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The Gibbs free energy function G{D.} for a superconductor in a magnetic field is treated on 
the basis of the BCS theory as a functional of the superconducting ordering parameter. This 
extends the corresponding expression of the Ginzburg-Landau theory to arbitrary tempera
tures. The free energy is minimum at equilibrium. This yields the equilibrium electrody
namic equations, which in the case of superconductors of the second kind describe the usual 
superconducting state with finite penetration of the field as well as the mixed Abrikosov state 
with vortex lines that pierce the bulk superconductor. The second variation of the free energy 
is investigated in the vicinity of the superconducting state and it is shown that the state is sta
ble with respect to small fluctuations of the ordering parameter up to a certain critical field 
Hb 1 > Hct• for which 620 changes sign for the first time. The field strength H~1 (T) is calcula
ted for extremely hard superconductors (K » 1). 

AS is well known [t], starting with a critical field 
Hc1 ~ HcK-1 ln K, it becomes thermodynamically 
convenient in a bulky superconductor of the second 
kind, placed in a magnetic field, for a transition to 
occur into a mixed state, in which the magnetic 
field partially penetrates into the superconductor 
in the form of quantized vortex filaments. At the 
same time, the equations of electrodynamics for 
such superconductors admit formally, up to the 
thermodynamic critical field He, equilibrium solu
tions of the usual type, describing the superconduct
ing states with penetration of a field to a depth 
6 [2]. The main mass of the superconductor is in 
this case in a state with H = 0, which is stable rela
tive to the local fluctuations that lead to the forma
tion of the vortices. The latter, obviously, is valid 
also for the limiting region in the case of a suffi
ciently small magnetic field. Thus, the possibility 
arises of delaying the penetration of the vortex into 
the superconductor for field with H > Hc1 and, 
indeed, an elementary analysis of the potential 
energy of the vortex near the surface [3] shows that 
there exists a potential barrier for the penetration 
of the vortex into the superconductor and that this 
barrier vanishes for a certain field ~He· This pic
ture of the delay was observed experimentally[4J. 

From the thermodynamic point of view, the 
phenomenon under consideration is "superheating" 
of the superconducting state, and the maximum 
field Hb 1, up to which this "superheating" is phys-

ically possible, is defined as the absolute stability 
limit of the metastable superconducting states rela
tive to small fluctuations. It is obvious that this 
instability arises first on the boundary of the 
superconductor, where the field reaches its maxi
mum value. 

To calculate the limiting field H~1 (T) we define, 
following Landau [s,sJ, the thermodynamic potential 
of the superconductor 1 las a functional of the order
ing parameter, the equilibrium value of which is 
obtained from the condition for the minimum of 
this potential. According to modern theory of 
superconductivity[7 ,a], the superconducting order
ing of a metal is manifest in the fact that, owing 
to the pairing of electrons with opposite spins, the 
pair production operator l/J; (r)l/J~ (r) can be re
placed (accurate apart from fluctuations) by a 
macroscopic c-number which differs from zero. 
Starting from this, we transform identically in the 
Hamiltonian of the superconductor 

3t = ~ dV {'i'+s(P- eA)'i' + 1/2g(1jl+('i'+¢)'1')} 

(where~ (p) = p2/2m- JJ.; p = -i V' (fi = c = 1); 
JJ.-chemical potential, g < 0-coupling constant; 

1)In view of the fact that the local fluctuations of the or
dering parameter do not change the chemical potential, it is 
immaterial in what follows whether we are considering the 
free energy F or the potential 0 = F- fiN· 
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H = curl A-magnetic field) the term describing 
the interaction 

1 /2g(~~,+('I!J~+'I!J~)'¢1.) = 1M~('Ijl~,+'ljl~+J~~,) - ~· (h~'I!J~'¢1.) 

-211*11 I gJ + 1/2g('I!J~.~~+ + h~~· I g) 

X ('ljl~'ljl~,-J~~,~/ g); Ia.~ = -I~a., / 2 = -1. 

Inasmuch as the main contribution to the thermo-
dynamic potential rl = -T ln Sp e-:Jf/T is made by 
the microscopic states that realize the equilibrium 
macroscopic state, the last fluctuation term in the 
interaction can be neglected and we can consider 
the Hamiltonian 

:Jen = ~ dV {'¢+£(p-eA)'¢+ 1/ 2 [~ ('I!J-.+'I!J~+ I~-.) 
- ~· (h~'¢~'1!J-.)- 2~*Mg]}. 

The diagonalization of this Hamiltonian and the 
calculation of the thermodynamic potential as a 
functional of .6. and A reduce, in final analysis, to 
a solution of the Gor'kov equation[sJ for the 
Green's function 

( - iw +~(PI- eA (ri)), ·, - ~ (ri) ) 

- ~· (r1), - iw- £(p1 + eA (ri)) 

The first variation of the potential Q is of the 
form 2> 

<HJ= ~ dV{T ~{F+(rr; wn)M(r)+F(rr: wn)M*(r)] 

"'n 

-~*(r)M(r)-~(r) M*(r)}, ffin=:rtT(2n+1), 
g g 

n = 0, + 1, ± 2, ... 

