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A theory of second-harmonic generation of light in focused beams is developed by taking 
vector synchronism into account. The analysis is carried out in the momentum representation 
with allowance for the possible finite size of the medium taken into account. The two-dimen
sional problem (cylindrically focused beams) and the three-dimensional problem are consid
ered. The concept of an effective interaction length for vector synchronism in a focused beam 
is introduced; it can be used for classifying cases of various positions of the focus in the crys
tal, and various crystal lengths and focusing angles. The efficiency of transformation of light 
into the harmonic is calculated for the case when the conical lens proposed in [ 5] is employed. 
The relative efficiencies of various means of second-harmonic production are discussed. 

AS is well known, a decisive role in the genera
tion of optical harmonics in crystals (see[1J) is 
played by their dispersion properties: the greatest 
generation efficiency is attained in the presence of 
synchronization-equality of the phase velocities of 
the laser beam and of the harmonic. An intuitive 
interpretation of this fact is the requirement to 
satisfy in the generation process not only the en
ergy conservation law w 2 = w 1 + w 1 but also the 
momentum conservation law k2 = k1 + ki. So far the 
greatest attention has been paid to the case of the 
so-called "one-dimensional synchronism," when 
k2 II k1 II k~. 

In this paper we consider the more general case 
of "vector synchronism," when in general k1 is not 
parallel to kf. The laser beam is assumed to be 
strictly monochromatic, and the problem is solved 
in the specified-field approximation. The custom
arily used qualitative considerations, based on the 
momentum conservation, can then be extended to 
obtain quantitative results. 

1. SOLUTION OF WAVE EQUATION IN THE 
MOMENTUM (FOURIER) REPRESENTATION 

Let us state immediately that the material in 
this section is not principally new, but we deem it 
advisable to include it for a better understanding 
of the main computational part of the paper. The 
electromagnetic waves E(r, t) are excited by wave 
sources-the right side of the wave equation-com
prising the external polarization P(r, t). We con-

sider a monochromatic electromagnetic field 
characterized by a complex vector E(r) 1 l. 

We go over to the Fourier representation 

E (r) = ~ E(k) eikr d3k, (1) 

and obtain Maxwell's equations in the form 

(k26;i- k;kj -- E;jW2 j c2)Ei (k) -< 4nc- 2w2P; {k). (2) 

One group of problems arises when the field 
sources are far from the region of interest to us. 2l 

In this case we can set the right side equal to zero 
and replace the effect of real but remote sources 
by a suitably chosen solution of the free wave equa
tion. This corresponds to specifying the field at 
the input of the system (say, the field far from the 
focus at r ~ oo). Then P = 0 and for free fields the 
condition of compatibility of the equations in (2) 
calls for the vanishing of the determinant of their 
coefficients. This yields the Fresnel equation 
(see [2], Sec. 77) 

det II k;kj- k26ii + w2Eij I c2 II = 0, 

which for a specified n = k/k has in general two dif
ferent solutions and defines the so-called wave 
vector surface: k2 = kt(n), k~(n). To each solution 
corresponds its own type of polarization of the field 

l)We have in mind the representation of the real field E(r,t) 
in the form E(r,t) = Re IE(r) exp (-iwt)J. 

2 lln our case, this will pertain to the field of the laser 
light. 
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E: e1 (n), e2 (n). The general solution of the free 
wave equation (2) is 

E(k)= ~ el(n}ll(k2-kf(n))ft(n). (3) 
1=1,2 

This Fourier transform depends essentially only 
on two independent variables n. Such a simplifica
tion can be obtained also in the coordinate repre
sentation, wherein the function satisfying the 
monochromatic wave equation can be calculated in 
the entire volume from its value on a certain sur
face by using, for example, the Huygens principle. 
In order to ascertain the input conditions that the 
solution (3) must satisfy, it is necessary to calcu
late the asymptotic behavior of the integral (1) as 
r ---. 00 • We do this first for the case of an isotropic 
medium, where Eik = EOik· In this case k1 = Ew2/c2 

