­
laxation of the distribution function in the resonant 
region, due to collisions, occurs when v 11 ...., v G 

during a time of the order of 

't'rel ~ 't'e (Av / Vcz} 2 ~ 't'c. 

In the absence of collisions, as can be readily 
shown, the "diffusion on the waves" leads to es­
tablishment of a certain stationary state. Let us 
multi.ply Eq. (2.1) by fa and integrate over the 
velocity-space volume occupied by the resonant 
particles. We then obtain 
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(2.11) 

It follows therefore that inasmuch as JW!!)2 dv 
> 0, we get as t- co 

Then we obtain from (2.11) either 

or 

Rja. = 0 

(w = k11v11 + nwa>· Since the quantity 'Yk is propor­
tional to the anti-hermitian parts of the tensor Ei·· 
which have the form of integrals of Rfa with re- J 
spect to v 1 at w = R 11vll + nwa, [ 51 we get in the 
final state 'Yk = 0 or 1Ekl2 = 0. Thus, in the ab­
sence of collisions the quasi-linear relaxation 
leads either to the damping of the oscillations, or 
to the formation of a state with a "plateau," in 
which RfO! = 0. This result was obtained by Andro­
nov and Trakhtengerts for narrow one-dimensional 
wave packets. c 61 The quasi-linear relaxation of 
longitudinal oscillations of a plasma in a magnetic 
field was considered in c Tl • 

As shown in [ 61 , the state in which RfO! = 0 is 
generally speaking unstable. The examination car­
ried out on the present work pertains to the initial 
state of quasi-linear relaxation, when instabilities 
of this type have not yet time to develop. 

3. CERENKOV DAMPING 

Let us consider first Cerenkov absorption of 
narrow wave packets propagating at a certain an­
gle J to the magnetic field in a low-pressure 
plasma ( 4711lo T a « ~ ) , when the wavelength is 
much larger than the Larmor radius of the parti­
cles with thermal velocities (kv a « wa>· The con­
dition for Cerenkov resonance, w = knv 11 , can be 
satisfied only for slow waves (w/k11 « c). In a mag­
netoactive plasma such waves are longitudinal 
electrostatic oscillations, and also the Alfven and 
fast magnetic-sound waves. [ 51 Since the phase ve­
locity of these waves is much larger than the ther­
mal velocity of the ions, it is sufficient to take in­
to account the absorption of the energy of the 
waves by the plasma electrons only. (Exceptions 
are only the Alfven wave in the region of low fre­
quencies, w « wi , and the fast magnetic-sound 

wave at J « 1 and w « wi, which attenuate weakly 
even when w/k11 ""'vi. However, we shall not con­
sider these cases.) 

Retaining in (2.2) only one term with n = 0, we 
represent (2.1) in the form 

ap = _!_ {D fJte + D a (te- t~~.•) } 
f}t avu avu c ovu ' 

(3.1) 

where D0 is given by (2. 5) and 

Equation (3.1) is the usual one-dimensional 
equation describing the process of "diffusion on 
waves." 

In the quasi -equilibrium state, when we can 
neglect are /8t in (3.1), we get 

(3.3) 

Since D and D0 depend on v 1 , the quantity 
are;avll will be different for particles with differ­
ent v 1· From (3. 3) it follows that f e does not 
split up into a product f(v1)f(v11>· Such splitting is 
possible only when D/D0 »0 and when D/Dc » 1, 
but in the latter case f(v 1 ) is not a Maxwellian 
function. 

Let us determine first the damping decrement 
of longitudinal oscillations of the plasma in a mag­
netic field. Since the anti-hermitian term in the 
dispersion equation of the longitudinal oscillations 
(see [ 51 ), together with the damping decrement, is 
proportional to 

00 ap 
( ~ dV.J..V.J..-) , 

0 ovu ro=hll"ll 

we find, by substituting expression (3.3) for 
afe;Bvll into this integral, that the damping decre­
ment of the longitudinal oscillations is equal to 

(3.4) 

where 'YM is the damping decrement in a plasma 
with Maxwellian particle velocity distribution, and 

(3.5) 

If the resonant electrons are in the tail of a 
Maxwellian distribution (vii » Ve), then D/D0 

= y/(x + 1f2), where 

D 4ves ( e )2 
Y = Do' Do= --3 , D = n - ~ IEal 2 6(w- kuvu). 

'tcVII m k 
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In this case 

oo e-t 
Ei(-x) =- ~ dt-t-. (3.6) 

X 

For oscillations with large amplitude (y » 1) 
we find that <I> Rj 3y/2. This result follows also 
from expression[ 1- 31 for <I> = (1 + 2y /3) -1, which 
is obtained by averaging the collision integral with 
respect to v 1 with a Maxwellian distribution func­
tion. 

