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Results of an experimental and theoretical investigation of statistical effects appearing during 
generation of the second harmonic in optically transparent crystals are reported. It is estab
lished experimentally that under real conditions the correlation coefficient between the second
harmonic power P2 and the square of the power P1 of the fundamental radiation emitted by a 
solid state laser differs from unity, and the proportionality factor K in the equation P 2 = KP~ 
is a random quantity. In order to explain these effects in the prescribed-field approximation of 
the fundamental radiation, a theory of generation of optical harmonics in the field of randomly 
modulated waves is developed, which takes into account spatial as well as temporal incoherence 
of the fundamental radiation. The spatial dimensions characterizing the generation of optical 
harmonics by a bounded, randomly-modulated beam in an anisotropic medium are determined. 
It is found that when the optical harmonics are generated by means of a ruby or neodymium
glass laser the main sources of excess fluctuations of the second harmonic power are fluctua
tions of mode phases, mode number, and angular divergence of the fundamental radiation. Ex
periments on generation of optical harmonics and mixing of frequencies with the aid of non-laser 
light sources are briefly discussed, It is noted that space-incoherence effects are important in 
this case. 

1. INTRODUCTION 

1. Preliminary Remarks 

The rapid development of nonlinear optics has 
made timely an investigation of problems involv
ing the interaction between randomly modulated 
electromagnetic waves in nonlinear dispersive me
dia. Even relatively early experiments on the gen
eration of optical harmonics, carried out with the 
aid of pulsed solid-state lasers, disclosed suffi
ciently "coarse" effects of statistical nature. We 

are referring here to the so-called "excess" fluc
tuations of second-harmonic power generated in 
crystals by ruby or neodymium-glass lasers (see 
[ 1• 21 ) • The statistical reduction of the experimen
tal data has shown that the fluctuations of the 
second-harmonic power P2 cannot be attributed 
solely to fluctuations of the power of the fundamen
tal radiation P 1 (in solid-state lasers operating 
at room temperature, the latter, as is well known, 
are large). 

Problems involving fluctuation phenomena in 
the case of nonlinear transformations of electro-
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magnetic oscillations have already been considered 
in detail for nonlinear elements with lumped pa
rameters (see, for example, [aJ). However, the 
wave character of the nonlinear optical effect 
leads to the appearance of many singularities 
which strongly distinguish them from nonlinear ef
fects in systems with lumped parameters. There
fore in the case of nonlinear transformations of 
optical radiation the analysis of fluctuation phe
nomena must be in many respects carried out 
anew. 

In the papers cited above, u, 2 ] the excess fluc
tuations of the second-harmonic power were inter
preted on the basis of the simplest one-dimensional 
theory in a quasi-static approximation. It must be 
noted that the experimental data cited in these pa
pers are very skimpy. We therefore consider it 
advantageous to present a more detailed analysis 
of the sources of fluctuations of harmonic power, 
taking into account the effects of temporal and 
spatial incoherence of the fundamental radiation 
and the limited dimensions of the beam of funda
mental radiation, to disclose the relative role of 
the local and accumulating effect, etc. The latter 
is especially desirable because interest in nonlin
ear optical effects in the field of a non-laser 
source has increased recently. We present below 
the results of an investigation aimed at assessing 
the influence of the statistics of the fundamental 
radiation on the process of generation of optical 
harmonics. For cases when the harmonics are 
generated with the aid of a laser, the results of the 
theory are compared with the authors' experi
ments. We discuss the difficulty of obtaining accu
mulating nonlinear effects in experiments with 
non-laser sources. 

2. Statistics of Fundamental Radiation 

A theoretical investigation of the statistical ef
fects occurring in the generation of harmonics 
should be based, obviously, on a certain statistical 
model of the fundamental radiation. If we are deal
ing with the generation of harmonics by lasers, the 
results of investigations carried out to date can be 
summarized, with accuracy adequate for our prob
lem, in the following manner.u The radiation from 
a pulsed solid-state laser constitutes a spherical 
wave (in a laser with flat mirrors, modes are ex
cited which correspond to a spherical resonator, 
this being connected with the influence of the in
homogeneities-see [ 5-TJ ). The temporal spectrum 

l)Data on statistical properties of radiation of ordinary 
non-laser light sources can be obtained in[•]. 

of this wave consists of a set of practically equi
distant modes [S-iU the transverse structure of 
which in a given pulse is practically the same (see 
[ 5• 9 J). Upon excitation of higher transverse modes 
in a spherical resonator, the directional distribu
tion of the laser radiation is in the form of a spot 
of almost uniform intensity (its fine structure con
stitutes a set of many spots). The number of spots 
q, which depends on the type of transverse oscilla
tion excited, does determine essentially the angu
lar divergence 2J of the laser beam. The value of 
2-J measured at an intensity level of 0.03 of the 
maximum, is given by an expression of the type 
(see [ 7 J ) 

2\t = 2t..(2q + 1) I nD, (1) 

where A. is the wavelength of the laser radiation, 
D is the dimension of the excitation region, and 
q is the transverse index. 

