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A theory of the Josephson effect in superconductors with paramagnetic impurities is devel
oped for T = 0 and the absence of a potential difference between the superconductors. It is 
shown that the superconducting tunnel current differs from zero in the region of ordinary 
( wg ""0) as well as gapless ( Wg = 0) superconductivity, and the dependence of the peak 
value of the current on the concentration of paramagnetic impurities is found. Non-magnetic 
impurities which do not affect the electron spin direction during scattering also do not affect 
the magnitude of the de Josephson current. 

THE interest in the investigation of superconduc
tors with paramagnetic impurities is associated 
with the circumstance that, as was shown by Abri
kosov and Gor'kov,CtJ the energy gap in the spec
trum of single-particle states wg vanishes in such 
superconductors in a certain region of concentra
tions (0.91nc <n <nc at T = O)n, whereas the 
ordering parameter ~ is non-zero, i.e., the metal 
remains a superconductor (ideal conductor and 
ideal diamagnet). The first confirmation of these 
theoretical conclusions was obtained by an investi
gation of the tunnel effect.C2J The tunnel effect is 
still one of the most effective ways of studying 
gapless superconductivity. 

In this paper we investigate the features of the 
Josephson [3] superconducting tunnel current in 
superconductors containing paramagnetic impuri
ties. For simplicity we restrict our attention to 
the case T = 0, since all fundamental properties 
of the Josephson current are already manifested 
in this case. In addition, we shall consider the po
tential difference V between the superconductors 
also to be zero, i.e., we are concerned only with the 
the de Josephson current. 2) 

1)The symbol nc represents the critical paramagnetic
impurity concentration at which T c goes to zero. 

2)The qualitative conclusions for V.;, 0 are the same as for 
the ordinary Josephson effect. Namely, when V F 0 (but 
eV << ~ ), the Josephson current oscillates in time according 
to the law 

l = J, sin (2eVt I ft + q>o). 

However, in the gapless region (wg = 0), a large quasi
particle current arises, which leads to a strong damping of 
these oscillations. 

(A) 

In the case of ordinary superconductors (we 
shall call them BCS superconductors), the energy 
gap wg and the ordering parameter ~ coincide: 
~ = wg. Then we have the following formula, ob
tained by a number of authors,C3- 5J for the magni
tude of the maximum Josephson current (at T = 0 ): 

(1) 

Here RNN is the resistance of the tunnel junction 
in the normal state, ~1 and ~2 are the energy 
gaps of the superconductors constituting the tunnel 
junction ( ~1 :::; ~2 ), and K ( x) is a complete el
liptical integral of the first kind. In particular, 
for a tunnel junction of two identical superconduc
tors (~ 1 = ~2 = ~ ), we have 

(2) 

In the case of superconductors with paramag
netic impurities considered by Abrikosov and 
Gor'kov[ 1] (we may call these AG superconduc
tors), the magnitudes of wg and ~ do not coincide, 
and wg can vanish while ~"" 0. The theory to be 
presented below shows that the Josephson current 
does not vanish in the gapless region ( wg = 0 ); 
however, it is diminished in comparison with its 
value in the absence of impurities. This is quite 
obvious, since the superconducting tunnel current 
is analogous to the ordinary superconducting cur
rent which exists so long as ~ "" 0. The formulas 
obtained below show that the investigation of the 
dependence of the superconducting tunnel current 
J s on the concentration of paramagnetic impurities 
n gives the possibility of studying the dependence 
of the ordering parameter ~ on n. 

In calculating the superconducting tunnel current 
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we shall follow the method of Ambegaokar and 
Baratoff.l5J According to [ 5] the magnitude of the 
Josephson current is given by the expression3' 

I 

J =- 4Re ~I Tkq 12 ~ dt' {(att(t) a~kl (t')) (bqt (t) b-ql (t')) 
kq -oo 

( 3) 

where Tkq are the matrix elements of the transi
tion of an electron from the left metal to the right 
one with a change in momentum from k to q; 
ak, ( t ), bk_ ( t) are the creation operators for elec
trons in the left and right metals in the Heisenberg 
representation. 

The averages in (3), as noted in[5J, are not 
ordered in time. However, when t' < t we have, 
for example, 

(akt+(t)a-h.; +(t')) · e2i~' 1F+(k,t- t'), 

\bqt(t)b-q~(t')) = -e-2ii'IF(q, t- t'), 
( 4) 

where F+ and F are the Gor'kov functions,[6] 
which are chronologically ordered, and 11 is the 
chemical potential, the same for both metals. 
Since in (3) the integral over t' is taken from -co 

to t, i.e., t > t', the averages in (3) can be re
placed by the Gor 'kov F functions in accordance 
with Eqs. (4). 

