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Two problems of the dynamics of an infinite crystal are solved in the harmonic approxima
tion: 1) two semi-bounded parts of a crystal possessing at the initial time equal but opposite 
velocities perpendicular to the interface (collision); 2) external forces act on the atoms of 
an arbitrary crystal plane. It is shown that the solutions are integrals which are superposi
tions of plane waves and can be separated into decaying and nondecaying perturbations. The 
nondecaying perturbations have the form of "step-like" waves and are solutions of the 
aforementioned problems in the theory of elasticity. The decaying perturbations are a re
finement of the macroscopic theory; they move with velocities that differ from the velocity of 
sound. Perturbations connected with inflection points of the dispersion curves decay least. A 
connection is noted between the problems considered and similar problems in the theory of 
frequency filters and iris-loaded waveguides. 

INTRODUCTION 

IN considering certain processes in solids (for 
example, the propagation of perturbations resulting 
from the collision of solids, or from the action of 
external forces on the solid) one restricts oneself 
to the macroscopic picture provided by the theory 
of elasticity. However, the theory of elasticity of 
anisotropic, as well as isotropic, media is only an 
approximate theory of the mechanical processes in 
crystals. A more exact (microscopic) picture 
compared with the theory of elasticity is obtained 
by the methods of crystal lattice dynamics. The 
special solutions of the equations of motion of the 
lattice are harmonic plane waves, and the solu
tions of specific problems, like those mentioned 
above, are obtained in the form of a superposition 
of plane waves. The presence of such solutions 
makes it possible to show the effect of the entire 
frequency spectrum on the propagation of pertur
bations in the crystal. In this connection there ap
pears also the converse possibility of reconstruct
ing the lattice spectrum, or at least some of its 
features, from the propagation of perturbations in 
the crystal. 

In this paper we shall consider for simplicity 
the case of a crystal with a simple lattice; however, 
the generalization of the problems considered to 
the case of a more complicated lattice presents 
no difficulties. 

1. THREE-DIMENSIONAL CRYSTAL AND 
LINEAR CHAINS 

Let us consider a crystal with a Bravais lattice. 
Following Born ( UJ, Sec. 22), we divide the crystal 
into a system of equidistant crystal planes. Let 
the basis vectors a 1 and a 2 be located in a crystal 
plane, and let the vector a 3 connect arbitrary 
lattice points of two neighboring crystal planes; 
the origin of the coordinates is on one of the 
lattice points, two coordinate axes x1 and x2 are 
in the crystal plane, and the x3 axis is perpendic
ular to it. Since the radius vector of an arbitrary 
lattice point is rD == n1a 1 + n2a 2 + n 3a 3, it is readily 
seen that n 3 numbers the planes. 

The reciprocal lattice vector b 3 = a 1 
x a 2 I ( a 1 x a 2 ) • a 3, perpendicular to the crystal 
planes, can, like the planes themselves, in a cer
tain sense be arbitrarily oriented with respect to 
the crystal. One sees readily that the set of all the 
possible orientations of the vector b 3 occupies in 
the set of all the possible orientations of the wave 
vector k a position similar to that of the set of 
rational numbers with respect to the set of real 
numbers. 

Let us consider plane waves with the wave 
vector k = qb 3 ( -7T ::::: q ::::: 1T ), i.e., waves 

u0~•>(qb3) = ei<•>(qbs)exp[i(qns± w<•>(qbs)t)], (1.1) 
' 

where s = 1, 2, 3-the number of the spectrum 
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branch. It is readily seen that these lattice mo
tions are characterized by the fact that each 
crystal plane moves as a whole. From the equa
tions of motion of the crystal 

Mui"D. = - ~ ll>~m um 
!] J 

mj 

one can separate the equations for such motions: 

mj 

where n = n 3 is no longer a vector, but a scalar. 
The coefficients Arj could be called interplanar 
force constants. We see that Eqs. (1.2) are equiv
alent to the equations of motion of some linear (but 
three-dimensional chain of atoms). 

