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It is shown that there is an instability of the Fermi state in a one-dimensional system with 
regard to an arbitrarily weak attraction between the particles. In this connection, in con­
trast to the three-dimensional case, not pairs but quartets of particles near the Fermi sur­
face are characteristic of this instability. The instability causes a rearrangement of the 
ground state in which a gap appears in the spectrum accompanied by a simultaneous 
doubling of the period of the structure. The new ground state, however, is capable of con­
ducting current without energy dissipation. The interaction with the lattice is taken into 
account; its role reduces to the appearance of a certain effective interaction between the 
electrons. If the effective interaction turns out to be repulsive (remaining weak), then the 
system remains in the metallic state at all temperatures. The problem of fluctuations is 
discussed. 

INTRODUCTION 

THE appearance of the article by Little[!] once 
again caused a great deal of interest in one-di­
mensional conducting systems, for example the 
molecules of certain linear polymers and possibly 
dislocations. Apparently the mechanism of at­
traction between the conduction electrons sug­
gested in [1] is quite feasible, and qualitative esti­
mates made by Little with the use of the usual 
formulas of the Bardeen-Cooper-Schrieffer (BCS) 
theory of superconductivity [2] indicate that effects 
of the superconducting pairing type might exist in 
such systems at rather high temperatures. How­
ever, the one-dimensional nature of the problem 
makes it highly unique, so that a trivial generali­
zation of the BCS theory to this case is impossible. 
Experimental data concerning the electron spectra 
in the necessary region of frequencies and temper­
atures are, for the present, not available. There­
fore, below an attempt is made to clarify the 
theoretical side of the question. 

As is well known, one of the major difficulties 
is associated with the so-called doubling of the 
period in a one-dimensional system. Peierls [a] 

has stated a theorem according to which a one­
dimensional metallic system is unstable with re­
spect to the doubling of the period of the structure 
with simultaneous formation of a dielectric gap in 
the energy spectrum of the electrons. In this case 
one would hope to be able to observe in an experi-

ment only some trace of the attraction caused by 
the Little mechanism, since such a gap undoubt­
edly must be of an atomic order of magnitude. Be­
low, however, we shall show that Peier ls' theorem 
is incorrect. Actually the doubling of the period 
and Cooper pairing are non-separable parts of one 
and the same process of the rearrangement of a 
one-dimensional Fermi system under the influence 
of attraction between the electrons. The new state 
which arises is able to conduct current. 

The following important consideration is re­
lated to the problem of fluctuations. In the one­
dimensional case, if the spectrum of vibrations 
does not contain a gap, calculation of different 
fluctuating quantities (for example, displacements 
of the ions) gives a divergent result at large wave­
lengths. With regard to the ordinary sound fluctua­
tions, they are small at low temperatures since 
they contain the small parameter of the adiabatic 
approximation. One of the principal objections in­
troduced by Ferrell [4] and later by Rice [U] con­
sists in the fact that in the one-dimensional model 
the fluctuations associated with electron sound are 
large. However, the methods used by Ferrell and 
Rice and based on the Ginzburg-Landau equation 
are not applicable to the case of a one-dimensional 
superconductor, and by the same token it is im­
possible to regard their conclusion about the ab­
sence of a superconducting transition as proved. 
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In reality, the presence of such fluctuations very 
strongly complicates the picture of the phenomenon 
although, in our opinion, it does not suppress 
superconductivity (see the Supplement). The in­
vestigation carried out by us of a model with a 
weak interaction (including the interaction with 
phonons) shows that in the case of an effective at­
traction the system of electrons turns out to be 
unstable, which indicates the possibility of super­
conductivity type effects in one-dimensional sys­
tems. 

1. INSTABILITY OF THE GROUND STATE OF A 
ONE-DIMENSIONAL FERMI SYSTEM 

As stated above, we shall investigate the stabil­
ity of the Fermi ground state of a system of elec­
trons with regard to the interaction between them. 
We first digress from the periodic field of a chain 
and consider the model of a one-dimensional 
Fermi gas. Later on we shall include the neces­
sary complications. 

We choose an interaction of the electrons among 
themselves in the form 

f :~.,6 (PIP2P3P4) = g ( ba.vb~b - ba~6~v), ( 1) 

where the constant g is assumed to be small and 
corresponds to the Coulomb interaction and to the 
interaction of Little.[(] This interaction is effec­
tive only over interatomic distances, which leads 
to a cut--off of the corresponding integrals at fre­
quencies on the order of the atomic frequency E0• 

Below we shall investigate the singularities of the 
vertex part associated with a small interaction. 

As is well known,C6J two approaches are possi­
ble. By investigating the analytic properties of the 
vertex part for T = 0, one can show that if it has 
a pole in the upper half plane, then this indicates 
instability of the ground state. Thus, for example, 
the existence of the Cooper effect in the ordinary 
case [G] may be demonstrated. Unfortunately, the 
accuracy with which the calculation below is made 
is inadequate for these purposes. Therefore we 
choose another method which consists in an inves­
tigation of quantities in a thermodynamical tech­
nique.[S] Namely, it will be shown that in the 
presence of the attraction (1) the thermodynamical 
vertex part tends to infinity at a certain tempera­
ture, which is the temperature of the phase transi­
tion. The total picture of the new state at absolute 
zero will be investigated in Sec. 3. 

We consider two diagrams of first order per­
turbation theory (Fig. 1). The first of them-a 
diagram of the Cooper type-is proportional to the 
matrix element 

P,>O<PJ P,~p? 
Pz q-l Pq. PJ l-K Pt,. 

FIG. 1 

_!__ ~ g \ G(l)G(q -l)dl(ba.vll~o- bcxobPv) 
2Jt • 

or after summation over frequencies (for q = 0) 

"'_!_ \ ~th-6- (2)* 
2n J s 2T ' 

where ~ = v( Ill - l 0 ). As usual, in this case a 
logarithmic integration over l appears, as a con­
sequence of which this diagram is of order 
~ (- g/27T v) ln ( E0/T). At low temperatures the 
large value of the logarithm may compensate for 
the smallness of the parameter g/27T v « 1. For 
later purposes, it is helpful to remind ourselves 
that in the one-dimensional case the "Fermi 
surface" is represented by the two points ±p0• The 
logarithmic integration in (2) is carried out over 
the neighborhoods of both points. 