In accordance with the foregoing, the radiation 
field of a laser in a certain direction, defined by 
the angles a and (3 (a is measured from the 
longitudinal axis of the resonator, and (3 is meas
ured in a plane perpendicular to the resonator 
axis), can be written in the form 

N 

E1(a, ~. r, t) = e1 ~ A 1m(a, ~,r, t) 
m=! 

X cos [W!mt- kim( a,~) r + Cfllm (t)]. (2) 

Here and throughout the index 1 denotes that the 
corresponding quantity pertains to the fundamental
radiation field; Aim• kim• and <Pim are the ampli
tude, wave vector, and phase of the m-th longitudi
nal mode; wim = w0 + (m - 1)Llw is the frequency 
of the m-th mode, and N is the number of modes. 
In the general case the quantities Aim depend on 
the modulus of the radius vector l , Aim ~ z-i. 
However, if we are interested in the radiation field 
at intervals of l that are small compared with the 
distance from the phase center of the radiation L 
( L, L + l ; l /L « 1), we can neglect the foregoing 
dependence. 

In (2), the phases <Pim(t) and the amplitudes 
Aim(t) are random functions of the time. It will be 
convenient to represent the phase of an arbitrary 
mode <Pim(t) in the form of two terms 

(nc) (c) 

Cjl!m(t) = Cfllm {t) + Cjl!m(t). (3a) 

< nc> Here <Pim are the noncorrelated phase compo-
nents, connected with the direct action of the noise 
on the laser; <Pic~ are the correlated components 
of the phases, connected with the technical irregu
larities in the laser resonator, in the active me-
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dium, etc., and also with the non-isochronous be
havior (generally speaking, the time variation of 
the phase of the m -th mode depends to a certain 
degree on the amplitudes of all the modes, see 
[ 123 ). By virtue of the foregoing, theN-dimensional 
distribution function of the phases cpm~> is equal to 

Wrv ( cp(nc), m(nc) m(nc)) = w1 (m(nc)) w1 (m(nc)). 
- II 'Y 12 ' • " " 'Y IN 'Y II " " " 'YIN ' 

(3b) 

Inasmuch as we are interested primarily in the 
excess power fluctuations P2(t), which are not con
nected directly with the fluctuations of P1o we as
sume for simplicity that the amplitudes of the fun
damental radiation are fully correlated: 

A11(t) = A12(t) = ... = A!N(t) = Ato(t). (4) 

Assuming that transverse modes of sufficiently 
.high orders are excited, we assume that the angu
lar distribution of the amplitude is normal and is 
the same for all axial modes: 

Atm2 (a,~,t) =Aw2 (0,t) exp {-a2 /2So2}. (5) 

Here 80 is the angular divergence of the radiation, 
measured at an intensity level 0. 61 of maximum 
(8 2 =J- 2/7 (see (1)), and the dependence on the an
gle drops out by virtue of the proposed spherical 
symmetry of the radiation. 

At the present time, the two most frequently 
used pulsed solid-state laser regimes are the so
called free-generation regime, in which the laser 
radiation consists of a random sequence of 
"spikes" of durations Tp ranging approximately 
from 0.1 to 1 JJ-Sec, and the Q-switched regime, in 
which single pulses with Tp r::::; 10 nsec are pro
duced. In both regimes, the number of produced 
axial modes N is in the general case a random 
variable from pulse to pulse (the corresponding 
data are given for the spike regime in [9 - 11 • 5J, and 
for the Q-switched regime in l 13 ] ). The statistics 
of the number of excited modes will be character
ized henceforth by a distribution function .'!P (N): 

Nmax 

~ PP(N)= 1, 
N=l 

where Nmax is the maximum number of modes 
excited in a given laser. 

According to r 5• 7J, the number of the trans
verse mode also fluctuates in general from spike 
to spike. Analogous fluctuations are observed also 
in the Q-switching regime. In our model we shall 
take account of these fluctuations by introducing 
the distribution density w for the divergence e0 

in such a way that 

) w(9o)d9o = 1. 
0 

Finally, the amplitude distribution function 
w(A10) for the spike regime (especially for a laser 
operating at room temperature) is most naturally 
assumed to be of the Rayleigh type: 2 

(6) 

3. MEASURABLE STATISTICAL CHARACTER
ISTICS 

The second-harmonic radiation power of a laser 
is usually recorded with the aid of systems, for 
example,photomultipliers, which have time con
stants Tr which greatly exceed D.w - 1. The values 
of the corresponding photomultiplier currents will 
be 

It= a1oPt = a1o)) <Et2 (a, ~' t)>sinadad~, 

I2 = a2oP2 = a2o ) ) <E22( a,~' t)) sin ada d~. 