If the direction b 3 is a symmetry axis of the 
crystal, then Af:F = A~:U = 0 and one can separate 
from Eq. (1.2) equations for longitudinal plane 
waves with the wave vector k = qb 3: 

Mu3n. = - '5'. A nm u3m -'-' 33 . (1. 3) 
m 

Equations ( 1. 3) are equivalent to the equations of 
motion of a linear one-dimensional chain of atoms. 
In our case this is a simple chain, whereas in the 
case of a complex crystal the chain will be com
plex (binary, etc.). 

It is known that the problem of the propagation 
of waves in linear chains (one- and three-dimen
sional) is mathematically equivalent to the problem 
of the propagation of electromagnetic waves in 
frequency filters and iris-loaded wave-guides (see, 
for example, [2] ); therefore the results obtained in 
the following sections may be useful in considering 
similar problems in the theory of filters and wave
guides. 

2. SOLUTION OF THE EQUATIONS OF MOTION 
OF THE LATTICE FOR CERTAIN SIMPLE 
INITIAL CONDITIONS 

We thus chose an arbitrary direction in the 
crystal, obtained a chain of crystal planes, the 
equations of motion of these planes (1. 2), and the 
particular solutions of these equations. Here we 
can go over to the following simple notation: 

n3-+ n, w<•J (qb3) -+ w<•J ( q), e<•l ( qb3) -+ e<•l ( q), 

where the functions w (S 1 ( q) and e (S 1 ( q) have the 
following properties: 

w<-'l(q) = w<sl(-q), e<•>(q) = e<•l(-q) (2.1) 

and for q- 0 

w<•l(q)-+0, 
d cOO ~ 

-w<•l(q)-+c<•>lb3l == -, -w<•l(q)-+0. 
dq a dq2 

(2.2) 

Here c (S 1 are the three sound velocities for the 
corresponding direction b 3, and a is the distance 
between neighboring planes. 

Let one of the planes (denoted by l) have at the 
initial instant a velocity which differs from zero 
and is directed perpendicular to the plane, then 
the initial conditions of the problem will be of the 
form: 

(2. 3) 

(2.4) 

From (1.1) we obtain particular solutions satisfy
ing conditions ( 2. 3): 

u~(s) ( q, t) = e;<•l ( q) sin [w<•l ( q) t] einq. 

A solution satisfying simultaneously conditions 
(2. 3) and (2.4) will be sought in the form of a 
superposition 

1 n 
u;n(t) = S 2n ~ A<•l(q)e;<•l(q)sin[w<•l(q)t] einq dq. (2.5) 

(s) -rc 

Then 

. 1 n 

u;n(O) =- ~ { ~. A<•l(q)e;<•l(q)w<•l(q)} einq dq. (2.6) 
2n -rc (s) 

We see that the quantities u.r ( 0) are Fourier CO

efficients of the sums in the integrand of (2.6). 
Hence and from conditions (2.4) we obtain a sys
tem of three linear equations with three unknowns. 
Solving these, we obtain 

A!•l(q)w<•l(q) = v~<•l(q)e-ilq, (2.7) 

where 

I e(3) e<1l I 
A(2l(q) = 1 e12(1) , 

e~3) 

(3) 1 1 I e<ll e<2l I 
~ (q) = e~l) e~2l · 

Here det ( eis l ) = 1, since we are using polariza
tion vectors normalized to unity. Substituting (2. 7) 
in (2.5) and bearing in mind (2.1), we obtain 

X sin [w<•l ( q) t] cos (n -l) qdq. (2. 8) 

Equations (1.2) can also be readily solved if at 
the initial instant one of the planes is displaced 
from its equilibrium position, or if it has a veloc
ity along one of the coordinate axes. Since Eqs. 
(1.2) are linear, their solutions can be summed. 
This makes it possible to obtain a solution of Eqs. 
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(1.2) for arbitrary initial conditions (nonvanishing 
initial displacements and velocities). 

3. A MODEL OF THE PROBLEM OF THE 
COLLISION OF TWO SEMI-BOUNDED 
CRYSTALS 

Let us solve Eqs. (1.2) with the initial condi
tions 

u;n(O) = 0; 

zi;11 (0) = - 1/2vb;3, n = 1, 2, 3, ... ; zi;n (0) = 1/2v6;3, 
(3.1) n = 0, -1, -2, ... 