The frequencies of the Alfven and fast magnetic­
sound waves in a dense plasma (v A = B0 /( 47TI1Qmi)1 / 2 

<<c) are determined by the expression[ 51 

wZ(k, it) = 1lak2vA2f1 + cos2 it+ rcos2 it 

± [(1 + cos2 it+ r cos2 it) 2 - 4 cos2 6]'1•}, 

VA2 = Ho2 I 4:n:nom;, r = k2& I Q;2, Q;2 = 4ne2nol m;. 
(3.7) 

Using formula (4.3) from [ 51 for the dielectric 
tensor of the plasma, we obtain the damping decre­
ment of the oscillations with frequencies (3. 7): 

v /ro = "YnQ;2k.J..2viQ I 2ro2ro;28tP, (3.8) 

where 

Vs = fTe I m;, 81 = Q;2 I (ro;2 - ro2), 

P = ( 1 + cos2 it) k2c2ro;2 I ro2 (ro;2 - ro2) - 81 (2 - ro2 I ro;2), 

( ku2c2 ) [ ku2c2 
Q = 2 ---81 <Dt + ('¢2 + n<D22)-1 

(1)2 (1)2- (1);2 

z. 

'¢= 1-2zeexp(-ze2) ~ e1'dt, Ze=~. (3.9) 
0 12kuve 

Here afe/avll is determined by expression (3.3). 
For a Maxwellian distribution formula (3. 8) goes 
over into the well known expression [ 5• 8 1 for the 
damping decrement. 

If the phase velocity of the Alfven wave is con­
siderably larger than the thermal velocity of the 
electrons, then expression (3.9) for Q assumes 
the simple form 

Q = 281ro2ze3 (<I> + k2c2ro;2 <D - 2<D) exp ( -ze2)' (3.10) 
viro;2 ro2Q;2 

where <I> = <I> (y) is determined by formula (3. 6) and 

$(y) = 1- y- y(y + 112)ell+'ltEi(-y _112), 

y = D/D0, and D is given by formula (3.2), in 
which we discard the term ~vlaE2fvll" 

For weak fields, D/Do « 1, expressions (3.4) 
and (3. 7) go over into the expressions of the lin­
ear theory. In the case of strong fields, D /Do » 1, 
the damping decrements (3.4) and (3.8) are reduced 
by a factor D/D0• 

4. CYCLOTRON DAMPING 

We now consider the damping of electromag­
netic waves under conditions of cyclotron reso­
nance, when collisions can be neglected. In the 
case of narrow wave packets (~k « k), retaining 
in (2.1) only the resonant term and introducing 
new variables 

61,2 = VJf! (ro- nroa) ± V.J..2 lnwa, (4.1) 

we represent Eq. (2.1) in the form 

(4.2) 

D = s(ea ) 2 1Esvuln(a)- iE2v.J..ln'(a)+E1nln(a)wa/k.J..I 2 ' 

ma ro2 1 Vgr - vu cos il' I 

Vgr =· aw I ak, vu = (ro- nwa) I ku. (4.3) 

The diffusion coefficient (4. 3) can vanish at 
certain points ; 1 = qm(; 2) (m = 0, 1, 2, ... ), qm+1 
> qm. In the region qm < ; 1 < qm+1 the number of 
particles is conserved: 

qm+t 
a r ar l''=qm+t 

- J Fd61=D- =0, 
at qm as1 ;1=qm 

i.e., 
qm+t qm+i 

S r d61 = ~ tMa ds1· 
qm qm 

If the oscillation energy differs from zero in 
the final state, then it follows from ( 4. 2) that 
af a ;a; 1 = 0 and thus 

F _ 4 e:x:p [- ( ro - 2nwa) 62f4va2] 
- {2n)'"(qm+1- qm)VaW 

x{ exp (-::a:)- exp(- 00:::~1 ) } . (4.4) 

Let us find the zeroes of the diffusion coeffi­
cient for electromagnetic waves with a phase ve­
locity much larger than the thermal velocity of the 
electrons (kv a I w a « 1) propagating in a low­
pressure plasma at w Rj nwa· Expressing the com­
ponents E1 and E3 in terms of E2 by means of 
Maxwell's equations, we find that 



THEORY OF DECAY OF ELECTROMAGNETIC 665 

D = s(~)2 V..L2 1Ezl 2 ll,.' + nlnA./al 2 

ma {1}21 Vgr- vu oos 'It I ' 
(4.5) 

where 

For the narrow wave packet under considera­
tion, for which the velocity of the resonant parti­
cle lies in the range v1 < v 11 < v2, the variable ~ 1 
at fixed ~ 2 varies between the limits defined from 
the inequalities 

Vt2 ~ 112(ro- nroa) (st + S2) ~ v22• (4.6) 

The diffusion coefficient (4. 5) vanishes at the 
point v1 = 0, i.e., ~ 1 = ~ 2 , and also at the point 
v1 =v ~ walk1 »va, determined from the equa­
tion J~ + nJnA./a = 0. However, if IJ.- rr/21 
» kva!wa, then the points v1 = Vv do not flow in 
the interval (4.6) for which D if: 0 (we confine our­
selves here to an examination of this most inter­
esting case). 

