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A method is proposed for determining from the strain diagram the phenomenological param­
eters of the dislocation theory of elastic twins, viz., the Peierls and surface-tension forces. 
For this purpose, the stressed state of a strip is calculated in the case of an antiplane defor­
mation with boundary conditions realized in the experiment. The corresponding experiment 
has been performed. It has been possible for the first time to retain the twin in the crystal 
by means of a distributed load. The Peierls force was found to be 0.3-0. 7 kg/cm2 and the 
parameter M characteristic of the surface tension was 3 kg/cm3/ 2 • The surface energy of 
calcite can be estimated from these quantities as Ql ~ 10 erg/cm2• 

INTRODUCTION 

KosEVICH and Pastur have developed a quanti­
tative theory of thin elastic twins. [1• 23 In this the­
ory, in addition to the forces of elastic origin 
(proportional to the stress tensor), they considered 
also the Peierls lattice-resistance forces and the 
surface-tension forces. It is assumed in the theory 
that the effect of the surface-tension force is large 
only near the end of the twin, and it can be charac­
terized by a certain constant quantity, similar to 
the "coupling modulus" at the ends of a crack, 
proposed by Barenblatt, [ 33 and also that the 
Peierls force is constant for all dislocations. The 
transcendental equation for the determination of 
the length of the twin consisting of screw disloca­
tions in a strip[ 4J has in the case of interest to us 
the form 

[ m mL ] 11• 
F(L) = nS0 + 2 cot - 2- M, (1) 

where 

F(L)= 
r mcr(TJ)sinmYJd'TJ n 
·~ [(1- cos m'TJ) (cos mt{- cos mLHt.' m = d' 

(1a) 

u (ry) is the component of the tensor of the stresses 
produced by the external load, L is the length of 
the twin, d is the width of the band, So is a phe­
nomenological dimension of the theory, character­
izing the Peierls force, and M is a phenomeno­
logical parameter of the theory, characterizing the 
surface-tension force. 

The quantities So and M cannot be obtained 

within the framework of the theory itself, since 
they are governed by the atomic structure of the 
crystal, this being outside the sphere of applicabil­
ity of the continual theory of dislocations. It is 
therefore of interest to determine S0 and M, that is, 
the Peierls and the surface-tension forces, exper­
imentally. 

1. CALCULATION OF THE PEIERLS AND 
SURFACE-TENSION FORCES FROM THE 
STRAIN DIAGRAM 

Relation (1) was used in [ 1 , 23 to determine the 
length of a twin for known F(L), So, and M. But it 
can also be regarded as an equation with which to 
determine S0 and M for a known dependence of 
F(L) on the length of the twin. As seen from (1a), 
the function F(L) can be determined if one knows 
u(ry) -the stress due to the external forces on the 
twinning plane. In the case of loading as shown in 
Fig. 1b, it is possible to determine experimentally 
the dependence of the length on the load for a twin 
consisting of screw dislocations. The stressed 
state corresponds in this case to the case of anti­
plane deformation. By antiplane deformation is 
meant the deformation of a cylinder to whose sur­
face are applied forces parallel to the generatrix 
and constant along the generatrix. In this case 
there is only one component of the displacement 
vector Uz· The displacement-balance equation in 
the absence of volume forces is 

~Uz = 0. (2) 

If we specify on the boundary the stresses 
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au. au. 
CJxz = 2Jt ~ , CJyz = 2Jt ay 

(!J. is the shear modulus), then we obtain for uz a 
boundary-value problem similar to the planar 
problem of electrostatics. [ 51 Knowing the solution 
of this problem for one region, we can obtain it 
for another region by conformal mapping. For ex­
ample, the solution of the problem for a strip with 
boundary conditions corresponding to Fig. lb can 
be obtained by conformally mapping on the strip 
the solution for a half-plane loaded as shown in 
Fig. la. 

~.:i; 
p p 

a b 

FIG. 1. Scheme of antiplane deformation: a - half-plane, 
b- strip. 

The boundary conditions for the half-plane are 
as follows: a pQint force P is applied at the point 
c (c > 1) of the boundary and on the segment 
(-a, a) (I a I < 1) the displacements are equal to 
zero. We introduce the function 

il>(z) = u, + iv, (3) 

where v is a harmonic function conjugate to uz. 
Then the tensor a ik is represented in the form of 
a vector in the complex plane 

CJxz + iCJyz = 2Jt<D' (z). (4) 

We can now solve this boundary-value problem for 
the half-plane with the aid of integrals of the 
Cauchy type, [Gl and obtain for cfl'(z) 

1 r f(x)dx 
<D'(z)= -- J --, 

2:n:Jt_00 X- Z 

where f(x) = a yz IY =O , and cfl(z) is the complex 
conjugate of iii(z). 