The problem with such initial conditions is appar
ently a rather interesting model of the problem of 
the collision of two semi-bounded crystals, since 
the latter can sometimes be considered in the 
rigorous formulation as a problem with initial 
conditions which differ from conditions (3.1) only 
close to the plane with n = 0. The relation between 
the solutions of these problems will be discussed 
at the end of Sec. 4. 

Let us go over from displacements of the 
planes from their equilibrium conditions to new 
variables ap ( t) which have an analogy in the 
theory of elasticity: 

(f; 11 (t) = a-1(u; 11 (t) - U; 11+1(t)) (3.2) 

(a is, as before, the distance between neighboring 
crystal planes). Starting from the linearity of 
Eqs. (1.2), it can be shown that the variables 
a~! ( t) satisfy the the same Eqs. (I. 2) as the vari-

1 
abies u~ ( t). As is readily seen from (3.1) and 
(3.2), th1e initial conditions for the variables ar ( t) 
will be the conditions 

0"; 11 (0) = 0, 0"; 11 (0) = 6;3bonV /a. (3.3) 

Bearing in mind (2.2) and comparing conditions 
(2.3) and (2.4) with (3.3), we obtain from (2.8) 

O";n(t)=~l;<•>(t,n), (3.4) 
(g) 

where 

" 
I;<•>(t, n) = ~ 'IJ;<•l(q) q-1 sin [,;<•J cp<•l(q)] cos nq dq, (3.5) 

0 

and 

v ro'<•J (0) q 
•" .(s) (q)------' L\<•J( q) e;<•J( q), 
'~'' - c<•>:n: ,ro<•J ( q) 

cp<•l(q) = ro<•J(q) I ro'<•>(O), ,;<•J = c<•>tf a. (3.6) 

It can be shown that integrals of the form ( 3. 5) can 
be separated into decaying and nondecaying per
turbations (see the Appendix). 

4. COLLISION OF CRYSTALS IN LATTICE 
DYNAMICS AND IN THE THEORY OF 
ELASTICITY 

Bearing in mind (3.5) and using the results ob
tained in the Appendix [Eq. (A.9)], we can write the 
following approximations: 

{ (v/2c<•l)L\<•J(O)e;<•>(O), 
l;<•>(t, n):::::: 

. 0, 

c<•>t/a > n 
c<•>~ja < n . (4.1) 

Substituting (4.1) in (3.4), we obtain an approxi
mate solution of the problem of the collision of 
crystals. This solution is at the same time in all 
probability the exact solution of this problem in 
the theory of elasticity. Let us note certain fea
tures of this solution: 

1. Three nondecaying shock waves with veloci
ties cm, c<2>, and c(3) propagate in both directions 
along the x3 axis from the point of collision. A 
jump-like displacement ("step" function) and a 
jump-like compression of the lattice take place on 
the passage of each wave. 

2. Since the polarization vectors are mutually 
orthogonal, the condition .6. <s l e~ <s > > 0 is fulfilled 
and the compressions will indeed be compressions 
-there will be no expansions. 

3. On the other hand, the displacements will be 
both along the positive and negative directions of 
the x1 and x2 axes. Indeed, as is readily seen, 

L !).<•>e;<•> = 0 (i = 1, 2), 
(•) 

(4.2) 

and therefore the three terms of this sum cannot 
simultaneously have the same signs. Thus if we 
separate in our mind within the crystal an infinite 
rod with its axis perpendicular to the collision 
plane, one can see that after the collision this rod 
will break in each half-space at three points and 
form four "joints". The lengths of the first three 
inclined "joints" are determined by the sound 
velocities c <s >. The fourth "joint" which is 
farthest and extends into infinity, remains along 
the previous axis. The beginning of the first 
"joint" will remain in its previous position (point 
of collision), a fact which one can readily verify 
by using relation (4.2). 

Making use of the results obtained in the Appen
dix, one can assert that the microscopic picture of 
the collision of the crystals differs from the 
macroscopic picture provided by the theory of 
elasticity by the presence of additional decaying 
perturbations, among which perturbations of the 
order of t- 113 or n- 113 are most important. Using 
the results obtained in the Appendix and the known 
formulas of the asymptotic methods (see [3] ), one 
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can carry out a more specific estimate of the de
caying perturbations .. 