It should be realized further that in the deter
mination of the functions F+ there is an arbitrari
ness, because the equations that these functions 
satisfy (the Gor'kov equations) are invariant rela
tive to the multiplication of F+ by eiq~ and F by 
e-iq~, where ei(/1 is an arbitrary phase factor. 
This in variance holds for both the BCS [6] and the 
AG[1J superconductors (see Eq. (2) inC1J, re
written in the ordinary time representation, 
t =-iT). Taking this into account, we write Eq. 
( 3) in the form 

t 

J=4Re~ 1Thql 2 \dt'[F+(k,t-t')F(q,t-t') 
hq • 

- F+(k, t- t') F ( q, t- t')] ei(q>,-cp,), (5) 

where q~ 1 - q~ 2 is the difference in the phases of 
the F functions (the wave functions of the "super
conducting pairs") in the left and right metals. 

In (5), in which one can set t = 0 since it is 
clear that in actuality J is independent of t, it is 
convenient to go over from the ordinary Green 
functions F+, F to the thermodynamic functions 
:g:+, ff. which have simpler analytical properties. 

3 >Throughout we use the system of units in which 11 = e = 1, 
where e is the electron charge. 

The possibility of this replacement can be proved 
in the following way. 

We transform to the energy representation for 
the operators ak.t• a~k~· bqt• and b-q~ in (4), as 
a result of which we obtain (for t < 0) 

F~ (k t) "' ( + ) ( + ) i(E +P.)I • - = LJ akt os a_k.l so e • , (6) 

where Es = Es 1 - E 01, Ea = Ea2 - E 02 are positive 
energies of excitation in the left and right metals: 
Es > 0, Ea > 0 ( E 0 is the energy of the ground 
state of the superconductor, Es and Ea the ener
gies of the excited states). On the basis of (6) we 
obtain 

0 

~ p+ (k, -t)F(q, -t)dt 
-co 

We now introduce the thermodynamic Green func
tions [6] (for T = 0) 

ff'+(k, -r- -r') = (Tilht(-r)il-h.!.{t')), 

.1 (q, -r- -r') = -<Tbqt('t)B-qt(-r') ), (8) 

where 

A(-r) = e<H-I'NJ<Ae--{H-I'N)T, A('t) = e<H-I'NJ<A+e-<H-I'N)\ 

Going over to the energy representation in these 
expressions, we obtain in analogous fashion for 
T<O 

Consequently, ff'+ (k, -T) and ff'(q, -T) are 
regular functions for T < 0 (and also, as can be 
shown, for T > 0). On the basis of (9) we obtain 

0 

~ ~+ (k, - 't') ~ (q, - 't') d't' 
-oo 

Comparing this expression with (7), we see that 

0 1 0 

\ F+(k,- t)F(q,- t)dt = -. \ fF+(k,- -r) fF (q,- 1:)d-c. . ~ .l 
-oo -oo (11) 

Consequently, in the expression for the Joseph
son current (5) it is possible to go over from the 
ordinary Green functions to the thermodynamic 
ones, which are more convenient for what is to 
follow. Performing this transformation and trans-
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forming to the Fourier representation, we write 
(5) in the following form (here and later F ( k, w) 
is the Fourier component of the thermodynamic 
Green function :f'( k, 7)) 4>: 

]= -~Re ~IT· 12 r dw r dw'F(k,w)F(q,w') ei(<p,-<p,), 
2 LJ nqJ.) +''.f. n kq -oo .:00 (t) (t) - !u 

6 = + 0. (12) 

Using the properties of the functions F ( k, w ) 
(they are even and real), we obtain 

I= 1. sin (QJt- <p2), (13) 

where 

I.=~ Im ~ I Tkq 12 r dw I dw' F(k, w)F(q •. w') (14) 
n2 J • w + w'- z{) 

k.q -oo -oo 

or 
? 00 

Is=_::_~ 1Thql 2 ~F(k,w)F(q,w)dw. n . hq -oo 

(15) 

We remark that the transition from the case 
T = 0 considered in this paper to T > 0 is by re
placing in (15) of the integration over w by a sum
mation over discrete frequencies Wn = ( 2n + 1 )11'T. 