(5) 

Using a procedure frequently employed to solve 
the mixed problem of elasticity theory, [7l we find 
that no displacements are produced when the load 
density on the section (-a, a) satisfies the following 
integral equation 

4 1 1 
l' p(x)ln I , I dx = Pln I , I (6) J x-x x-c 
-a 

The solution of this equation is (see [ 71 ) 

p ( c2 - aZ) ''• 
p(x) =--; (a2- x2)'l•(c- x) (7) 

Finally, for the antiplane deformation of the 
half-plane we obtain 

P ( cz - a2) '"{ 1 1 } 
CJxz = ~-- (z2- a2) 'h(z- c) + (z2- a2) 'i•(z- c) 

P ( c2 - a2) '''{ 1 1 } 
CJyz = t 2:n; . (z2- fi2) it.(z- c) - (z2- a2) 'i•(z- c) • 

After conformal mapping we obtain the stressed 
state of a strip with a force P applied on its 
boundary at the point ~ c• and with the displace­
ments equal to zero starting with the coordinate 
~a on the upper and lower edges of the strip, up 

(8) 

to -oo. Finally, to components of the stress tensor 
as functions of TJ have for t = 0 the form 

emll. cos ( mTJ - q>)- cos q> 
CJ~ii =A~--- . ' 

( ch 2m6a - cos 2m1J) .,. ( ch msc - cos mTJ) 

emlic sin ( mTJ - q>) + sin q> 
CJ~ - .tl . . 

T) - ( ch 2m sa - cos 2mTJ) .,, ( ch msc - cos mTJ) 

1 sin 2mTJ 
q> = ·- arctg --=----~...,:_..,,----;-----;-:--

2 cos2mT)-exp(-2ml6al) 

P (exp(2msc)exp(2mlsal>-1)''• 
A=- . 

d 2''•exp(ml5-.l/2)exp(msc) 
(9)* 

2. EXPERIMENTAL PROCEDURE 

To realize the loading scheme described above, 
it was necessary to produce first an elastic twin 
consisting of only screw dislocations, and then en­
sure its stability and development under the influ­
ence of the forces applied in the manner shown in 
Fig. lb. Therefore prismatic samples of calcite, 
with prism axis perpendicular to the twinning plane 
and with one pair of faces aligned with the shear 
plane, [ 81 were glued into clamp 2 as shown in 
Fig. 2. 1> A rod for transmission of the load was 
glued on at a small distance from the clamp. 

*ch =cosh, arctg = tan-1• 

1>when working with a real sample, it is never possible to 
satisfy the condition that the medium be infinite along the z 
axis (Fig. lb.). We therefore carried out an analysis of the 
possible errors. The stressed state was regarded as a super­
position of torsion, flexure, and an applied pointlike force. We 
calculated the stresses and the displacements for specified 
external force and sample dimensions. As a result we could 
verify that ux and uy are l:wo order of magnitude smaller than 
uz, and, what is more important, their derivatives with respect 
to the coordinates are very small. In addition, by a direct 
application of the theory of elasticity we established that uz 
remains practically unchanged along the z axis. Therefore the 
scheme of Fig. 2 corresponds with sufficient accuracy to the 
conditions of antiplane deformation. 
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Before the experiment a concentrated load, 
sufficient for the formation of an elastic twinning 
layer consisting of screw dislocations only, was 
applied with the aid of a knife edge. It was uncer­
tain at first whether it would be possible to main­
tain the produced twin in equilibrium after removal 
of the knife edge. It was known that an elastic twin 
could hitherto be observed only in the presence of 
a concentrated force applied directly to that part 
of the crystal where the twin layer emerged to the 
surface. It turned out that the elastic twin con­
sisting only of screw dislocations does not need 
such a high stress concentration. This has made 
it possible to stabilize the produced twin after 
removal of the knife edge and using a suitable 
load P (Fig. 2). Further increase in P has made 
it possible to increase the length of the elastic 
twin. This has afforded an opportunity of compar­
ing the length of the elastic twin with the value of 
the load P. The length of the twin was determined 
by an ocular micrometer accurate to ± 1%. The 
load was produced by direct application of a 
weight. 

FIG. 2. Diagram showing loading and fastening of the cry­
stal : 1 - calcite crystal 2 - clamps, 3 - rod, 4 - knife edge, 
5- twin. 