As is seen from (3.4) and (4.1), the solution of 
the problem depends on the directions of the polar
ization vectors for various values of the variable 
q and in particular for q - 0. Let us consider 
two interesting cases. 

A. The direction of the vector b 3 is a sym
metry axis of the crystal. In this case one of the 
polarization vectors becomes longitudinal for all 
values of the variable q. Therefore, only one of 
the nine integrals of ( 3. 5), containing decaying and 
nondecaying longitudinal waves, will differ from 
zero. In any case, the same solution could be ob
tained by considering the collision of linear one
dimensional chains with equations of motion (1.3) 
in the form of an expansion in particular solutions 
of Eqs. (1. 3)-in longitudinal plane waves. 

B. For the b 3 direction one of the polarization 
vectors does not become longitudinal for all values 
of q, but only for q- 0. Such directions are ap
parently possible in certain crystals.C4J In this 
case, although all the integrals do not vanish, only 
one of them contains a nondecaying wave-a "step
like" compression wave. In transverse displace
ments of the planes relative to one another the 
main role will be played by nondecaying perturba
tions connected with inflection points of the dis
persion curves, including also the points q = 0. 

As has already been noted, the solution of the 
problem in this section is not an exact solution of 
the problem of the collision of two semi-bounded 
crystals. However, as a result of the linearity of 
Eqs. (1.2), the solution of the second problem is 
equal to the sum of the solutions of the first prob
lem and of a certain third problem, the initial con
ditions of which differ from zero only near the 
plane with n = 0. It can be shown that the solution 
of this third problem contains no nondecaying 
waves. In some instances the initial conditions of 
the third problem will depend weakly on the colli
sion velocity, and for a sufficiently large collision 
velocity the decaying perturbations of the third 
problem will then be small compared with the 
same perturbations of the first problem. It is 
readily seen that in such cases the first problem 
will be a good approximation of the second. 

5. THE MOTION OF CRYSTAL PLANES UNDER 
THE ACTION OF EXTERNAL FORCES 

Let all the atoms of the crystals be located at 
the initial instant at the lattice points and let their 
velocities be zero; an equal force perpendicular to 
the plane begins to act on each atom of the plane 

with n = 0. It is readily seen that we have arrived 
at the problem of the motion of a chain of planes. 
We write down the equations of motion and the 
initial conditions: 

Jl!Iu;n =-lJ Aijmur + F (t) ll;abon; 
mj 

U;n (0) = 0, U;n (0) = 0. (5.1) 

The solution of this problem can be obtained by 
a known method (see, for example,C5J p. 275) from 
the solution of the problem considered in Sec. 2. 
Thus we obtain from (2. 8) 

u·n t = ~ r F(-r) r d<•l(q)e/•>(q) 
' ( ) Li J nM J (J)(•l(q)' 

(s) 0 0 

X sin [ ( t - -r) w• ( q)] cos nq dq d-r:. (5.2) 

We can consider F ( t) to be an arbitrary, for 
instance periodic, function of the time. We shall 
consider the case when this function is in the form 
of a square pulse: 

-{F, O~t~T 
F(t)- 0, t>T . 

Going over to the same variables up ( t) as in 
Sec. 3, we obtain for times t > T 

a;n(t) = ~.[Li<•l(t, n) + Li<•l(t- T, n)], 
(a) 

(5.3) 

(5.4) 

.(s) _~Fa f 2w'<•l(O)sin !f2q 
L, (t, n)- [c<•>]ZnM ~ w<•l(q) d<•l(q)e;<•>(q) 

1 qw'<•>(O) [ c<•lt w<•l(q) J . ( 1) 
Xq w<•l(q) cos -a-~ w'<•l(O)' sm n+ 2 qdq. 