The quantities I Tkq 12 appearing in (14) and (15) 
can be expressed in terms of the parameters of 
the tunnel junction in the normal state (when both 
metals are non-superconducting). According 
toC4• 5•7J, the resistance of the tunnel junction in 
the normal state RNN is determined from the 
formula 

RNN = {4nNt(O)N2(0)<ITI 2>}-t, (16) 

where N1 ( 0) and N2 ( 0) are the state densities 
when E = J-1., and (I T 12 ) is the average value of 
I Tkq 12 over the angles of the vectors k and q on 
the Fermi surface. Since the integrals over energy 
in (14) and (15) converge in an interval ~E ~ ~ 
much less than J-1., ( I T 12 ) can also be factored 
out of Eqs. (14) and (15). Eliminating this factor 
by means of (16), we convert Eq. (14) into the 
form 

I = R -1_1_1 r d£ r d£ r d r d I F(k, w)F(q, w') 
s NN 2n3 m .) h .) q J w J w w + w' - i6 ' 

-oo -co -oo -oo 

(17) 

4)The functions F'+ and F appearing in (5) are averages of 
Fermi operators, taken in anti-chronological order. By writing 
out a spectral representation similar to (6) for these functions, 
and using the property of the quantity T, viz, T kq = T* -k,-q' 

which comes from the invariance of the tunnel Hamiltonian 
relative to time inversion,[•.•] it is easy to show that the sec
ond term in (5) gives a contribution that coincides with that of 
the first term (taken with opposite sign). 

and Eq. (15) correspondingly to the form 

1"" 00 00 

ls=RNN-!?2~ d£h ~ d£q ~ dwF(k,w)F(q,w) (18) 
~:rt -oo -oo -oo 

( ~k = ko/2m - J-1. is the energy of a normal elec
tron, reckoned from the Fermi energy). 

The obtained expressions (17) and (18) reduce 
the calculation of the amplitude of the Josephson 
current J s at T = 0 to finding the thermodynamic 
Green functions F ( k, w ) and F ( q, w) of the iso
lated superconductors. Before applying these 
formulas to the treatment of superconductors with 
paramagnetic impurities, we show that the usual 
results for the Josephson current[3- 5] in the ab
sence of impurities follow from them. 

For BCS superconductors F has the form [S] 

( ~ is the gap) 

(19) 

whence 
00 

~ F(k,w)dsh = n~/l'w2 + ~2• (20) 
-oo 

The rest of the calculation may be carried out 
in two ways, based, respectively on the use of Eqs. 
(17) and (18). We present both methods in order to 
make clear the transition to the case of AG super
conductors, where it is possible to use only one of 
them. 

The first method consists of the following. Sub
stituting (20) into (17), we obtain 

1 00 00 

I.= RNN-1 -2 Im (' dw ~ dw' n J • 
-oo -oo 

(21) 

Deforming the contour of integration in the 
plane of the complex variable w as shown in Fig. 
1, we transform the integral over the real axis 

FIG. 1 
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from -oo to + oo to an integral over the boundaries 
of the cut going from -i~ to -ioo. Replacing w by 
-iu and then u by (~2 + n2 )112, we reduce (21) to 

xr dQ2 - . . did~ 
_:_co l'Q12 + ~12 l'Qz2 + dz2 (l'Q12 + d12 + l'Qz2 + d22) 

(22) 

This expression coincides with the formula ob
tained in [3,4]. Repeating Anderson's calculation,[4J 
we bring (22) to the form of the elliptic integral 

Is= RNN-1 2d!d2 K ( !di- dzl ) (23) 
~~ +dz d1 +~2 

The second method consists of substituting (20) 
in (18), which immediately yields 

I. = RNN-1 ~ -~-- dz ··· dw. 
o fd12 + wzl'~zz + wz 

(24) 

This integral is equal to (cf. Eq. (1)) 

I.= RNN-1dtK cv 1- ~~: ) ' dt < ~2· (25) 

Using the properties of elliptic integrals 
(see [_a]), it is easy to show that (23) and (25) are 
identical. 

In calculating the tunnel current in supercon
ductors with paramagnetic impurities, we shall 
make use of the second method, i.e., we start 
from Eq. (18). 

The expression for the functions F ( k, w ) of a 
superconductor with paramagnetic impurities was 
obtained by Abrikosov and Gor'kov.CtJ On the 
basis of [1] we have 

F (k, w) = :1 I (w2 + Gk2 + Ll2), (26) 

where w and 3: are defined by the equations 

ro=w+-1- u Ll=d+-1- 1 , 
2-rt y1 + u2 ' 2t2 fi + u2 

(27) 

The presence of two relaxation times r1 and 
r 2 is due to the existence of two types of scatter
ing respectively without spin flip (n-scattering) 
and with spin flip (s-scattering). The probability 
of the latter is, according to [1], 

1 hs = 1 I 2Tt- 1 I 2-rz. (28) 

Equation (27) leads to the relation 

: = u( 1- ~:s 11 ~ uJ. (29) 

Integrating Eq. (26) for F ( k, w) over £k and 

substituting it into (18), we obtain the following 
formula for the Josephson current: 

00 - -

J _ R-1 ~- ~t ~2 d 
s- NN . . (J). 

o l'X12 + "ffi2 13.22 + {;)2 
Using (27) this expression can also be re

written in the more compact form 

~ 1 1 
Is= RNN-1 ~ dw, 

0 l'u12 (w)+ 1 l'uNw)+ 1 

where the dependence of u on w is given im
plicitly by relation (29). 