Now let us go on to the second diagram of Fig. 
1. In the three-dimensional case, for small mo­
mentum transfers p 3 - p 1 = k, singularities of the 
"zero sound type" are associated with this dia­
gram. The Coulomb forces, i.e., the condition of 
electroneutrality, exclude the possibility of elec­
tron sound. Therefore, below we consider the 
properties of this diagram for large momentum 
transfers k ~ 2p 0• It turns out that in the one­
dimensional case such a diagram also contains a 
logarithmic integration and therefore is of the 
same order of magnitude in the temperature range 
under consideration as the diagram of the Cooper 
type. 

In fact, the matrix element for this diagram 

bcxbb~vgT ~ ~ G(l)G(l- k)_:!!_ 
(j} 2Jt 

after summation over frequencies takes the form 

b 6 g 'i dl { ~(l) ~(l- k) } 
cx~flv 2:-t J ~(l)-~(l-k)-ioo0 th 2T-th 2T · 

If l ~ p 0, then ~ ( l - k) = - ~ ( l ), from which it 
follows that for w 0 = 0 this term is of order 
( g/27TV) ln ( E0/T). If k is fixed (for example, 
2p0), then the logarithmic factor associated with 
the integration appears only in the neighborhood of 
the point +p 0 on the Fermi surface, and this is 
why the coefficient in front of the logarithm in this 
diagram is one-half the corresponding coefficient 
for the diagram of the Cooper type. In addition, the 
signs in front of the logarithms are different, i.e., 

*th =tanh. 
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we say that in the presence of attraction the con­
tribution from the Cooper diagram increases the 
vertex part (1), whereas the contribution from the 
second diagram decreases it. 

Here it is appropriate to say that in a one­
dimensional lattice, owing to the linear relation 
between the quasimomentum and the number of 
states, 2p0 is just one-half the period of the re­
ciprocal lattice. The singularity associated with 
momentum transfer k = 2p 0 for the zero-sound 
diagram therefore means a particular role of the 
density vibrations with period 7T/p 0, that is, with 
double the period of the spatial chain. 

Thus, we encounter the phenomenon noted by 
Peierls-doubling of the period. However, we see 
that the diagrams corresponding to Cooper pairing 
have the same order of magnitude. And what is 
more, it turns out that it is impossible to sepa­
rately sum the diagrams of both types. Actually, 
let us consider for example the diagram shown in 
Fig. 2. This is a Cooper diagram with an internal 
insert of the zero-sound type. For fixed p 1 ~Po 

the insert gives an additional logarithm in the 
region when l is integrated in the neighborhood of 
-p0• The order of magnitude of this diagram is, 
consequently, [(g/v) In ( E0 /T)J2. The singularity 
of interest to us lies in the region ( g/21TV) 
In (E0/T) ,..., 1 or 

Tc "' eo exp ( -2nv I I g I). (3) 

FIG. 2 

Therefore, we must sum the entire set of diagrams 
giving a relative contribution of the form 
[ ( g/v) In ( E 0/T)] n. A distinctive topological 
property of this class of diagrams is the fact that 
one can always divide them into two parts, having 
cut only the two internal lines corresponding to the 
logarithmic integration. 

Determination of the sum of diagrams of such 
type, the so-called "parquet," reduces to a solu­
tion of the system of nonlinear integral equations 
established by Dyatlov, Sudakov, and Ter-Martiro­
syan.[7] The specific form of the system depends 
on the spin structure of all quantities; therefore, 
below we shall only schematically reproduce the 
derivation. Let us denote by <I> ( p1p 2; P3P 4 ) 1l the 
totality of all diagrams of the type under consider-

1>we temporarily omit the spin structure of all quantities. 

ation which are reducible in the direction from the 
momenta p1p2 to the momenta P3P.t• i.e., they may 
be separated into two parts by the method indicated 
above-into parts containing, respectively, the 
incoming ends p1p2 and the outgoing PaP.t· Figure 
2 may serve as a simple example of such a dia­
gram. Similarly two more quantities <I> ( p1p3; P2P4 ) 

and <I> (p1p 4; p2p3 ), which are reducible in two other 
possible directions, may be defined. It is obvious 
that the total sum of all diagrams r( p 1p2p:JP 4 ) is 
given by 

8 

f (P1P2PaP4) = f 0 + -~ <D;. (4) 
i=i 

It is easy to obtain the equation for an isolated 
"block" by using the reducibility in the appropri­
ate direction. For example, the equation for the 
"Cooper block" is shown in Fig. 3, or analytically 
it has the form 

<1> (PiPz; PaPi) = ~ ~ ~ {f0 + <1> (pik; Pi+ Pz- k, Pz) (5) 
Ol 

+ <D(pzk; Pi, Pi+ Pz- k)} G(k) 

XG (Pi+ Pz- k)f(k,pi + Pz- k; Pa,P4)dk. 

FIG. 3 

The system of Eqs. ( 4) and (5) is exact for the 
set of diagrams under consideration. It is clear 
that the ''parquet'' does not exhaust all possible 
diagrams for the vertex part; however, one can 
convince oneself that in the approximation 
( g/ 1T v ) In ( E 0 IT ) ~ 1 the remaining diagrams 
(such as, for example, the "envelope" shown in 
Fig. 4) are smaller by at least the ratio gj1rv « 1, 

since they contain an inadequate number of logar­
ithmic integrations. Strictly speaking, if we return 
to expression (3) for the critical temperature, then 
it is evident that in the approximation under con­
sideration the latter is determined only accurate 
to the factor in front of the exponential. Therefore, 
in the equation for the pole in the vertex part, 
which we obtain below 

1 +_!__In~+ O(g) = 0, 
'ltV T 

the terms of order g/ 1T v « 1 should be known, 
i.e., some of the "nonparquet" diagrams should 
have been included in the equation. Taking account 
of this circumstance would greatly complicate the 
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FIG. 4 

entire calculation. Therefore, below we shall con­
fine our attention only to the approximation 
( g/ 7rV) ln ( E0/T) ~ 1, which, nevertheless, en­
ables us to investigate the entire physical situation 
sufficiently completely. In accordance with this, 
we shall also solve the system of Eqs. ( 4) and (5) 
with logarithmic accuracy. The logarithmic nature 
of the integration of the two G-functions in (5) en­
ables us to change to logarithmic variables, since 
all quantities are slowly varying functions of the 
momenta and "frequencies." 