= kij. Simple calculations (see[ 3J Sec. 124) give for 
r---.oo 

E(m') ~ nir-1 ~ el(n')[lc(-n')exp(- ik1r) 
1=1,2 

- !z(n') exp (ik1r)] (3') 

with the same functions fz(n) that are involved in 
the Fourier transform (3). This establishes there
quired correspondence. 3> 

In real situations one usually specifies the 
"incoming" field (i.e., with exp (-ik0r)/r) in one 
half-space with respect to n'; then the first term 
in (3) describes the "incoming" waves and the 
other the waves which have already "passed" be
yond r ~ 0; the functions f z (n) differ from zero here 
only in one half-space-the one into which the waves 
are directed. By way of example we note that an 
ideal (at infinity) spherical wave with an amplitude 
distribution over the aperture E0(n) = 1rl f( -n')l /R, 
converging at the point r = 0, corresponds to a 
pure real function f(n) (accurate to a constant 
phase). 

The second group of problems is characterized 
by thepresence of sources in theregion under con
sideration itself, and at the same time by the ab
sence of waves entering the system 4>. In this case 
we have from (2) 
E;(k) = 4mo2c-2 {k26;j- k;kj -(w2c-2 + iy)e;3}-1 Pi(k). 

(4) 

3 )Although the correspondence between (3) and (3') as 
r-> oo is asymptotically correct, the distance r at which E(r) 
takes the asymptotic value (3' ) can be larger for strongly non
homocentric beams than that at which E(r) is specified experi
mentally. In this case, to find f(n) it becomes necessary to 
extrapolate beforehand the experimentally specified field to 
larger r, using the Huygens principle. 

4 )In our case this occurs for the field at the harmonic fre
quency. 

In (4) the reciprocal of the expression in the curly 
brackets is formally the well-known Cramer's 
formula for solving systems of linear equations; 
in these formulas the determinant in the denomina
tor has zeroes precisely at the points correspond
ing to solutions of the free equation. 

The field E(r) at r---. oo, corresponding to E(k) 
from (4), can be obtained by calculating the asymp
totic value of the integral (1). The latter is deter
mined by the residues at the poles; the infinitesi
mally small y > 0 leaves only outgoing waves. For 
an isotropic medium we obtain 

E (rn') ~ 8n2w2c-2 ~e1 (n') (P(k1n') e1* (n')) r 1 exp (ikzr). 
l 

(4') 

It is easy to go over from the arbitrary three
dimensional problem to the particular two-dimen
sional case, assuming that E(r) does not contain, 
for example, a dependence on the coordinate z. In 
this case the dependence of all the Fourier trans
forms on kz will have the form 6 (kz). However, it 
is simplest not to introduce the coordinate z or the 
momentum kz at all. For the two-dimensional wave 
equation (Eq. (2) with two-dimensional vector k) 
we have the following: 1) a solution of the free
wave type (for P = 0) 

ky/kx=tgcp (5)* 
l 

with asymptotic value at r - 00 (tan cp' = y /x) 

E (r, cp') ~ (2k0r)-'he-inf; ~ e1 ( cp'}[f1 ( cp') exp (ik1r) 

+ ilz(cp' + n)exp(-ikzr)] 

and 2) solution of the "radiative" type (Eq. (4) 
with two-dimensional k) with asymptotic value 

E (r, cp') ~ 2'1•n'h ( k0r) -'/•4nw2c-2 ~ (P ( k1, cp) el*) el 

(5') 

(4") 

For the one-dimensional wave equation (Eq. (2) 
with P = 0) we get 

and for P »! 0 the solution (4) with one-dimensional 
k and asymptotic value 

(()2 -
E(x) ~ 4n2i- ~k1-1 [8(x) (P(k1)e1*)exp(ik1x) 

c2 z 

- 8(-x) (P(-k1)e1*)exp(- ik1x)]e1• (4'") 