All the measurements were made at room tem­
perature. The rate of change of the load was not 
more than 2 g;Bec at a total load on the order of 
1 kilogram, so that the tests can be regarded as 
quasistatic. Since the twin layers were sufficiently 
thin, we were able to observe interference color­
ing. This increased the accuracy with which their 
dimensions and shapes were determined. 

3. RESULTS AND DISCUSSION 

To obtain F(L) it is necessary to substitute the 
obtained value of the stress component at;~ (9) in 
expression (1a). After substituting the experimen­
tally determined loads and the twin lengths corre­
sponding to them, this integral was determined nu­
merically by the trapezoid method. Since the inte-

gration interval was divided into a large number of 
sections, the accuracy of the numerical calculation 
could be improved to 1%. If we take into account 
the error in a measurement of the lengths of the 
twins and of the coordinates of the end of the 
twins (~c and ~a), then the total error amounts to 
,.., 10%. The parameters So and M were determined 
by the least squares method. The results of the 
calculations are listed in the table. The rms error 
does not exceed as a rule the experimental errors. 
Thus, the Peierls force is ""0. 3-0.7 kg/cm2, that 
is, "'10-6 p,, and M,.., 3 kg/cm312 • For a known 
value of M it is possible, in accord with [ 91 , to 
estimate the surface energy. An estimate yields a 
value on the order of 10 erg/cm2• A more accu­
rate calculation is hardly of interest, since our 
entire calculation has been made in the isotropic 
approximation, and the estimate contains elastic 
moduli, so that we can be certain only of the order 
of magnitude. 

Phenomenological parameters So 
and M determined from data obtained by 
measuring the length of the twin and the 

corresponding value of the load. 

Number of twin 
of crystal 1 

I 
2 
3 
4 
5 
6 
7 

s,, kg/cm2 I M, kg/em'/, 

0.45±0.005 
0.46±0,003 
0.5±0,003 

0.56±0.01 
0.52±0.006 
0.3±0.006 

0,74±0.007 

3.368±0.04 
3.18±0.019 
2.56±0:015 

3.035±0.055 
2.76±0.032 

3.681 ±0.074 
2.47±0.025 

Average for seven twins 0.5±0.049 3.1±0.39 
Average for 18 twins 0.55±0.15 3±0.41 

Twin in crystal 2 0.3±0.005 3.25±0.055 

Let us compare the obtained values of the 
Peierls forces and of the surface tension with the 
results obtained earlier by others. The quantity 
S0 should have as its upper limit the macroscopic 
yield point, determined by one of the authors of the 
present article[ 101 as being 9-11 kg/cm2, and in 
individual cases 5-4 kg/cm2• 

An interesting method of measuring the start­
ing stresses is contained in the paper by Bengus 
et al. [ 111 However, the starting stresses for twin­
ning dislocations, in addition to the Peierls forces, 
include to some degree also the surface-tension 
force. Naturally, the starting stresses measured 
in [ 111 (8. 7 kg/cm2) turn out to be much higher than 
the Peierls stresses measured in the present pa-
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per. Starting from the assumption that essentially 
the entire work of twinning goes to produce the 
twin surfaces, Obreimov and Startsev[ 12 J obtained 
for the surface energy in calcite values of the or­
der of 103 erg/cm2, which coincides in order of 
magnitude with the result obtained by Kaner[ 13 J by 
a very approximate calculation. Obreimov and 
Startsev[ 12 J note that the values they obtained for 
the surface energy are very large. At the same 
time, using the values of S0 and M and assuming 
that the twinning work is consumed in the produc­
tion of dislocations and in overcoming the forces 
of "dry friction" (Peierls) and the surface tension, 
we can obtain a value of the same order as the 
work necessary to overcome these resistance 
forces. 

It is of interest to estimate the surface energy 
defined, according to Vladimir ski!, [ 14J as the work 
necessary to shift the interatomic planes. Byes­
timating the theoretical strength as 1/ 10 - 1/g0 /.l, we 
obtain a surface energy equal to (1. 4-4.1) 
x 102 erg/cm2• Thus, the method of measuring the 
Peierls force and the surface-tension force, pro­
posed and realized in this investigation, gives 
rather satisfactory results. 

After determining the phenomenological param­
eters of the dislocation theory of elastic twins, we 
are able to use the quantitative character of this 
theory, namely, determine the length of the twin, 
its shape, etc. for a known load. 

In conclusion the authors consider it their 
pleasant duty to thank A. M. Kosevich and L. A. 
Pastur for continuous interest in the work and 
very useful consultations. The authors are grate­
ful to L. F. Krivenko for collaborating in the ex­
periment. 
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