It follows therefore that at equilibrium 

!1(r)=gT~F(rr;wn), !1*(r)=gT~F+(rr;wn)· (2) 
wn wn 

The superconducting current is determined by the 
expression 

. ( oQ \ J(r)=- --} = 
oA(r) , d 

e ~ , , 
- -T LJ [p- p'- 2eA(r)] G(rr'; Wn) I r•=r

m 
"'n 

In conjunction with Maxwell's equations 

(3) 

(cur 1 H = 417-j, div H = 0) Eqs. (1), (2), and (3) de
fine the penetration of the field into the supercon-

2) At a temperature close to the critical value T c' the po
tential Q goes over into the corresponding expression of the 
Ginzburg-Landau theory[6 ]. 

ductor. For extremely hard superconductors 
(o 0(0) » ~ 0 ~ v 0/Tc; ~ 0-electron correlation rad
ius, v0-Fermi velocity, o 0(0)-depth of penetration 
of the weak field when T = 0) the problem can be 
solved under the assumption that the velocity of 
the superconducting condensate 

v.= (Vx-2eA)/2m 

( x-phase of .6.; .6. = ID.I eiX) is constant in (1), (2), 
and (3). This leads [to,1i, 2] to the following rela
tions (for the Green's functions G, F, and F+ we 
took their Fourier transforms): 

( G(p; w), F(p; w)) 
F+(p; w) G(p; w) 

1 ( iw- PoVs + £, - ~ ) 
= (w+ipov.)2+s2 +~2\ -~, iw-p0v.-£; 

(4) 

_1_ = mpo ~ d~ th(eo/2T) =~ ~ ~ d£d0 ~ 
I g I ( 2:rt) 2 eo ( 2:rt )2 4:rt e 

j = N ev s _ ~~: ~ ~ d~~O Po [ f ( e - ;ov s ) _ t( e + ;ov s ) ]. 

e = 1£2 + ,~2, eo= l'£2 + ~o2, f(x) = (ex+ 1)-1, 

N = po3 I 3:rt2 ( 5) 

(.6. 0 is the gap in the BCS theory[7J, dO-solid
angle element in the direction of p0/p0). 

The integration of Maxwell's equations for a 
superconducting half-space bounded by a plane 
gives the following result[ 2J: 

(6) 

The condition for the stability of this solution 
is the positiveness of the second variation of the 
potential rl in the vicinity of the given solution. 
This value of the field Hb1 on the surface of the 
superconductor, at which o 2 Q first reverses sign, 
is indeed the limit of existence of the supercon
ducting state. The second variation of Q is 

62Q = ~ dV {r ~ 1/2 [oF+(rr; wn)M(r) 
"'n 

+oF(rr; wn)M*(r)]-g-1M*(r)M(r) }, (7) 

where oF and oF+ are defined in accordance with 
(1), by means of the following formulas 
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{JF(rr; Ctln) = ~ dV'[G(rr'; Ctln)M(r')G(r'r; ron) 

+ F (rr'; ron) M • (r')F (r'r; ron)], 

{JF+(rr; ron)= ~ dV'[F+(rr'; Ctln){J.i\ (r')F+(r'r; ron) 

+ G (rr'; ron) M * (r') G (r'r; ron)]. (8) 

Since the characteristic dimension of the "danger
ous" fluctuations of!:::., which lead to the formation 
of vortices, is of the order of~ 0o(T)/6 0 (0) ~o/K 
« 6, we can as before assume that Vs = const and 
D. = const in (7) and (8) and we can use formulas 
(4) for the equilibrium Green's functions 3>. Sub
stituting (4) in (7) and (8) and going over to the 
Fourier transform of all the quantities, we get 

(J2Q =~I ~[aqMq*Mq +a-qM-q*M-q 
2 J (2:rt) 3 

+ bq(Mq*M-q* + MqM-q)], 

where 

.i\2 
X -------------

[(ron+ ipovs) 2 + s+2+ L'12][(<iln + ipov.) 2 + s-2 + .i\2] 

S± = s + Voq /2. (9) 

Let us diagonalize the expression for 62 Q with 
the aid of the substitution 

6./\q = aquq + flqu-q•, a·q = a-q = aq*, 

6./\q* = aquq* + flqu-q, flq = fl-q = flq*, a2 +fl2 = 1. 

This yields 

(J2Q =I ~[1- ( 2bq )2]''' 
J (2:rt)3 aq + a_q 

x{[(aq~a-qr-bq2r +aq--;a-q_}uq*Uq. (10) 

Equating to zero the integrand in the curly brackets 
of (10), we obtain the formula Vs = Vs(q, cos 8) 
(v s · q = v sq cos 8), the smallest value of which 

3)For the same reason we can neglect the small variation 
connected with the local changes of ./\, which should be taken 
into account in the general case, since the external field is 
specified in our case only at infinity. 

determines the critical value of the velocity v s. 
Substitution of this value into (6) gives the value of 
the limiting field H{a. In the general case of arbi
trary temperatures, this problem should be solved 
by numerical means. In the limiting cases T ~ Tc 
and T = 0 the calculation can also be carried out in 
explicit form. 