(7a) 

(7b) 

Here a 10 and a 20 are the apparatus constants for 
the fundamental-radiation and second-harmonic 
channels; the integration is in the plane of the pho
tocathodes and the angle brackets denote averaging 
over the time Tr· 

Inasmuch as the ruby-laser beam divergence 
2J. does not exceed 20-30', [ 9 , 14• 15J and for a neo
dymium glass laser it is even smaller (~ 10' ), we 
can replace sin a in (7) by a. Substituting (2) in 
(7) and taking ( 4) and (5) into account, we obtain 
for the current I 1 

where 

I1 = a1F1 (9o) V1 (A to (0, t)), 
N 

Vt= ~Atm2 (0,t)=NAto2 (0,t), 
m=l 

2n oo 

(8) 

F 1 ( 90) = ) d~ ~ exp (- a2/28o2) ada = 2n8o2; a1 = ato/2. 
0 0 

In the region of small transformation coeffi
cients (P2 « P1 ), in accordance with dynamic 
theory of second-harmonic generation, we should 
have 

(9) 

21t is appropriate to note here that in a laser operating in 
the continuous mode the amplitude distribution function is, of 
course, gaussian. Strictly speaking, a gaussian distribution 
with a time-dependent mean value obtains also for the Q
switching mode; here however, we shall use expression (6) 
throughout for the sake of simplicity. 
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where K is a constant. Actually, as already indi
cated, the quantity K is a random one and conse
quently the fluctuations of I2 are determined not 
only by the level of the fluctuations of I~, but also 
by other factors ("excess" fluctuations). The total 
dispersion D.I~ of the quantity I2, can thus be rep
resented in the form of two terms {&n<e>_a term 

which is fully correlated with I~, and {&~}< nc>_a 
term which is not correlated with I~. 

The quantity characterizing most completely 
the level of the uncorrelated ("excess") fluctua
tions is, as follows from mathematical statistics 
(see, for example, [ 161 ), the coefficient of corre
lation between I2 and I~: 

R = {lsi 111 -/2 I 12} / {[lz2 -(lz)2 ]'1• [/ 14 - (I 12) 2]'/•}. (10) 

Consequently we shall pay considerable attention 
in this paper to an investigation of R. At the same 
time, especially when using experimental data on 
the generation of harmonics for the measurement 
of nonlinear parameters of a medium, interest at
taches also to an investigation of the statistics of 
the proportionality coefficient K in (9). (The sta
tistics of this very quantity was investigated in 
[ 1• 2 1). The level of the fluctuations of K is 

2. EXPERIMENT. STATISTICAL REDUCTION 
METHOD 

(11) 

Our experiments were made with a laser oper
ating in the free-generation mode (a diagram of 
the setup and its description are contained in ru). 
The ruby laser radiation was guided through a 
KDP (KH2P04 ) crystal oriented in the direction of 
synchronism relative to the incident radiation. The 
spikes of the second-harmonic laser radiation, ob
tained on the screen of a two-beam oscilloscope, 
were photographed on sensitive film. The gains of 
the fundamental and second-harmonic channels 
were chosen such that the amplitudes of the spikes 
did not go beyond the linearity range of the gains 
of the photomultipliers and of the oscilloscope am
plifiers. 

An oscillogram of the laser second-harmonic 
spikes is shown in Fig. 1. A sample set of funda
mental and harmonic spikes was automatically ob
tained as the oscilloscope was triggered by one of 
the laser spikes. The number of spikes in the sam
ple was determined by the duration of the oscillo
scope sweep and by the ability to resolve individual 
spikes; in our experiment the number of spikes in 
the sample was approximately 40. 

For a given sample, we determined the corre-

FIG. L Oscillogram of ruby-laser emission spikes (top) 
and of the second harmonic in a crystal (KDP) (bottom), ob
tained with the aid of a double-beam oscilloscope (the har
monic spikes are narrower than the fundamental ones). 

lation coefficient and the proportionality coeffi
cient K. The sample oscillograms were reduced 
in the following manner. Using an arbitrary scale, 
we measured the powers of the second-harmonic 
spikes I2i and of the fundamental radiation Iii 
(i-number of spike). The coefficient K as given 
by the data of the i-th measurement is 

(12) 

and is a random quantity from spike to spike. The 
calculation of the mean value of K, and also of the 
mean values of I;, ii, and the correlation I2 I~ in 
( 10) was carried out for the entire volume of the 
sample; for example, 

112= ~Is.NM 

(here M is the number of spikes in the sample). 
For each calculated value of R we determined the 
confidence interval D.R characterizing with a 
probability of 0.997 the difference between the 
sample and the true values of R. The probability 
of the deviations of the correlation coefficient was 
estimated with the aid of the K criterion (see, for 
example, [171 ). The experimental values of the 
correlation coefficient R with the confidence inter
vals and of the values of ~ (11) are listed in 
Table I. 

3. THEORY OF GENERATION OF SECOND 
HARMONIC IN THE FIELD OF A 
MODULATED WAVE. GENERAL ANALYSIS 

The laser radiation, as follows from the analy
sis in Sees. 1 and 2, has a complicated structure: 
besides the temporal non-monochromaticity (due 
to the finite duration of the fundamental-radiation 
pulse and the presence of several longitudinal 
modes), the laser radiation, which constitutes a 
beam of finite divergence, has also spatial non
monochromaticity. Strictly speaking, the spatial 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Table I. Experimental values of the correlation 
coefficient R and of the relative fluctuations ~ 

of the coefficient K. 