The point ~ 1 = ~ 2 falls in the interval (4.6) if 

(vu- Vt) vu I VJ.2 > (ro- nroa) /2nroa 

for ro - nroa > 0, (4. 7a) 

or else 

for ro - nroa < 0. (4. 7b) 

If the inequalities (4. 7) are not satisfied, then in 
the final stateD 

1-e-o: 
x---

X 

when w- nwa > 0, and 

(4.8) 

1 [ VJ.2 Vz2 Vz(Vz-vu)nroa] r- exp ------+ -;,-,---.::..:..__-:--
- (2n)'l• Va3 2va2 2va2 Va2(nroa- ro) 

1-e-o: 
X--- (4.9) 

X 

when w- nwa < 0. Here x = w(v2- v1)/k11v&. 
Thus, in this case the diffusion leads to a redis­

tribution of the particles only with respect to v 11 
in a narrow velocity interval. 

l)Jn the case of an extraordinary wave propagating along a 
magnetic field({)= 0) in a dense plasma (0~ » w(lwel - w) 
for w"' lw I) expression (4.9) can be obtained from the relations 
given in[ 2 f. 

If on the other hand the point ~ 1 = ~ 2 falls in the 
interval ( 4. 6), then in the equilibrium state 

r = 2 e~p(-Vu2/2Va2 +(ro- nroa) VJ.2f2nroaVa2) 
(2n)'l•varo {(Vz2 - VU2)/ (00- n.roa) + VJ.2/nroa) 

(4.10) 

for w - nwa > 0 and 

2 exp[-vJN2va2 +(ro- nroa) VJ.2/2nroaVa2] 
F=-:--:-:-:----=--:--::---:::-'--..,...,----__;_-----,--,---:< 

(2n)'l•varo [ (vt2 - vu2) / ( ro- nroa) + v ..1.2/nroaJ 

(4.11) 

for w - nwa < 0. 
Let us consider the equilibrium distributions 

(4.8)-(4.11) obtained above in the particular cases 
of "narrow" (v2 - v1 « vakllva/wa) and "broad" 
(v2- v1 » vakllva/wa) wave packet. 

For a "narrow" wave packet the inequalities 
( 4. 7) cannot be satisfied for v 1 ,... v a; the ''diffu­
sion on the waves'' leads in this case, as can be 
seen from expressions (4.8) and (4.9), to the for­
mation of a "plateau" with respect to v 11 in a nar­
row interval, and does not change the distribution 
with respect to v 1 in the region of not very small 
v1. 

For "broad" wave packets the inequalities (4. 7) 
are satisfied practically for all VJJ and v 1 ;10, v a 
(these inequalities can be violated only for values 
of v 11 that are close to v1 or to v2); the "diffu­
sion on the waves'' leads in this case to a strong 
change of the distribution function of the particles, 
both with respect to v 11 and with respect to v 1. It 
is precisely the case of "broad" wave packets 
which is most interesting from the point of view of 
heating of a plasma under cyclotron-resonance 
conditions. 

Let us consider the relaxation process for 
''broad" wave packets in greater detail. During 
the initial state we can neglect in the right side of 
Eq. (4.2) the terms k 11 a;av11 ,... k11 /~v compared 
with the terms (nw a /v 1) a /8v 1 ,... nw a /v~ . Then 
Eq. (4. 2) takes the form 

ar =_!__a_ (n ..L ar ) 
at v..~. av..~. av..~. ' 

Thus, diffusion of particles with respect to v 1, 
due to cyclotron acceleration of the particles, oc­
curs for ''broad" packets during the initial stage. 

For long waves and resonant particles with not 
too large a velocity v 1 (a « 1) Eq. (4.2) can be 
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represented in the form 

where 

V_L2 

X=--2' 
2va 

( ea )2 ( k .L Va )2(n-1) 
D(t)=- -

ma Wa 

(4.13) 

t 

1: = ~ D(t)dt, 
0 

We present the solutions of Eq. (4.13) for n = 1, 
n = 2, and n = 4: 

exp[-viN2va2 - xj (1 + 1:)] 
f" = (2n)'h Va3 (1 + 't') ' 

n= 1; (4.14) 

of" = _ "fn exp ( -vJN2~_2_ r dx' e-x'(.!___ )-[<-ln(x/x'Jl'4i<' 

ox ( 2n) '/, va3x "¥1: 0 x' 

n=2; (4.15) 

(4.16) 

It follows from (4.14) that in the case of single 
cyclotron resonance an increase takes place in the 
"transverse" temperature of the resonant parti­
cles. The damping of the oscillations occurs in 
this case just as in the linear theory ( E (t) '""' E (0) 
exp (2yMt)). 