In accordance with what has been said above, 
we shall investigate the vertex part 
r01{3'YO (PtP2; P3P4 ) with small total momentum and 
momentum transfer of order 2p0• For definiteness, 
we choose 

IP1 + P2f ~Po, 
IPa- P1- 2Pol ~Po· 

Under these conditions one of the ''blocks'' 
corresponding to the direction (p 1p4; p2p3) does 
not contain a logarithmic integration and is there­
fore small. The two remaining "blocks" of the 
Cooper and "zero sound" types depend on 

(6) 

Since the logarithmic integrations in (5) are cut 
off at the lower limit, then strictly speaking in the 
definition of ~ and 1J by "momenta" it is neces­
sary to ·understand the largest of the following 
three quantities: the momenta proper, the fre­
quency, or the temperature. The quantities 
I Pt + P2 I and I P3 - Pt - 2p 0 I may be of different 
order. In this case the vertex part depends on both 
arguments. As to the "blocks," then it is obvious 
that if, for example, ~ > 1], then the "Cooper 
block" depends on both arguments since in it 
there are integrations extending to the "smallest" 
momentum I p 1 + p2 I, whereas in a "block" of 
the "zero sound" type only the dependence on the 
"largest" momentum 1 p3 _ Pt _ 2Po 1 

» I Pt + P2 I is retained. 
Taking account of all that has been said, and 

also remembering that in the diagrams of the 
"zero sound" type the logarithmic integration 

takes place close to one of the two points of the 
Fermi surface, one can now write down a system 
of integral equations (5) for our case. Let us in­
troduce the notation 

ra.f3vo(P,P2PaP4) = V!(S, 'I'J) (6a.vllpo -lla.ollf3v) + V2(s, TJ)IIa.o11(3v, 

~a.f3vo(PIP2PaP4) = cr,(£, TJ) (lla.vllpo -lla.ollav) + 0"2{6, TJ)6a.o6 13y, 

Sa.Bvo(PIP2PaP4) = S,(s, TJ) (6a.vllao- 6a.o6pv) + S2(s, TJ)IIa.o6py. 

(7) 

In (7_) the quantity S01 (3yo - r~,ayo is the sum 
of all diagrams of the Cooper type, i.e., diagrams 
cut in two by parallel lines with total momentum 
Pt + P2· Similarly I:. 01[3yo - r~,ayo is a "block" 
of the "zero sound" type, i.e., the sum of the dia­
grams cut in two by antiparallel lines with differ­
ence Pt - p 3. The reason why we included the bare 
vertex r~f3'YO (1) in the definition of the functions 
(7) is clear from the structure of the right side of 
the schematic equation (5) for the "blocks." The 
expression inside the parentheses contains two 
"blocks"; however, as one can easily verify, in 
the necessary region of integration over k, only 
one of them is essential. It is convenient to denote 
the corresponding combinations by a single letter. 
In this connection 

r a.pyo (PIP2P3P4) = ~a.(3y0 (PIP2P3P4) + Sa.pyo (PIP2P3P4)- r~fM· 

s b t't t' . (S) u s 1 u mg expresswns (7) into (5) and sepa-
rating the spinor indices, we obtain 

1) in the case 1J > ~ 

Sds, TJ) == Sds>, Sds, TJ) = s2 <s>, 

A.= 1/2nv, 
l 

cr,(s,TJ)=g-A. ~ [S,(t)v2(t,TJ)+S2(t)v1 (t,TJ)]dt 
0 

T1 

-A. ~[Sds)v2(t, TJ)+S2(s)v,(t,TJ)Jdt, 

' ~ 

0"2 (s, TJ) = -A. ~ [S, (t)v, (t, TJ) + S2(t) V2(t, TJ)] dt 
0 

T1 

-A.~ [Sl(£)v,(t,TJ)+S2(s)V2(t,TJ)]dt, 
s 

v' <s. TJ) = cr, <s. TJ) + s, <s>- g, 
V2(s,TJ)= cr2(s,TJ)+S2(s). 

2) in the case 1J < ~ 

cr,(s, TJ) == cr,(TJ}, cr2(6, TJ) == cr2(TJ), 
T1 

s,(s,TJ)=g+A. ~ [cr,(t)v2(s,t)+cr2(t)v,(s,t) 
0 

' 

(9) 

-2cr,(t)v,(s,t)]dt +A. ~[cr,(TJ)v2(s,t)+cr2(TJ)v,(s,t) 
T1 

- 2cr!(TJ)v!(s, t)J dt, 
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~ 6 

82(£, TJ) =A~ a2(t)y2(£, t)dt +A ~ a2(T))V2(£, t)dt, 
0 ~ 

Vt(~, lJ) = 8t(£, TJ) + Gt(TJ) - g, 

y2(£, TJ) = 82(£, TJ) - <12(TJ) -g. (10) 

Equations (9) and (10) are obtained from Eqs. (5), 
respectively, for the "zero sound" and Cooper 
"blocks.'' 

Both systems may be solved exactly by the 
method suggested by Ansel 'm. [a] This will be done 
in the Appendix. Here we present an expression 
for the vertex part in that case when all the 
''momenta'' are small or of the order of the tern­
perature. In this connection ; = 1J = ln (E0/T). The 
expression for the vertex part has the form2l 

r - o· 1'\,..,,1'\116 - ila6111lv 
allv6 -"' 1 +(g/nv)ln(eo/1') 

_ ~ ln ~ 11a61'11lv 
2nv T 1+(g/nv)ln(e0/T) 

In the case of repulsion ( g > 0) expression (11) 
does not have any singularity. The pole in (11), 

(11) 

Tc,....., eoexp (-nv/ lgl) (11') 

corresponds to an attraction ( g < 0 ). As men­
tioned above, for an accurate determination of Tc, 
terms of higher order (of the type g and g x 
[ g ln ( Eo /Tc) ln) should be taken into considera­
tion. In connection with this, the question may 
arise as to whether both zeros in the denominators 
of (11) coincide, when these terms are taken into 
account. It seems to us that this is obvious, since 
already in the logarithmic approximation the 
Cooper effect and the doubling of the period are 
related to a unique system of equations; however, 
for the final answer a calculation in a nonlogarith­
mic approximation is required. 

Expression (11) exhibits the presence of a cer­
tain critical temperature, below which a system 
of the usual Fermi type cannot exist in the pres­
ence of attraction. 