(30) 

(31) 

Before proceeding further with the calculation, 
we shall draw a few conclusions. Firstly, in the 
absence of scattering with spin flip: Ts = oo (i.e., 
for purely diamagnetic impurities having no 
localized magnetic moments), we obtain on the 
basis of (29) u = w/ ~. from which it is seen that 
the integral (31) coincides with Eq. (24), which 
holds in the absence of impurities. Consequently, 
diamagnetic impurities have no effect on the mag
nitude of the critical Josephson current, just as 
they have no effect on the thermodynamics of 
superconductors.CGJ (Of course, in our treatment, 
effects associated with the influence of impurities 
on the energy spectrum of the metal [9 J or with a 
decrease of the anisotropy of the gap [10] drop out. 
We consider an isotropic metal with a quadratic 
dispersion law that is unchanged by the presence 
of impurities.) 

Secondly, from (31) (and also from the more 
general formulas (17) and (18)) it is clear that the 
Josephson current is non-zero as long as the F 
function (i.e., the quantity D.) differs from zero 
and does not vanish at the point at which the en
ergy gap wg becomes zero. Thus, for weak 
superconductivity, just as for ordinary supercon
ductivity, what is more important is not the pres
ence of a gap in the spectrum of single-particle 
excitations, but the phenomenon of condensation 
associated with the emergence of pairs of elec
trons (described by the F function) in states with 
exactly identical momenta. 

Calculation of the integral (31) for D.1 -.c. D.2 and 
rs 1 -.c. Ts2 is extremely complicated and requires, 
evidently, numerical methods. However, simple 
analytical expressions can be obtained in the case 
of identical superconductors ( D.1 = D.2 = D., T s 1 

= Ts2 = Ts ). We have from (31) in this case 

- -1 r dw 
Is- RNN ~ uZ(<O) + 1 · (32) 

Further, it is possible to go over from integra
tion over w to integration over u, in accordance 
with (29). A particularly simple expression is ob-
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tained in the region ~ T s > 1, in which wg ~ 0: 

/ 8 = ~ /1RNN-i (t- i___i_), f1'ts;:;::: 1 (33) 
2 3n 11 'ts 

(we recall that ~ also depends on the concentra
tion of impurities UJ ). 

In particular, at the point ~ T s = 1, for which 
the energy gap wg goes to zero, we have 

ls' = ~-11( 1- ~) RNN-1• (34) 

At this point ~ = e- 7r 14 ~0 (see [1] ) , where ~0 
is the value of the ordering parameter in the ab
sence of impurities. Consequently, 

Is' = e-n/o ( 1 - 3~) / 8° = 0.26/8°, 
where J~ = % n~0 Rt./N is the maximum ;alue ?f. 
the Josephson current in the absence of 1mpuntles. 

In the gapless region ( ~ T s < 1), the integral 
(32) equals 

n { 2 _ 1 _ 4 1 
Is = z-11RNN-i 1 - -;:t" tan "Jf (11Ts) 2- 1- 3n 11Ts 

X [ 1- -~(1-112-rs2)''• +! (1-112-r.2)''•]}, 

(35) 

The dependence of J s on the concentration of 
paramagnetic impurities (more precisely, on 
n/nc ), plotted on the basis of (33) and (35) with 
account taken of the dependence of ~ on n tabu
lated in[.tt,t2J, is shown in Fig. 2. On the same 
graph is shown for comparison the dependence of 
~ and wg on n as taken from [tt, t2]. It is seen 
that J s decreases with increasing impurity con
centration more rapidly than ~. but more slowly 
than wg. 

In conclusion we remark that, as shown 
earlier,l7J calculation of the scattering of elec
trons within the dielectric layer of the tunnel 
junction, which leads to a reversal of the electron 
spin as it crosses through the barrier, also leads 
to a decrease in the Josephson tunnel current 
compared to the theoretical values of J~ given by 
Eqs. (1) and (2). 
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