No! R ± /!J.R R ±/!J.R 

1,00±0.00 0.19 18 0,78±0,20 o.29 
0,34±0.08 0.31 19 0,99±0,01 0,15 
1.00±0.00 0.17 20 0,61±0.30 o.3I 
0,94±0.08 0,30 21 0,74±0.24 o.22 
0.88±0.11 0,24 22 0,66±0,32 o.50 
0,99±0.05 0,29 23 0,74±0,25 o.38 
0,96±0,04 0,20 24 0,66±0.30 o.39 
0,90±0,01 0,30 25 0,64±0.38 o.40 
0,84±0.15 0,23 26 0,86±0,16 0,18 
0,95±0.05 0,26 27 0,99±0,01 0 .10 
1.00±0.00 0.28 28 0,70±0,27 o.23 
0,62±0.30 0.38 29 0,70±0,34 0 .20 
0.55±0,31 0,47 30 0.55±0.42 0,47 
0.68±0,28 0.20 31 0.37±0.00 0 ,16 
0.60±0.35 0.25 32 0,96±0,01 0,18 
0,81±0.08 0,10 33 0,85±0.16 o,22 
0.88pl.l3 0,24 

spectrum of the laser radiation, just as its tem
poral spectrum, is continuous: the presence of a 
continuous part of the spectrum is due here to in
homogeneities of the radiating crystal. It is obvi
ous that a correct analysis of the fluctuations of 
the second harmonic must, generally speaking, take 
into account both the temporal and the spatial non
monochromaticities of the fundamental radiation. 

To investigate the second-harmonic generation 
it is convenient to represent the laser radiation in 
the form of a quasi -monochromatic signal (see 
also r 181): 

E1 = et{At(a, ~. t) exp [i{wtt- kt(a, ~)r)J +c. c.}, (13) 

where 
N 

.A1(a, ~. t) = ~ Atm(a, ~. t)exp {i(Wtm- Wt)t}, 
m=l 

(14) 

w 1 = (w11 + w1N)/2 is the average frequency of the 
spectrum, and kt(O!, {3) is the wave number for 
this frequency. 

Assume that the radiation (13) propagating in 
an anisotropic dispersive medium with weak non
linearity of quadratic type, being an ordinary wave, 
excites in the medium an extraordinary second
harmonic wave. We seek the field in the nonlinear 
medium in the form 

E(r, t) = e1.A1 (~-tr, ~tf)ei(w,t-k,r) + e2.A2 (f.tr, ~tt)ei(w,t--k,rJ.(15) 

In (15) the index 2 pertains to the second-harmonic 
wave, w2 = 2w1> and. the parameter J.1 ( J.1 « 1) has 
an order of magnitude E/Eat> where Eat is the 
atomic field. Using the ordinary procedure for de
riving the abbreviated equations ( r 21J), we get for 
the description of second-harmonic generation in 
a bounded beam, using the prescribed field approx-

imation (I A1l2 » I A 12 ) and neglecting diffraction, 

a .A, + _1_ aA 1 = 0 
az u1 at ' 

aA'2 a.A2 1 a..42 -----az +Pax+ u;-at= - i2f A12 (r, t) e-iAr, (16) 

where 

1t (1)22 ' 
f = ----=--A~,- ( e2X2"'e,e1), 

k2c2 cos k2s2 

A= A (a,~)= k2 (a, ~)- 2k, (!Lj ~); 

X is the nonlinear-polarizability tensor of the me
dium; u1 = u1(0!,{3) and u2 = u2(0!,{3) are the group 
velocities of the fundamental and harmonic waves. 
The term p8A2fax characterizes the "drift" of 
the energy of the second harmonic, connected with 
the difference between the directions of the ray 
vectors of the fundamental wave 8 1 and the second 
harmonic 8 2, leading to the so-called aperture ef
fect (see r 19 • 201 ), p is the angle between the ray 
vectors 8 1 and 82, the anisotropy angle (in (16) it 
is assumed that p "' J.l). The direction of the z 
axis coincides with the directions of the normal 
to the separation boundary between the linear and 
nonlinear media and the axis of the laser cavity 
( 0! = 0). The x axis is perpendicular to the z axis 
and lies in the plane of the ray vectors. 

The system (16) must be solved under the fol
lowing boundary conditions 

At(x,y,z = O,t) = A 1 (x(a, ~. L), 

y(a,~,L),t) =A1 (a,~,L,t), 

A2(x, y, z = 0, t) = .A2(a, ~. L, t) = 0. (17) 

We recall that L is the distance from the hypothet
ical phase center of laser radiation. 