Let us consider first temperatures close to 
critical Tc· Then 

A/ Tc~ 1, povs/ Tc~ 1, voq f Tc~1 

and in all formulas we confine ourselves to the 
first nonvanishing terms of the expansion in the 
small quantities: 

aq +fLq b - (voq)2 
2 - q-p-6-, 

aq + a_q + b = AZ 2 q p , 
mpo 7 6(3) 

p = 2:rt2 B (:rtTc) 2 ' 

2 
A2 = Ao2 - 3(PoVs)2. 

From the condition that (10) must be positive, it 
follows that 4l: 

, Ao 
Vcr = -=-· 

i2Po 

Substituting the critical value of the velocity v~r 
in (6), taken in the same approximation (1:::./Tc « 1), 
we get 

Bc1' (T )= j5 
Be c 3 ' 

Be= ( 7mpo6(3) )''• Ao2 . 
4:rt :rtTc 

It is clear from general considerations that in 
the case of arbitrary temperatures the first to be 
excited is the long-wave (q = 0) part of the fluctua
tions, and then by virtue of symmetry we have 
cos2 8 = 1. When T = o, replacing the sum 

T~-+~ ~: 
ro,. 

and going over in the limit at q- 0 (cos2 8 = 1) we 
obtain (for PoVs > D.o >D.) 

aq + a_q Nq2 ----- t:.. 
--2--- bq = 8m~[1- ('1 + 21..2 ) "'~1 - 1.,2], A. = PoVs ' 

aq + a_q + bq = ~__!!_~1- y1- A.2], 
2 2 PoVo 

4 ) As can be seen from this formula, the wave vector of the 
fluctuation is measured in terms of the characteristic length 
o0/K (K2 = 6L'10

2o02 /v0 2 - the parameter of the Ginzburg-Landau 
theory[•]), thus confirming the assumption of the characteris
tic dimensions of the "dangerous" fluctuation. 
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I aq- tZ-q I = 3Nq (-1 )1'1- ')..2 

2 4po PoVs • 

The condition for the positiveness of (10) is 

[1-)'1- 'J..2] (1- (1 + 2')..2))'1- A.2] > 3')..2(1- ')..2), 

hence 

lvc( = [1- (2'1•- 12] 'I•. 

Expressions (5) and (6) with T = 0 have the form 
(for p0vs > ~0) 

Ao/ PoVs = (1 + )'1- A.2) exp (-)'1- ')..2), 

H2 = 2";;0 Ao2{ 1- ( !!_~:s Y( ')..2- ~ + }<1- ')..2)'1•]}. 

Substituting in these formulas the value of A.cr we 
obtain ultimately 

Bet' (0) = {1- ~(2'1• + 1) (2'/a -1)3 exp [2(2'/a- 1)]}'" 
He 3 

( 2mpo )''• ~ 0.8, Hc(O) = -:n:- Ao(O). 

The estimate made in [3] of the quantity Hb 
gives a value close to that obtained here. In this 
connection it is necessary to make the following 
remarks. The field H~ 1 (T) calculated above is the 
exact (for K » 1) stability limit of the superconduct
ing state relative to arbitrary local fluctuations of 
the parameter~. Bean and Livingston [ 3] specified 
concretely the form of the fluctuation, this being 
the vortex penetrating from the surface into the 
superconductor, and calculated the field at which 
the potential barrier that is overcome by the vor
tex during the process of penetration first vanishes. 
Any such calculation, carried out rigorously on the 
basis of the equations of electrodynamics with ac
count of the boundary condition, should lead to 
values of the field H~ 1 not smaller than those ob
tained above. The problem itself, that of deter
mining the form of the "dangerous" fluctuations 
(nucleus) and calculating the energy barrier separ
ating the superconducting state from the mixed 
state, is essentially the minimax problem for the 
functional n {~}. This means that we must find an 
unstable state, intermediate between the supercon
ducting and the mixed states, whose energy would 
exceed in minimum fashion the energy of the super
conducting state. By virtue of the quantum nature 
of the vortex, it is clear from energy considera-

tions that the solution should contain only one 
vortex, but the concrete form of the solution 5> is 
not evident beforehand. The energy barrier between 
the superconducting and the mixed states, calcula
ted in this manner, should, of course, vanish pre
cisely for the field H~ 1 obtained above. 

The author is grateful to J. Bardeen (USA) and 
I. M. Lifshitz for discussion of the results and for 
valuable remarks. The author is also grateful to 
A. v. Svidzinskil and V. A. Slyusarev for useful 
advice concerning formulation of the variational 
principle in superconductivity theory. 

S)It is obvious that the vortex cannot be too long, for the 
self-energy of the vortex is proportional to its length; in addi
tion, the magnetic flux of the vortex should go over on the 
surface into the external flux. 
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