2. INTERACTION WITH THE LATTICE 

Before going on to study the properties of the 
new state, which arises in the system at low tem­
peratures, let us consider those complications 
which the presence of a periodic structure intro-

2>It would be possible to obtain this answer more simply by 
using the method suggested by Sudakov,[7] without considera­
tion of the equations of the "parquet" for the general case 
(~,; TJ ). 

duce into the problem. At once we note that, as is 
evident from the preceding considerations, only 
the neighborhood of the Fermi "limit" is essen­
tial for the singularities investigated. Therefore, 
we may ignore the fact that electrons in a lattice 
possess not momentum but quasimomentum. The 
characteristic properties of Coulomb forces, i.e., 
the condition of electroneutrality, become apparent 
in questions associated with the interaction of the 
conduction electrons with an electromagnetic field. 
Now we must take into consideration that besides 
the Coulomb forces between the conduction elec­
trons and the Little interaction [1] there is still the 
interaction with the ions of the lattice which, in the 
final account, leads, as we shall see, to an actual 
doubling of the period. In the BCS theory the at­
traction between electrons, arising due to the inter­
action with lattice vibrations, is the basic mecha­
nism responsible for superconductivity. In a one­
dimensional lattice, under the assumption that the 
Little mechanism is dominant, the interaction with 
the lattice is less essential; however, we include 
it for completeness of the picture. 

Both longitudinal and transverse vibrations 
(flexure waves) are possible for a linear chain. 
The conduction electrons interact, generally speak­
ing, both with those and with the others. Without 
making the form of this interaction specific, let us 
consider the matrix element of the transition cor­
responding to the scattering of two conduction elec­
trons by one another due to the exchange of a virtual 
phonon. The dotted line on Fig. 5 denotes the D­
function of the phonon. The corresponding matrix 
element has the form 

I a (pa - Pt) 12 I [ ( ea - Et} 2 - Wo2 (pa - Pt)], 

where w0 ( k) is the dispersion law of the phonons, 
and a ( k) is the vertex of the interaction of elec­
trons with the phonon field. For small momentum 
transfer k = I p 3 - p 1 I « p 0 the energy transfer 
E3 - E1 ~ vk whereas, for example, for longitudinal 
phonons w 0 ( k) = ck. Therefore I E2 - E 1 I 
» w 0 ( k) and, consequently, for small transfers 
this interaction corresponds to repulsion. On the 
other hand, if I p3 - p 1 I ~ 2p0, then the change of 
the electron energy is small; in the denominator 
one can neglect the first term and the effective in­
teraction is an attraction. We note that it follows 
from this consideration that the magnitude of the 

.. 
' 

II Pa p, 
I 
I .. ' .. p* P2 

FIG. 5 
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attraction associated with a large momentum 
transfer is vo/c 2 ~ M/m times larger than the re­
pulsion corresponding to the forward scattering, 
i.e., in general one can neglect 31 scattering proc­
esses due to the exchange of phonons with small 
transfer. 

If, as above, we choose the momenta so that 

then the problem of the evaluation of the total ver­
tex part r 01 f3 yo ( p 1p2; p 3p 4 ) differs from the pre­
ceding calculation by the appearance of a new 
"bare" interaction of the form -gbo 01 y6{3o· It is 
more convenient, however, to write the general 
form of the "bare" interaction in the following 
way: 

f 0~th5 = (g- gp) 2 (6av6~o- 6ao6~v) - gp26aoC~v· (12) 

In accordance with (7) we denote 

(13) 

In these formulas the constant g describes, as 
before, the Coulomb interaction and the Little in­
teraction, gp describes the constant electron­
phonon interaction. Being a long-range action, the 
latter is cut off at the Debye frequency wu 
~ Eo Vm/M. Let us denote ~ 0 = ln ( E0 /wu) » 1. 
In the definitions (13) of y10 and y20 it is thus im­
plied that the constant gp is equal to zero for 
Yl > ~ 0• The derivation of the equations for the 
vertex part does not differ at all from the previous 
derivation. 

Let us again write down the system of Eqs. (9) 
and (10): 

1) the case TJ > ~ 

~ 

a!(;,"l'J)=vto-A. ~[St(t)vz(t,"l'J)+Sz(t)vt(t,"l'J)]dt 
0 

1J 

-A.~ [S1 (;)yz(t,"l'J)+S2J(;)'\'t(t,"l'J)]dt, 

' ' az(s, "l'J) = '\'zo- A.~ [St(t)vt(t, "l'J) + Sz(t)vz(t, "l'J)l dt 
0 

1J 

-A.~ [St(s)'\'!(t,"l'J)+Sz(s)vz(t,"l'J)ldt, 

' 

2) the case TJ < ~ 

3 )For simplicity, we assume that there are no optical 
branches in the chain. 

1J 

81(;, "l'J)= '\'10+ "A ~[a!(t)y2(6, t)+ a2(t)v1(6, t) 
0 

6 

- 2a!(t)yl(s, t)]dt+ A.~ [a!("l'J)vz(s,t)+ az("l'J)'\'!(6,t) 

1J 1J 

Sz(s, "l'J) = vzo +A.~ az(t)vz(s, t)dt +A.~ az("l'J)Vz(s, t)dt, 
0 6 

'\'1(6, "l'J) = Sl(S, "l'J) + Gt("l'J)- '\'!0, 

vz(s, "l'J) = Sz(s, ~) + az("l'J) + yw. (10') 

The solution of this system is given in the Appen­
dix. Here we present only the final result for the 
vertex part, from which, in analogy to (11), the 
existence of a singularity with respect to the tem­
perature in the presence of an effective attraction 
follows. 

For ~ < ~ 0 expression (11) for r ( ~, ~ ) is re­
tained; for ~ > ~ 0 we have 

1 _ gg£o } 
- -(g + gp 2)- --- 6ao6~v, 

2 2:rtv 
(14) 

g = g j[1 +_£_In~ J. (14') 
:rtV WD 

From formulas (11) and (14) it follows that pro­
vided that 

(g / :rtv) ln (eo/ wn) < -1 

the old expression (11) is preserved for Tc; in 
this case Tc > wu. In the opposite case 

Tc ~ wn exp ( _ :rtV 2 ) , g-gp 

so that the combination 

g-gp2 < 0 

plays the role of an effective attraction. 
Thus, the phonon interaction enters into the 

transition temperature T c only if T c < wu. 