In a nonlinear anisotropic medium there exists 
a cone of directions for which the synchronism 
condition is satisfied (ll = 0). If the direction of 
the z axis coincides with one of the synchronism 
directions, then, by drawing the y axis perpendicu
lar to the x and z axes and measuring the angle {3 

from the y axis, we obtain at z = 0 

x = aL sin ~. y = aL cos ~. (18) 

Owing to the small angular divergence 28 of the 
fundamental radiation, we have in first order in J.: 

M=~zz, ~.=~(a,M =Gasin~=Gx/L. (19) 

The constant G is determined by the anisotropy 
and by the dispersion properties of the medium. 

A solution of (16) under conditions (17) and (19) 
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for the amplitudes A1 and A2 leads to the expres
sions 

.A1 = .At(x, y, L, t- z I Ut), 

I 

Az(x, y, l, t) =- i2f ~ .A12 (x- p(l- z), y,L, t -l/uz + yz) 

• 
xexp{- i ~ z(x- p(l- z)) }dz, (20) 

where the parameter 'Y characterizes the devia
tion of the group velocities 

y = U2-1- uc1 = ll2-1(u, ~)- u1- 1 (a, ~). (21) 

For the power density of the second harmonic 
P2 we get from (20) 

Pz(a, ~. l, t) = pz(x, y, l, t) = 2Az(r, t)Az" (r, t) 

I 

= 8f2 ~ ~.A12 (x- p(l- z2), y,L, t -l/uz + yzz) 
0 

X .A1*2(x- p(l- z1), y, L, t -l/uz + yz1) 

xexp {- i ~ [zz(x- p(l- Zz) )- z1(x- (l- z1)p)]} 

(22) 

If the field of the fundamental radiation is a random 
Gaussian process, stationary in time and homo
geneous and isotropic in space, with a correlation 
function, 

B1 (s, 1:) = Re (E1 (r + s, t)E1* (r, t)) =R (s, 1:) cos co11:, (23) 

then in this case we obtain for the mean value P2 
in the near field of the source 

P2 ( x, y' l) = 16f2 r dz rR2 ( PZ1, yz1) 
0 0 

xcos [ (x- p (l- 2z) )£z1 ldz1. 
L -

(24) 

Using (22) and (24), let us consider separately the 
influence of the temporal and spatial non-mono
chromaticities of the fundamental radiation on the 
second-harmonic generation. 

1. Influence of the Temporal Non-monochroma
ticity 

We shall assume here that the anisotropy of the 
nonlinear medium can be neglected (p ~ 0), so that 
the harmonic-generation process is influenced 
only by the temporal non-monochromaticity. For 
the case of generation of a harmonic by means of 
a radiation having a continuous spectrum, it fol
lows from (24) that if the correlation times T c of 
the fundamental radiation are close to the group-

delay times between interacting waves, I'Yil, then 
p2 depends on l, as in the case of monochromatic 
waves. When Tc < I'Yil, the average power den
sity of the second harmonic p2 is proportional to l 
and does not depend on the phase deviation az. In 
the latter case the harmonic-generation process 
has the character of the nonlinear incoherent scat
tering, and the length 

z<t) = -c 1"'1-1 
coh c 1 

(25) 

can be called the coherent length of nonlinear in
teraction. At lengths l < l~~h the harmonic
generation process is coherent. This is also the 
condition for the applicability of the quasistatic 
approximation in the theory of nonlinear wave 
processes. 

Let us consider now the generation of a har
monic by a discrete spectrum (multimode radia
tion). In this case, to take into account the influ
ence of the dispersion, it is necessary to bear in 
mind that each mode of the second harmonic and 
of the fundamental radiation propagates with its 
own phase velocity. If we are interested in the 
average energy density P2n of the n-th mode of a 
harmonic of frequency w2n, formed, for example, 
only from the m-th mode of the fundamental radia
tion of frequency w1m (w2n = 2w1m), then P2n 
(2w1m, x, y, l) will be determined by formula (24), 
where R = R(O, 'YZ) is now the correlation func
tion of the m -th mode. The coherent length for 
this process is equal to 

Z'(t)h-lv -1 v -11-t-co - 2n - 1m -~1m, (26) 

where v are the velocities of the modes and T 1m 
is the correlation time of the m-th mode. 

In real conditions T1m > 10-8 sec, and there
fore the coherent lengths l~~h• whose estimates 
are given in Table II, are much longer than the 
lengths lcr of the employed nonlinear crystals, 
which usually'amount to 2-3 em. Thus, the gen
eration of an individual second-harmonic mode by 
laser radiation can be considered in the quasi
statical approximation. Substituting (14) in (22), 
recognizing that Tr » (aw) -1, we obtain for the 
average second-harmonic power density (in the 
quasi-static approximation for each mode) a value 

_ 1 ,2 { N , sinZ[A(m, m)l/2] 
Pz(x,y,l)=TI m~1A1m(x,y,L) [A(m,m)l/2)2 

N-1 

~ A1;2 (x, y, L)Atm2 (x, y, L) 
j=m+1 m=1 

sinZ(£\(j, m)l/2] } 
X [£\(j, m)l/2)2 ' (27) 

L\(j, m) = Az + (j + m- N- 1)y£\co. (28) 
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Table II. Values of the space scales characterizing the 
generation of the second harmonic by radiation from a 

ruby laser (.A= 0. 7J1) and neodymium-glass laser 
(A. = 1. 06J1) in a KDP crystal. 