In the case of double resonance the damping of 
the field is given by y = -I y M I e 8 7 and 

1+~ 
e(t)=e(O) exp[2lvMI(1+~)t]+~, 

~ = (e.,/ma} 2(k.L/wa)21Ez(O) I21J, + 11 2 

8lvMIIvgr-Viicos'fri . (4· 17) 

(An expression for the linear damping decrement 
'YM is given in [S].) It follows from (4.17) that in 
the nonlinear case the damping is more rapid than 
in the linear case. 

Let us consider now the effect of Coulomb col­
lisions on the damping of electromagnetic waves 
under the cyclotron-resonance conditions w F::J nwa· 
For simplicity we confine ourselves to examina­
tion of "narrow" wave packets. Since in this case 
8/8v11 F::J (4/kll) 8/8~1> expression (4.2) must be re-

placed when account is taken of the collision inte­
gral in the form (2.4) or (2. 8), by the equation 

D=!J-( v .L )2n 
-.lzva ' 

[j = (ea/ma) 2 (k.Lva/wa)2(n-Z)v.,•l1 + !..I 2 1Ezl 2 (4. 18) 

zn-3 [ (n- 1) !}2 w2 1 Vgr- Vii COS 'frl 

For the "equilibrium" state we find from this 
that 

(4.19) 

Since the anti-hermitian terms in the dielectric 
tensor are integrals with respect to v l• of the form 

00 

~ v .L2n+1 exp ( -v .L2/2va2) ( fJj«/861) dv _1_, 

0 

the damping decrement of the "narrow" wave 
packets in the "equilibrium" state is determined 
by the expression 

v=yMF, 

where 

1 00 1 
F=- ~ e-xxn---dx 

nl 0 1 + T] ' 

In the case of electron cyclotron resonance 
w F::J n I we I we have when vii » ve 

T] = T]oXn / (1 + 2x), 

When n = 1, using ( 4. 22), we get 

F = x[3- 2x + x(1- 2x)exEi( -x) ], 

(4.20) 

(4.21) 

(4.23) 

where x = 1/(2 + TJo). For weak fields (TJo - O) 
F F::J 1 and y = 'YM· For strong fields (TJo » 1) the 
damping decrement decreases strongly: F = 3/TJo· 

An explicit expression for the function F can be 
obtained also for n = 2: 

3 {' 4 2(T]o-2) F = - 1--- [(x1 + p)e-x, Ei(xi) 
2T]o 3T]o T]o l' 1 - T]o 

-(x2 + p)e-x'Ei(xz)]}, (4.24) 

where 

p= (rJo-4)/4(rJo-2), Xt,2 = (-1+)'1-rJo)/rJo. 

When 7Jo « 1 it follows from ( 4. 24) that F = 1 and 
for 7Jo » 1 we get F = 3/27Jo· The function F ap­
proaches asymptotically the value F = 3/7Jon! for 
n = 1, 2, ... when 7Jo » 1 and v 11 « ve. 
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For ion cyclotron resonance, w R~ nwi, we get 
for VII» Vi 

1J = 1JoXn I (1 + x), 1Jo = Dku~cvu3 I 32vi5• (4.25) 

Using expression (4.25) for 7], we find from 
(4.21) that 

F = x[2- x + e"'Ei(-x)x(1- x)], 

x=11(1+1Jo), n=1, (4.26) 

1 { 1 (21Jo -1) F =- 1--- -l- [(x1 + p)e-x, Ei(xl) 
1Jo 21jo T)o l'1 - 4T)o 

-(x2+p)e-""Ei(x2)]}, n=2, (4.27) 

where 

Xt,2 = (-1 + ·111- 41Jo) I 21jo, p = (TJo- 1) I (21jo -1). 

In the case of strong fields {7Jo » 1) and when 
w R~ nwi and v 11 »vi we have F = 2/7Jon!. 

Thus, for narrow wave packets the diffusion of 
the resonant particles by the waves under condi­
tions of cyclotron resonance always leads to a de­
crease in the damping decrement, and in strong 
fields the cyclotron damping is determined by the 
collisions: 'Y ...... 'YMI7Jo ...... 1/Tc· 
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