(15) 

(16) 

In the presence of an interaction with phonons, 
at the transition point there are also singularities 
of the quantities characterizing the lattice. For 
this, we consider in greater detail the D-function 
of the lattice vibrations, which we define as the 
Fourier component [!l] D ( wn, k) of the thermody­
namical average (T(u(r1, Tt}u(r2, T2 )) of the 
displacement operators u ( r, T). Without any in­
teraction 
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Do(Wn, k) = 1/ 4Mpo[wn2 + Wo2 (k)] (17) 

( 7r/2p 0 is the period of the lattice). 
After including both the electron interactions 

among themselves and the interactions of the 
latter with the lattice, one can relate the phonon 
Green's function with the total vertex part by 
means of the exact equation graphically shown in 
Fig. 6: 

2 T 
D(k) = Do(k)- 2Do2 (k)gp2W2po 4Mpo-

2n 

X~ ~ G(p+)G(p-)dp- 4gp2Mp0w:p,D02 (k) 

(18) 

G G G 
_£._= _P._o_ + _f!P.-<:>-!!. + _'l.!-<J!:I>-E.o_ 

G C C 

FIG. 6 

where P± = p ± ( k/2 ), and the combination 
4Mp~~w2p0 appeared as a result of the fact that 
above in Eq. (12) we denoted the ratio 
a2(2p 0 )/w~(2p0 ) by gb. Expression (18) contains 
a singularity for k = ±2p0• Let, for example, 
k = 2p 0• The second and third terms in (18) con­
tain logarithmic integrations of a pair of G-func­
tions. Let us denote 

D(2po, T) = -d(TJ) I 4Mpow22p., 

where TJ = ln ( e:0 /T). Then, by changing to logarith­
mic variables, we obtain 

(see the Appendix for the definition of y+ ) . With­
out carrying out the final evaluation of the last 
integral of formulas (A.8b) and (A.8c), we obtain 
the result that near (15) the D-function tends to 
infinity: 

D(2po) oo (T- Tc)--'1•. 

The nature of the results obtained above is not 
modified even if we set g = 0. Then it becomes 
clear from the previous consideration that the in­
stability mentioned by Peierls with regard to the 
formation of a dielectric gap associated with the 
displacement of ions through one of their own po­
sitions of equilibrium is only one side of the phe-

nomenon, since the interaction of the electrons 
with the lattice vibrations leads to the appearance 
of an effective attraction, i.e., to the possibility of 
pairing. 

3. GROUND STATE OF THE SYSTEM AT 
ABSOLUTE ZERO TEMPERATURE 

Above we indicated that in the one-dimensional 
case the effective attraction between electrons 
leads to an instability of the system or, more 
accurately speaking, to the appearance of a certain 
phase transition at a sufficiently low temperature. 4l 

However, in contrast to the usual theory of super­
conductivity, now not pairs but quartets of parti­
cles exist: two electrons and two holes on opposite 
sides of the Fermi "surface." 

Now let us try to construct the total set of 
equations describing the properties of the ground 
state of the system. It is essential, of course, that 
we assume that there is only one transition, i.e., 
the denominators in expressions (11) and (14) tend 
to zero simultaneously-a fact proved by us only 
with logarithmic accuracy. 

Following the usual approach to the theory of 
superconductivity (see, for example, [aJ ), we must 
assume that in our system for T = 0 the average 
values of the field operators 

(apap+), <ap+a_p+), (ap±2p, at> 

are different from zero. 
The average of the first type is associated with 

ordinary G-functions, while the two of the second 
type reflect the appearance of bound pairs of the 
Cooper type and a bound state of an electron and 
a hole. As is well known,[G] the analogy with Bose 
condensation is the basis for such a procedure. At 
the condensation temperature a pole appears in 
the Green's function G ( p) of a Bose particle for 
p = 0, corresponding to the fact that at lower tem­
peratures a portion of the particles are found in the 
ground level. From a formal point of view, this 
corresponds to the introduction into the Green's 
function of a term with a 6-function structure of 
the form n 06 ( p ), where n 0 is the density of con­
densed particles. The vertex part 
ra{Jyo (PtP2p3p4 ) which we investigated above is 
proportional to the two-particle Green's function 

(19) 

4 )In order to avoid misunderstandings, we indicate that the 
well known proof about the impossibility of the existence of 
phase transitions in the one dimensional case, cited in[• ], 
concerns only phase transitions of the first kind. 
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which for two particles or for a particle-hole pair 
has boson-like properties. Therefore, the origin 
of two poles of different spin structure in (11) or 
(14) requires lower temperatures, and in particu­
lar at absolute zero, the introduction in (19) of 
a-functions of two types: 

+ ~ B (p;, Pl) 6a:'ll'l~ol'l (p; - P~< ± 2po) . 
i;l=l;i=k 

In writing down these terms there is still some 
arbitrariness, which is eliminated by the require­
ment that all momenta are found close to the 
Fermi surface. With regard to the form of A and 
B in the model with a weak interaction, it is 
natural to again assume [ 6] that expression (19) 
may be described in terms of pair averages, in­
cluding the new Green's functions as well, which 
confirms the final results. 

We introduce the following notation: 

+oo 

G:a.~(P) =- i ~ dt (T(apa.(t)app+(O) )) eiwt 

-oo 

+oo 

G~~~(P) = ~ dt <T(ap±2po,a.(t)a;~(O) )) eiwt, 

-oo 

+co 

i.,:p (p) = ~ dt (T ( a-pa.(t) ap~ (0) )> eiwt. 

-00 

Having written down the equations for the 
Heisenberg operators a ( t) and a+ ( t ): 

(20) 

and applying them to the averages defined above, 
and then describing the operator products in terms 
of pair averages according to the generalized 
Wick theorem, similar to the way this is described 
in [ 6], one can obtain a system of equations for the 
Green's functions of interest to us. Here we omit 
the entire derivation of the equations in coordinate 
space and present only the results for the Fourier 
components (20): 

(ro- s)G.,(p) - idF.,+(p)- ixGoo-(P) = 1, 

(ro + s)Goo-(P) + ix"Goo(p) = 0, 

(ro + s)Foo+(p) + ill"G.,(p) = 0. (21) 

The solutions of this system are given by 

ro+s 
Gw(P) = ro2- £2 -ldl2 -lxl2, 

- ix* 
G.,(p)=-----~ --,-----,-::­

W2 - S2 -I d 12 -I X 12 

(22) 

Thus, the energy spectrum of the system has the 
form 

(23) 

The gap in the spectrum is the sum of the "die­
lectric" (I K 12 ) and of the "superconducting" 
(I~ 12 ) parts. 