Ruby 3. 3·10-S 200 -10-12 31·10-3 

Neo-
dymium 1.1·10-3 600 -5-I0-14 35 .ro-3 

It follows from (27) that the dispersion of the non
linear medium can be neglected at distances 

l < {(N- 1)11wlvl}-1 = la (29) 

when the synchronism condition is satisfied (~ z = 0) 
or 

l < {(N -1) lvl11w + l11zl}-1 = {Za-1 +l11zl}-1 (30) 

if~z:tO. 
Conditions (29) and (30) determine the length l 

over which the corrections connected with ~z and 
with the width of the spectrum (N- 1)~w of the 
fundamental radiation are negligible. For radia
tion from ruby and neodymium lasers, the values 
of ld in a KDP crystal are listed in Table II, which 
shows that in ordinary experiments in the synchro
nism direction ld > l cr· Therefore, in the experi
ments we have 

g,-1 +I 11, I }-1 ~ lcr for I 11, I~ la-1• ( 31) 

In this case, as seen from (27) and (28), the detun
ings ~ (j, m) can be set equal to an average phase 
detuning ~z, which is the one influencing the 
harmonic-generation process. The finite width 
(N- 1)~w of the fundamental-radiation spectrum 
does not affect the power of the harmonic. In this 
connection, we can expect further simplification in 
the investigation of the second-harmonic genera
tion by a discrete spectrum: the phase detunings 
~z can be assumed the same for all modes, and 
the analysis of the generation process can be car
ried out in the quasi-static approximation for the 
entire spectrum of the fundamental radiation as a 
whole. The latter makes it possible to omit the 
time derivatives from (16) (8Atf8t = 8Ad8t = 0). 

2. Effects of Spatial Non-monochromaticity 

Let us consider first the influence exerted on 
the generation of the second harmonic by the spa
tial incoherence of the fundamental radiation. (in 
this part of the section we assume that l « z~t~h ). 
We see from (24) that for distances l < I p l-1r coh 
(rcoh is the radius of spatial coherence) we have 

8.4·103 104 25 21 1 .ro-2 
4.9-108 106 500 20 36-10-2 

R(pl, 0) r:::: R(O, 0), so that the power density of the 
harmonic P2 depends on l in the same manner as 
for a plane monochromatic wave. On the other 
hand, if l > I Pl- 1 r coh• then in those cases when the 
presence of the phase deviation ~z is immaterial, 
we have p2 ~ l. In analogy with the coherent length 
Zci~h (25) we can introduce here a characteristic 
length l <s > • coh· 

l< s > I I 1 coh = P - l'Coh• (32) 

The spatial incoherence of radiation does not affect 
the generation of the harmonic when l < z<gbh· 

If the fundamental radiation is completely spa
tially coherent, the non-monochromaticity is de
termined by the finite angular divergence. Disre
garding for the time being the multimode structure 
of the laser radiation, we obtain for the second
harmonic power P 2 generated by a diverging beam, 
substituting (14) in (22) and taking (5) and (18) into 
account, 

2rr " 2lt " 

P2 = ~ dj3 ~ P2(a, 13, l)·a da = 1/2f2A 104 ~ dl3 ~ e-a'/Bo'a da 
0 0 0 

l 

X ~ ~ exp {- [p2 ( z12 + z22) - 2aL ( Zt + Z2) sin 13] /2L28o2} 
0 

(33) 

For values of l such that pl < Le0, expression 
( 33) can be simplified to 

Pz = 1/2f2Ato"Fz (So), 
2lt " 

F2(8o) = l2 ~ dl3 ~ e-a'/Bo' sin~(1/2aG sin 13] (34) 
0 [1 / 2aG sin j3J~ ' 

The length 

la = IPI-1L8o, (35) 

which depends on the anisotropy of the medium p 
and on the finite dimensions of the "spot" of fun
damental radiation at the input of the nonlinear 
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medium Le0, is called the aperture length (see 
also [20 J). An estimate of the values of la for ra
diations of ruby and neodymium lasers in a KDP 
crystal, given in Table II, yields la > lcr Conse
quently, we can use formula (34) to calculate the 
second-harmonic power. 

The value of the function F 2( e0) in ( 34) depends 
on the relation between the length of the nonlinear 
crystal lcr and the characteristic length3> 

la = 2/ G8o, (36) 

which is connected with the divergence of the fun
damental radiation and with the constant of the 
medium G (see (19)). When l >le, the function 
F2(e0) = ne5Z 2, and when l > le (such cases are in
deed realized in experiment, see Table II), we 
have 

(37) 

4. CALCULATION OF THE "EXCESS" FLUC
TUATIONS OF SECOND-HARMONIC POWER. 
QUASI-STATIC APPROXIMATION 

The results of the theory developed in Sec. 3 
show thus that to interpret the experimental data 
on the generation of harmonics from laser radia
tion we can confine ourselves to the quasi-static 
approximation and neglect the aperture effect. In 
this case the main sources of harmonic-power 
fluctuations will be the fluctuations of the ampli
tudes and the phases of the modes, the fluctuations 
in the number of the modes, and the fluctuations in 
the fundamental beam divergence. 