(5. 5) 

Here we encounter the problem of analyzing in
tegrals of the form 

L(-r:, n) = ~ ¢~q) cos[np(q)]sin( n + ~) qdq. (5.6) 

By virtue of simple trigonometric relations this 
problem is almost identical with the problem of 
analyzing integrals of the form (A.1). Having ob
tained the asymptotic expansions of integrals of 
the form (5.6), we can write 

L\81 (t, n)-L\81 (t-T, n) 

(5.7) 

Substituting (5. 7) in ( 5.4), we obtain an approx
imate solution of our problem which is an exact 
solution of this problem in the theory of elasticity. 
It differs from the solution of the collision prob-
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lem by the presence of two groups of nondecaying 
waves, separated from one another by a time in
terval T, the second group canceling the deforma
tion produced by the first, so that the crystal re
mains undeformed after the passage of both groups. 
It is readily seen that by using the dynamical 
method considered here one can solve the purely 
static problem of unidirectional compression of a 
crystal (two equal but opposite forces perpendicu
lar to the planes act on two parallel planes of the 
crystal), and also other static problems. 

The decaying perturbations will be of the same 
form as in the collision problem. It should be 
noted that decaying perturbations propagating at 
arbitrarily large velocities occur in the solutions 
of both problems. This is due to the fact that the 
equations of motion (1.2) do not take into account 
the "inertia of the binding energy" ( [sJ, p. 127). 
However, account of the retardation would not 
lead to any considerable change in the solutions, 
since it would affect only perturbations propagating 
at velocities close to the speed of light, and would 
limit these to the speed of light. In the solutions 
which we have obtained perturbations propagating 
at velocities close to the speed of light are, as can 
be readily seen from the Appendix, negligible; 
they are therefore of no interest to us. 

In conclusion I express my gratitude to V. A. 
Zhdanov for discussing the results of this paper. 

APPENDIX 

DECAYING AND NONDECA YING PERTURBATIONS 

Let us consider an integral of the form 

I (1:, n) = ~ '¢ (q) sin [-np(q)] cos nq dq; 
0 q 

O=:::;;T<oo, n=0,1,2, ... (A.1) 

Here If! ( q) and q; ( q) are functions having a suffi
cient number of continuous derivatives in the in
terval [ 0, rr] and If! ( 0) ~ 0. Bearing in mind (2.2) 
and (3.6), we can write 

, (0) 
qJ(q) ~ q +-(jl--q3 for q-+0. (A.2) 

3! 

We shall consider the cases T ~ n and T < n 
separately. Then 

{ 1/2(/+(T,n)+l-(T,n)], n/'1:=:::;; 1 
!(1:, n) = 1!2(K+(-r, n)- K-(1:, n)], n/'1: > 1; 

J±(-r, n) =if '¢~q) sin -r [ ()l(q) +: q J dq, 
0 

K±(-r,n)= ~ '¢(q)sinn[q+~qJ(q)]dq. (A.3) 
o q n 

When T » 1, the integrals J± can be expanded in 
the large parameter T, using the stationary-phase 
method.C3J If n » 1, one can expand the integrals 
K± by the stationary-phase method. 

Let us consider the integral J+ ( T, n ). In order 
to apply to it the stationary-phase method directly, 
we must get rid of the zero in the numerator of 
the integrand. To this end we replace the integral 
J+ ( T, n) by a sum of integrals: 

J+(1:,n) =11(-r,n) +lz(T,n} +!s(T,n); 

/1(-r, n) = Y ( '¢ (q) - '¢ (0) h'((q)) ) sin -rh(q) dq, 
0 q h q 

/z(-r, n)= ~ '¢(q) sin-rh(q)dq, 
q• q 

z• . 
1 sm z 

ls(-r, n) = '¢(0) J --dz, 
0 z 

(A.4) 

where h ( q) = q; ( q) + nq/ T, q * is the stationary 
point closest to q=O[h'(q*) =O], and z* 
= rh(q*). 

The asymptotic expansion of the integral sine 
of large positive values of the argument [it is 
readily seen that h ( q *) > 0 ] is known [7 J and 
therefore 

{ n oosz• ( 2!· 4! ) 
ls(-r, n) ~ '¢(0) 2--z-.- 1- (z*)Z + (z*)4 

_ sin z* (__!_ _ ~)} 
z* z* (z*)3 · 

(A.5) 

The stationary-phase method can be applied to 
the integrals J 1 and J 2• Let us write down the 
condition of stationarity: 

h'(q) =()l'(q) +n/-t=O, <p'(•;z) =-n/1:. (A.6) 

It follows from (A.6) that for a given dispersion 
law the position of the stationary points depends 
only on the ratio n/T, i.e., each n/r =a = const 
has its own stationary points. Since only station
ary points contribute in the asymptotic expansion, 
it becomes possible to separate from the integrals 
J 1 and J 2 the perturbations which appear at the 
time T = 0 at the point n = 0, and then propagate 
with a constant velocity ac. 