Before determining the quantities ~ and K, it 
is convenient to graphically represent the system 
of equations (21) (see Fig. 7). In this connection, 
we shall associate arrows with both ends of the 
lines: An arrow from a point corresponds on the 
average for the Green's function to an annihilation 
operator, whereas an arrow directed toward a 
point corresponds to a creation operator. There­
fore, on Fig. 7 one arrow enters into the G-func­
tion, and the other arrow comes out; in F both 
arrows are directed toward each other, where in 
F+ they are directed away from each other. In 
addition, we shall mark each end with the sign ( ±) 
in accordance with whether the momenta p in (21) 
lie near the points + p 0 or -p0• The square in 
Fig. 7 denotes the quantity ~. the circle denotes 
-K, the quantities appearing in Eqs. (21). 

In a three-dimensional system ~ is connected 
with F by the relation I g I F (xx); in the one­
dimensional case this is no longer so. Actually 
the term I g I F ( xx) is represented graphically in 
Fig. 8. It is easy to understand that corrections of 
the type shown in Fig. 8b give exactly the same 
contribution, since in our approximation 

t+J {+J C+J C+J C+J C+J C+J C+J ~+J c~J@~-J I <;J -;;- = c;;- + ~ + G0 G 

(+) (+' - (+) (+)___j+) (+) 

~-~ 
(-) (+J_~ 

~-~ 

FIG. 7 

~/p} 
!l c p a b 

FIG. 8 
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(I g l/7rv) ln ( E0/Tc) ~ 1. In this connection, of 
course, in all internal lines it is sufficient to sub­
stitute only the Green's functions giving logarith­
mic integration, i.e., not to assume in the calcula­
tion the existence of the functions F and G±. Ow­
ing to this, as shown in Fig. Sc, the "zero sound 
block" or, more precisely, the combination ~ (7) 
enters into the definition of ~. For similar rea­
sons, a "block" of the Cooper type enters into the 
definition of K, as shown in Fig. 9. 

C'lt-1 ~e(p) 
(~} 

FIG. 9 

After these preliminary remarks, let us write 
down the equations for ~ and K, which thus arise 
during the derivation of (21): 

&:~ (p) = 2 (in)2 ~~ ~y8all (p' p'; pp) F~s (p') dp' dro', 

'KatJ (p) = {2~)2 ~~ Say~8 (pp'; pp') G~s(p') dp' dro'. 

The matrix structure of G, F, and (J- can be 
chosen in the form 

where 

Substituting expressions (7) into the relations pre­
sented above and taking into consideration that the 
logarithmic integration in these definitions is cut 
off for v(p'- p 0 ) ~ o = (~2 + K2 )112, we obtain the 
following equations for ~ ( p) and K ( p ): 

len q 

M(1J) = cr3 (1J)A. ~ M(t)dt +A. ~ as(t)M(t)dt, 
n o 

;eff n 

x(1J) =- S+(1J)A. ~ x(t)dt- A.~ S+(t)x(t)dt. {24) 
q 0 

Here 
Eo 

1)= In {v(p- Po), ro} ' 
Eo 

~eff = ln-, 
b 

and see the Appendix for the definition of the quan­
tities a3 and s+. 

Thus, ~+ ( 11) and K{ 11) are slowly varying 
functions of the distance to the Fermi surface. 
Upon glancing at Eqs. {24) it becomes clear that 
they coincide with the equations of the ''parquet'' 
for the vertex parts y+ (A.1) and y 3 {A.2), in 
which the inhomogeneous terms a3 and s+ are 

omitted. Since according to Eq. (A.3) y+ and y 3 

have the form of a product of functions A ( ~ ) B ( 11), 
then it is obvious that a solution of (24) exists if 

g 
1 +-~eff = 0, bo'"""' Tc, 

nv 
since here one can actually omit the inhomogeneous 
terms in Eqs. (A.1) and (A.2). The behavior of the 
solution of Eqs. (24) in this region, i.e., for ~eff 

> 11 follows from expressions (A.S) and (A.9): 

[ g l-'i• 11(TJ)=bo 1+--TJ . nv _ 

Associated with the convergence 11- ~eff• the 
functions K { 11) and ~ { 11) from (25) increase. 
However, in order to find the values of both func­
tions and the exact value of the gap 6 0 in the spec­
trum at the Fermi surface, it is necessary to go 
outside the limits of the logarithmic approxima­
tion used above. From the results {25) one can 
nevertheless derive the conclusion that in the 
region v ( p - Po) ~ o 0 both functions K { p) and 
~ ( p) become functions rapidly varying over dis­
tances of order 6 0• 

The last circumstance strongly hampers an 
investigation of the superconducting properties of 
the system at absolute zero, if the obtained re­
sults are applied to the conduction electrons in a 
linear molecule, since the evaluation for example 
of the electron current arising in such a system 
during the application to it of an electromagnetic 
field is related to integration of the Green's func­
tions in a neighborhood of the Fermi surface, pre­
cisely of order 6 0• Nevertheless, in order to ob­
tain a qualitative representation concerning the 
singularities of our system, we assume that a 
weak constant electric field with frequency w0 

- 0 is applied along the molecule, and we calcu­
late the current in this gap, assuming that ~ and 
K do not depend on p. In this case, in equations 
(21) we must introduce the vector potential 
A = -iE/ w0, having everywhere made the replace­
ment p - p - eA. In this connection, we seek all 
quantities in the form G = G0 + G1, where G1 is 
the correction to the corresponding Green's func­
tion which is linear in the field. 

The equations determining these corrections 
will have the form 

( ro - 6) Gt - tMt+ - ixGc = -veAGo, 

(ro + 6)Gt- + M2p, + ix*Gt = veAGo-, 

(ro + 6)Ft+ + iA*Gt- xF2p, = -veAFo+, 

(ro- 6)F2p, + L1+Gt-- x"Ft+ = 0. (26) 

In this system the new function F2Po has appeared, 
which we defined in the following way: 

' 
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1-j-oo 
F (p) ~'<T(a (t) ap•(O)))eiwtdt. 2po, waa = -2 _\ -2po-P, a ' ~ n· 

-oo 

Quantities of such form, i.e., modulations of the 
"superconducting" functions F and F+, should, 
strictly speaking, have been written down in the 
system of equations (21), if its derivation were 
carried out with complete rigor. In the absence of 
an external field, however, as a result of the solu­
tion it turns out that these functions are equal to 
zero by virtue of the relation 

x*F+ = .!!*G-, 

which earlier enabled us to conceal this circum­
stance. 