For the second-harmonic current I2 (Eq. (7b)), 
substituting (14) in (22) and taking into account (5), 
(18), and the condition l < la, we obtain in the 
quasi-static approximation the following value: 

/2 = ll:!f2F2(8o) V2(A10(0, t), (jl11, •.• , (jl!w). (38) 

Here F2(e0) is determined by (37), a 2 = a 20 /2, and 

N 

V2 = A10~(0, t) {LV(2LV -1)+ 2 ~ cos<Dnnml 

m,l=t 

N 

(c) (nc) 
<llpqml = <Dpqml + <Dpqmlj 

() () () {)_ l) 
<llpqml = (jl1p + (jliq- (jlim cpu • 

The value of the function V 2 begins to depend 
on the phases cp 1m when N = 3. In this case the 
amplitude of one mode of the second harmonic de
pends on the phases cp11o cp 12, and cp 13: this mode 
is produced both as a result of doubling of fre
quency w12 (2w 12 = w23), and as a result of the mix
ing of the frequencies w11 and w13 (w11 + w13 
= w23 ). [Z, iBJ With increasing N, the number of 
modes of the harmonic whose amplitudes depend 
on the phases of the modes of fundamental radia
tion increases. 

Using (38) and (8), we can obtain the value of K 
in the expression (9): 

K = aF (So} V2 (Ato(O, t) ,<pu, ... , <i'tN) V1-2 (A to (0, t)), ( 40) 

where 

a= a2ac2f 2, F(8o} = (2l'nG8o3}-1l. (41) 

The mean value K is 

K=a ~F(8o)w(8o)d8o~ (2-1/LV)f!>(LV). (42) 
N 

For the relative fluctuations ~ of the coefficient K 
(see (11)) we obtain 

62 + 1 = ~ F2 (8o) w(8o)d80 [ ~ F(8o) w(8o)d8o r2 

X~ { (2- 1/LV)2(1 + SQJ2(LV))} fP (LV) 
N 

X~ { (2 -1/LV)S'" (LV) r2. 
N 

(43) 

Here ~~(N) represents the relative fluctuations of 
the coefficient K, connected with the random scat
ter of the values of the phases cp)~>. The value of 
~~(N) is 

sq~2 (LV) = 8 { ~c;_n + 2 ~c;-2n }/LV2(2LV -1) 2; 

LV;;:::3. (44) 

+ ~ cos<Dpqm!}, (39) Expression (44) can be reduced to the form 
p, q, m, 1=1 

where the summation in the first case is for mo;i: l 
and 2n = m + l, and in the second case for Pi= q, 
m * l, and m * p, but p + q = m + l; 

3 \iore details on the characteristic length lg. which de
tennines the efficiency of generation of harmonics by a di
verging beam, is found in [22 • 23 ], 

2 (LV- 1) (4LV2- 11LV + 3) 
SQ>2(LV) = 3 LV2(2LV- 1)2 ' LV odd; (45) 

2 _ 2 (LV- 2) (4N- 7) LV 
Sq> (LV)- 3 LV(2LV- 1)2 ' even (46) 

Figure 2 shows a plot of ~cp(N). The maximum 
value of ~cp(N) is 0.25 for N = 5. At sufficiently 
large values of N, the function ~ cp(N) decreases 
like (1.5N)-i/Z It must be noted that the values 
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C.'f'(NJ 

O.J 

0,1 

0 J 10 15 20 25 N 

FIG. 2. Relative fluctuations ~¢(N) of the coefficients 
K(l2 : KI~) due to the random scatter of phases in the funda
mental radiation modes, vs. the number of modes of the funda
mental radiation. Curve 1 corresponds to calculations according 
to the exact formula (44). Curve 2 corresponds to the asymptotic 
dependence ~q(N): (1.5 Nf' 2, 

of K and ~ do not depend on the fluctuations of the 
amplitudes A10 (see (43) and (42)). 

In order to calculate the correlation coefficient 
R, it is necessary to !mow the quantities contained 
in (10), which are 

N = 8a12A04 ~ F12 (So)w(B0)dSo 2} N2 fP(N), 
N 

l2 = 8a~o4 ~ F2 (So) w (So) dSo ~ N (2N- 1) fP (N), 
N 

/14 = 384a14Ao8 ~ F14 (8o)w(Bo)dSo ~ N4fP(N), 
N 

X~ {1 + £<P2 (N) }N2(2N- 1) 2fP (N), 
N 

X ~N3(2N- 1) fP (N). 
N 

(47) 

In the derivation of ( 47) we took into account the 
laws governing the distributions of A10 and w(Ato) 
(Eq. (6)). 