It can be readily shown that if there corresponds 
to the stationary point q* a point k* = q*/a 
( k = I k I) at which the group velocity 
aw ( k*ko )/ Bk = w, then there corresponds to it 
also a perturbation which propagates along the 
lattice with a velocity w. It can also be shown that 
these perturbations are of an oscillatory nature, 
the oscillation frequency being equal to the fre
quency at the point of the dispersion curve with 
which this perturbation is connected. 
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From the stationarity condition (A. 6) it is seen 
that the stationary points q * will mainly be first
order stationary points, i.e., h' ( q*) = 0, 
h" ( q *) ;:.! 0, and the perturbations corresponding 
to them will be of the order of T-l/2. We note that 
from the condition n/T ~ 1 imposed on the integral 
J+ ( T, n) it follows that its stationary points can 
occur on those sections of the interval [ 0, 1r 1 
where -1 ~ q~' ( q) < 0. Second-order stationary 
points can appear if inflection points of the dis
persion curve [ q~" ( q*) = 01 exist in these sec
tions. Indeed, in this case the conditions h' ( q*) 
= 0, h" ( q*) = 0, and h"' ( q*) ~ 0 can be fulfilled. 
The perturbation corresponding to the point of in
flection of the dispersion curve is of the order 
T-1/ 3 and propagates with a velocity equal to the 
group velocity at this point. 

Corresponding to the fact that the integral (A.1) 
is divided into four integrals, the interval of inte
gration [ 0, 1r] is divided into four groups of sec
tions. Each integral has its corresponding group 
of sections where the integral has stationary 
points of non-zero order. Each point of inflection 
occurring on the interval [ 0, 1r 1 contributes to the 
asymptotic expansion of one of the integrals a 
contribution of the order of T -11 3 or n- ll 3• It is 
readily seen from (A.2) that the point q = 0 is a 
point of inflection and contributes to the asymptotic 
expansion of the integral J- ( T, n) a contribution 
of the order of T- 113. The perturbation correspond
ing to this point will propagate with the speed of 
sound c. 

In view of the fact that the function q~' ( q) is 
bounded from above and from below, non-zero 
stationary points will not exist for all n/T. Conse
quently there exists a maximum velocity W char
acterized by the fact that perturbations propagating 
with a velocity larger than W are of an order no 
larger than n- 1. The stationary-phase method de
generates in this case into the method of integra
tion by parts-only the boundary points 0 and 1r 

contribute to the expansions. As can be readily 
seen, W cannot be less than the speed of sound c, 
and we are therefore dealing here only with the 
integrals K± ( T, n). Thus for w > W the integral 
(A.1) is equal to the difference between the inte-

grals K+ and K- which have the same stationary 
points. 

It can be shown that the summary perturbations 
propagating with velocities larger than W are of 
an order no higher than T jn2, i.e., the decay de
pends here on the propagation velocity of the per
turbation and increases with increasing velocity. 
It may be assumed that this estimate is inaccurate 
and that the perturbations decay even more 
strongly. We see from (A.5) that the integral 
J+ ( T, n) contains, in addition to decaying pertur
bations of various orders, also a constant; hence 
we can write down the principal term of the 
asymptotic expansion: 

J+{'t,n) ~ ¢(0)~/2. (A. 7) 

In the same way we can obtain 

J-(,;,n) ~K-(,;,n) ~K+(,;,n) ~¢(0)~/2. (A.8) 

Substituting (A. 7) and (A.8) in (A.3), we obtain 

I( )"'{'I!J(0)~/2, 'f>n 
'f, n '"""' Ol 'f < n. (A.9) 

We have thus separated from the integral (A.1) the 
principal perturbation which does not decay with 
the displacement. 
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