In the system (26), F 2p0 also drops out of the 
combination ~Fi + KG! entering into the equation 
for the correction to the Green's function, so that 
we can write 

veA [(ro + s) 2 + !!J.2- x2] 
Gt=-: . [ro2 _ 62 _ !!J.2 _ x2]2 

(27) 

With the aid of the well known quantum mechanical 
formula for the current 

. e V ) G ' ne2 A ' 7 = --(Vx- x' t(xx )-- , x-x 
rrt m 

( n is the number of electrons in the chain per unit 
length), after integration of (27) over frequencies 
and momenta5' we obtain the expression 

ne2 !!J.2 
j., = --;;-A62, 

which it is more convenient to write as 

dj ne2 !!J.2 
-=---E. 
dt m 62 

(28) 

Thus, the number of "superconducting" electrons 
at absolute zero temperature is proportional, as 
one would naturally expect, to the square of the 
ratio of the "superconducting" gap to the total gap 
in the energy spectrum. Formula (28) is, of 
course, qualitative in nature. 

In the conclusion of this section, we note that the 
linear density of the electrons has Fourier com­
ponents corresponding to ± 2p 0• since the averages 
( aiJ ap ± 2p 0) do not vanish. The creation of an 
electron density varying with the double period of 
the lattice gives rise to a corresponding modula­
tion in the distribution of the ions. We shall not 
dwell on this question in more detail. 

5>calculation of the current is carried out here with the 
specific properties of the Coulomb interaction taken into ac­
count, in analogy to the way this is done in the three-dimen­
sional case (see, for example,[•], Sec. 37). 

4. FLUCTUATIONS OF THE DISPLACEMENTS OF 
THE IONS 

Now let us estimate the effect of fluctuations of 
the displacements of the ions, for which we calcu­
late the mean square fluctuation of the distance 
between two ions whose equilibrium distance apart 
is L: 

!!2 (L) = < (u(O) - u(L) )2) = 2[ <u(O) ) 2 - <u(O) u(L))] 

= 2(D(O, 0)- D(L, 0)). 

Substituting here the expression for the phonon 
Green's function, we obtain 

!!2 (L) = _!__!__ ~ ~ dk 1- cos kL 
2nMpo., 0 ron2 + wo2 (k) 

or after summation over the frequencies wn 
= 2mrT we have* 

-- 1 ,, dk roo(k) 
/!2(L)=-2 M -~ ~(k cth-2T (1-coskL). 

n Po 0 roo ) 

By atomic displacements, in these formulas we 
understand either longitudinal or transverse dis­
placements. Depending on this, we must introduce 
here either the spectrum of longitudinal vibrations, 
which is linear for small values of k ( w0 = ck ), or 
flexure waves, whose spectrum is proportional to 
k2 (w 0 ~ ak2, where a~ wn/P~ ~ c/p0 ). 

At the absolute zero of temperature 
coth ( w0/2T) = 1, and we obtain 

-- 1 f dk {,.., Po-2 fm/llfl_nPoL, (•}o = ck 
!!J.2(L)"'- J--= -

Mpo 11L roo(k) "'Po-1 L1m/M, roo=ak2• 

Thanks to the adiabatic parameter -../ m/M 
« 1, the fluctuations are always sufficiently small. 
At high temperatures or large lengths L, the 
criterion for which is the condition 

Vmv 
L~ MT' roo= ck; 

2 vm- v 
L ~ M poT' 

for the longitudinal displacements we have 

N(L) ,.., Po-2LT I v. 

Now let us determine the distances L 0 at which 
the system of ions and with it the self-consistent 
field lose periodicity. The periodicity (or one­
dimensionality for transverse displacements) is 
violated if the relative displacement ~ of the ions 
becomes of the order of the distances between ions: 
~ ~ 1/p0• The formulas obtained above give the 

*cth = coth. 
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following expressions for L 0 at low temperatures: 

Lo ~ po-1 exp fM I m, 
Lo ~ po-1f M I m, 

At high temperatures 

Wo = ck; 
wo = ak2• 

1 Eo 
Lo ~ -- (wo = ck). 

PoT 

In the case of transverse vibrations a divergent 
result is obtained for t._2 at high temperatures. 
This circumstance means that the displacements 
of atoms located at sufficiently large distances 
from each other become large because of the 
bending of the molecule. Considering the molecule 
as an elastic thread,l9J one can show in this case 
that the radius of curvature still remains large. 
Thus, the relative fluctuation displacements be­
come on the order of atomic only, either at tem­
peratures on the order of the temperature of decay 
of the molecule wn, or at large distances. Since 
the wavelength of the electrons is of atomic order, 
a long molecule always possesses a quasi-one­
dimensional character in the sense that the latter 
is violated only over sufficiently large regions. 
(For a molecule imbedded in a condensed medium, 
all of this is correct, of course, since the mole­
cule has sufficient rigidity.) 

APPENDIX 

Combining all the equations of system (9') and 
introducing the notation 

y±(~, 11) = Vt (~, 11) ± y2(~, '11), 

we rewrite them in the more convenient form: 
; 

y+(~, '11) = S+(S)- 'A~ S+(t)y+(t, 'll)dt- 'A~ S+(~)y+(t, 'll)dt, 
0 !; 

s 
v-(~, '11) = s-m +'A ~ s- (t)v- (t, '11) dt +'A ~ s-m v- (t, '11) dt 

0 • 
(A.1) 

( TJ > ~ ). In analogy to (10') we introduce 

As a result we obtain ( TJ < ~ ) 
T] !; 

y2(~, '11) = a2(1']) +'A~ a2(t)y2(~, t)dt +'A~ a2('1l)Y2(~, t)dt, 
0 T] 

T] s 
y3(~, '11) = a3(1']) +'A~ a3(t)y3(~, t)dt +'A~ a3('1l)Y3(£, t)dt. 

0 n (A.2) 

Being reduced to such form, Eqs. (A.1) and 

(A.2) are easily solved by the method of separa­
tion of variables proposed by Ansel'm.CBJ We 
shall, for example, seek y+ ( ~, TJ) in the form 

(A.3) 

Having divided both sides of the equation by B+ ( TJ ), 
tben differentiating with respect to TJ, we obtain 

From which it follows that 
T] 

B+('ll) = exp (-'A\ y+(t) dt), y+(t) = y+(t, t). (A.4) 
a 

Differentiating the equation for y+ ( ~, TJ) with 
respect to ~, and then assuming ~ = TJ, we find 

A+'(~)B+(S) = S+'(£). 