We assume first that w( e0) = 6( e0 - Bo) (a
delta function),f?(N0) and§l(N) = 0 when N* N0• 

Then the correlation coefficient (10) is equal to 

(48) 

and has a minimum value of 0.97 at N0 = 5. In this 
case R and ~ (Eq. (43)) are determined only by 
the phase fluctuations. 

Knowing the distribution functions w( e0) and 
fP(N), and using (43) and (47), we can calculate the 
values of R and ~ determined by the joint action 
of all the fluctuation sources. We assume that the 
distribution function of the angular divergence 
w( e0) is of the form 

w(So) = [So"- 13o']-1 

for So'~ So~ So", (49) 

The distribution of fP (N) is assumed to be bi
nomial; for simplicity we represent it in the form 

fP(N)= 2<1-NmJCN-1 (50) 
Nm-1· 

The calculated values of R and ~ are listed in 
Table Ill. The values of Ro and ~ 0 were deter
mined for a constant divergence 28, R1 and ~ 1 for 
a divergence 2-J fluctuating in the interval from 
20' to 25', and R and ~ 2 in the interval from 20' 
to 30' (B0 = 0.379-J (5)); R and ~were also calcu
lated for three different values of Nm in the bino
mial distribution (50), namely Nm = 2, 4, and 7. 

5. DISCUSSION 

The experimental results of this paper show 
that in the generation of the second harmonic by 
means of a solid-state laser the correlation coef
ficient R between the harmonic current I2 and the 
square of the fundamental current II is in most 
cases smaller than unity and has values R ~ 0. 7-
1.0 (see Table I). The relative fluctuations of the 
coefficient K in the functions A2 = KII, which were 
also determined experimentally, have essentially 
values 0.2-0.4 (see the same table). 

The observed values of R and ~ (Table I) can
not be attributed solely to the presence of phase 
fluctuations at which relation ( 48) exists between 
R and ~. Other factors affecting the values of R 
and ~ are the fluctuations of the beam divergence, 
the mode-number fluctuations, and the mode
amplitude fluctuations from spike to spike of the 
fundamental radiation. The theoretical (Table III) 
and experimental values of R and ~ point to a no
ticeable contribution made by these fluctuation 
sources. 

The contribution of the fluctuation sources con
sidered in this article changes if the coefficient 

Table In. Theoretical values of the correlation 
coefficient R and of the relative fluctuations ~of 

the coefficient K for different distribution 
functions of the number of modes fP (N) 

and angular divergence w( B0) 

Ro 1.00 1.00 0.91 0.98 1l (So- 8o) 
1;0 0,00 0,20 0.22 0.24 
R1 0.98 0,98 0.80 0.96 w (80) = (1.90') -I 

1;1 0,19 0.26 0.29 0.31 7 .. 58' ~ 80 ~ 9.48' * 
R2 0.91 0.8S 0.79 0.88 w (So) = (3.79') -I 

1;2 0,35 0.41 0.42 0.44 7,58' ~ 80 ~ 11.37' * 

*The function w( 80 ) vanishes outside the indicated intervals of 80 • 
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11 = P2fP1 of transformation of the fundamental 
radiation into the second harmonic is large (TJ""' 1). 
Thus, when 11""' 1 the phases cp1:£c> of the modes 
of the fundamental radiation in a nonlinear medium 
become correlated, and their one-dimensional dis
tributions are altered. As a result, the contribu
tion of the phase fluctuations to the "excess" fluc
tuations of power of the second harmonic becomes 
practically insignificant (see [ 15• 181 ). There is 
likewise a decrease in the contribution from the 
fluctuations in the number of modes N and the 
mode amplitude fluctuations. Thus, for transfor
mation coefficients 11 ""' 1, the main contribution to 
R and ~ is made by the fluctuations of the beam 
divergence. 

In conclusion it must be emphasized that al
though, as shown above, the simplified quasi-static 
theory developed in Sec. 4 is adequate for an inter
pretation of the data obtained in experiments on 
harmonic generation with the aid of lasers, the re
sults of several already published experimental 
papers can be explained only by using the more 
general theory developed in Sec. 3. We should 
mention here first experiments on second-har
monic generation with the aid of an ordinary (non
laser) light source, [ 241 and experiments on the 
mixing of coherent and incoherent light. [ 251 Spatial 
coherence effects should apparently play an essen
tial role also in experiments on multiplication and 
mixing of frequencies of induced scattering lines 
(Raman or Mandel'shtam-Brillouin). In those 
cases when the induced scattering is obtained out
side the optical resonator, its spatial coherence is 
apparently low. in all the foregoing cases the val
ues of Z6~h will be small; the latter is apparently 
the main difficulty in attempts to realize accumu
lating nonlinear effects in the field of a non-laser 
source. The procedure developed here for calcu
lating the fluctuation phenomena occurring during 
nonlinear optical interactions is, of course, appli
cable not only to problems involving the generation 
of harmonics and frequency mixing, but also to 
other nonlinear problems. Of particular interest 
may be a similar analysis applied to the theory of 
parametric interactions. 

The authors are grateful to A. P. Sukhorukov 
for a useful discussion of the question of aperture 
effects. 
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