Combining this with the previous relation, we ob­
tain an equation for y+ ( ~ ): 

v+'(~) = s+'(£)- 'Ay+2(£). (A.5a) 

Applying the same method, we write down several 
more relations of the type (A. 5a): 

v'-(S) = s'-(S) + 'Av-2 (£), 

y{ (S) = G21 (s) + AY22 (S), 

ys' (s) = a3' (~) + /,y32 (s). 

(A.5b) 

(A.5c) 

(A.5d) 

Expressing from here the derivatives for y1 and 
y2 separately, we find the equations determining 
the total vertex part for ~ = T]: 

Or with the boundary conditions (13) taken into 
account, we obtain 

s 
Yt(S) = g- 2'A ~ Y12d1'], 

0 

• 
y2(~)=- ~Yt2 d1'], 

s <so= ln(eo/wn); 

s 

Y1 (£) = i<~o)- gp2 - 2'A ~ Y12 d1'], 
so 

£ 

(A.6a) 

Vz(s)=y;(so)-gp2 -'Aht2d1J, s>~o. (A.6b) 
so 

(The vertex part changes discontinuously at 
~ 0 = ln ( E 0 / WD ).) Hence 

g 
Vl(s)= 1+(g/nv)~' 

g2 6 
vz(s)=- Znv 1 +(g/rw)£ (s <so). (A.7a) 

For ~ > ~ 0 it is convenient to introduce 
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Then 

vz(so) = -ggso/2nv. 

Therefore, for ~ > ~ 0 we o~tain from (A. 7a) 

Vt(s)=(g-gp2)1[ 1+ g:vgp2 (s-so}], 

gg'f.o 1 _ 
v2(s) =---- -(g + gp2) 

2nv 2 

(A.7b) 

In order to find y+ ( ~, 1J) for ~ ..,._ 1J, we return to 
formulas (A.3) and (A.4): 

v+(s, TJ) = v+<s)B+(TJ) 1 B+(s). (A.3a) 

It is obvious that the values of B+ ( 1J) are differ­
ent for 1J > ~ 0 and 1J < ~ 0• 

We denote by 

v~ <s, TJ), v~> <s, 11>, Yt> <6. 11> 

respectively, y+ ( ~, 1J ) in the regions 

6 < so, 1] < 6o; s < 6o, 1] > 6o; s > 6o, 1] > so. 

The continuity of y+ ( ~, 1J) with respect to 1J 
for 1J = ~ 0 follows from Eq. (A.l). With the aid of 
this condition, from Eqs. (A.3a) and (A.7a, b) we 
obtain 

'\'~< (6, 11) = '\'~ m exp [ 4g (TJ- 6) l 
1tV -

X [ ( 1 + 1t~ 6) I ( 1 + ! 1] ) J 'I• ' (A.Sa) 

v<t(s, TJ) = yj:(6)exp~ ~(so- 6) 
~~:'TV 

[ u ]''i• J [ g- g 2 ]'/• [ g ]'I• 1 + 2._ 6 / 1 + --~ (TJ- 6o) 1 + -6o ,(A.Sc) 
~v nv nv 

where Y~> is given by 

+ 3 /( g \ g v<m=-g 1+-s 1 --, 
2 • nv . 2 

+ ggso 1 
'\'>(6)= ----(g+gp2) 

2nv 2 

3 /[ g- gp2 l +-(g-gp2) 1 +--(6-6o) . 
2 , nv J 

(A.Sd) 

An expression for s+( ~) may be obtained by sim­
ple integration of relation (A. 5a). Similarly one 
can deal with all remaining equations of the sys­
tem (A.l) and (A.2). Without going into the details, 
we present only the result for y3 ( ~, 1J) in the 
simplest region: 

'\'3(1], 6> = '\'3(1]) [( 1 + :v1]) I ( 1 + !v6) T' 
X exp[- _!_(6-TJ) J, 

4nv 

SUPPLEMENT 
(February 9, 1966) 

(A.9a) 

(A.9b) 

FLUCTUATIONS OF THE ELECTRON DENSITY 

In contrast to the fluctuations of the displace­
ments of the ions the fluctuations of the electron 
density are not small. (We retract the opposite 
assertion, which was made by us earlier.[1o]) 
However, the assertion of Ferrel[(] and Rice [it] 
about the vanishing of the superconducting gap in 
this case is, in our·opinion, incorrect. Their con­
sideration is based either on the fact that for 
T = 0 the gap b.(x,t) is the pair wave function 
and as such it satisfies some wave equation, or 
else for T close to Tc it satisfies the Ginzburg­
Landau equation. It is possible, however, to show 
that the Ginzburg-Landau equation (and with it the 
equation for the pair wave function) does not exist 
in the one-dimensional case. The condition for its 
existence would be T - T c » T c (whereas in the 
three-dimensional case, this condition has the 
form Tc » T~ IE}). 

In actual fact, the situation is considerably 
more complicated. The force of action of the fluc­
tuations in a one-dimensional system is associa­
ted with the singular "infrared catastrophe." An 
electron with energy ~ = v ( p - p 0) may emit an 
arbitrary number of real quanta of density oscilla­
tions with energy w = vk, since upon fulfillment of 
the momentum conservation law, the law of energy 
conservation in the one-dimensional case is iden­
tically satisfied. The calculational situation here 
is extremely complicated, and we postpone its dis­
cussion to a subsequent article; however, here we 
shall very briefly describe it. 

The "infrared catastrophe" correction of order 
n corresponding to the self-energy has the form 

~(n) ,...., gn6n 1 vn (ro _ 6} n-t. 

It becomes substantial ( ~ l: COl = w - ~ ) only for 
w- ~ ~ gVv. (Therefore they are completely 
negligible in the calculational technique with imag-
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in.a:u frequencies for T ;;.! 0, as in Sec. 2, when 
1:{nJ :S gllVvll.) On the other hand, in the logarith­
mic integrals in the equations for the gaps (24) a 
considerably larger region w of order ~ is essen­
tial, where one can use the zero-order approxima­
tion for g. In addition, it is physically obvious that 
associated with the presence of a gap in the spec­
trum for ~ :=:A no emission of phonons is possi­
ble. Therefore, the "infrared catastrophe" and, 
by the same token also the density fluctuations 
cannot affect the form of the superconducting gaps 
~ and K for w ~ ~ (but w ;;.! ~!) for ~, w > A, K 

and for w, ~ :S ~. K. The gap undergoes an essen­
tial change only in the region w - ~ ~ g~ for 
w, ~ » ~. K. Therefore, in our opinion the fluctua­
tions of the density cannot destroy superconductiv­
ity. 
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