*tg =tan. 
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Here e(a) = 1 when a ~ 0, and e(a) = 0 when a < 0. 
For an anisotropic medium the analysis becomes 

somewhat more complicated, owing to the depen
dence of the phase velocity of the wave on the direc
tion, namely, in anisotropic media the direction 
v(n) of the energy-flux vector or, which is the 
same, of the group velocity, does not coincide in 
general with the direction n of the wave vector, 
and is normal to the surface of the wave vectors 
(see [2], Sec. 77). Therefore, in a medium with 
large r the field at a given point r = rn' is deter
mined by the value of the functions fz(n) and P(lm) 
at the same point n = k/k = na (n'), for which v (na) 
= n'. In ordinary crystals, however, the double re
fraction is small. Moreover, if we are interested 
in the amplitude of the harmonic in the far field 
past the exit from the crystal then, in accordance 
with the considerations advanced in Sec. 2, we 
must take the Fourier amplitude corresponding 
precisely to the defined wave vector k, and not to 
the ray vector s. The essential differences from 
the scalar case may occur only near points of in
ternal or external conical refraction. Such a possi
bility is excluded from consideration here. 

Taking the foregoing into account, all the corre
spondence formulas (3)-(3'), (4)-(4') etc. are ap
plicable here, too. In order to calculate the power 
carried by the specified solution we must obtain 
with the aid of this correspondence the asymptotic 
expression for the fields and the square of the 
modulus of the amplitude E of the outgoing wave 
must be multiplied by (S7Tr1c~r2dQn for the three
dimensional problem, by (S1rr1 c~hrd<P for the two
dimensional problem, and by (S1rr1c~S for the one
dimensional problem. Here dQn is the solid-angle 
element, d<P the linear-angle element, h the dimen
sion of the cylindrical beam along the cylinder 
generator, and S the area of the one-dimensional 
beam. These formulas are accurate to ~2% (rela
tive magnitude of the double refraction). 

2. DESCRIPTION OF SECOND-HARMONIC GEN
ERATION IN THE MOMENTUM REPRESENTA
TION AND ALLOWANCE FOR THE BOUNDED
NESS OF THE REGION 

As is well-known, second-harmonic generation 
is based on the fact that the laser wave with fre
quency w 0 excites in the so-called "quadratic" 
medium (see[1J) a polarization Pat frequency 2w 0: 

., W+ID 
P;""'(r) = Xiht Er/'(r)Et"'(r). (7) 

Here x is the tensor of the quadratic polarizabil

ity 5'. 
The transition from the coordinate representa

tion in (7) to the momentum representation calls 
for some stipulations. Namely, the very separation 
of the equations for the Fourier components of 
different momenta k in the form (2) presupposes 
that the medium is infinite. It is nonetheless clear 
that if the crystal has flat faces and we specify or 
calculate the field outside the crystal, in the 
"far field," then all the results of Sec. 1 remain 
valid here, too. 

In this case, however, the exciting force P(r), 
together with the nonlinear-polarizability tensor, 
differs from zero only inside the crystal. In this 
connection it is necessary to expand the spatial 
distribution x (r) itself, which is thus piecewise 
constant (X(r) = Xv(r), v(r) = 1 inside the crystal 
and v(r) = 0 outside), in a three-dimensional inte
gral: 

(S) 

where the integration is taken over the volume of 
the crystal. Taking all the foregoing into account, 
the double-frequency photon with momentum k can 
be obtained from two photons of the laser wave 
with momenta k1 and kf, acquiring the lacking 
momentum q = k- k1 - ki from the crystal as a 
whole. By directly calculating the Fourier trans
form of xv(r)E(r)E(r), we obtain 

i> (k) = ~~ d3k,d3k/x.E (k1) E (k/) v (k -- k,- kt'). (9) 

If the crystal is bounded by two parallel planes 
x = x1 and x = x 2, through which the radiation enters 
and leaves, the Fourier transform of such a func
tion v(r) is 

v(k) = o(ky)o(kz)V(kx), (Sa) 

[ (xi+ Xz) J Xi- Xz V(q)=(nq)-iexp -iq 2 sinq--2-. (Sb) 

In other words, the plane boundary perpendicular 
to the x axis can impart to the photon only an 
x-component of additional momentum. Namely, 
the a-functions in v(q) from (Sa) and in E(k) from 
(3) lower the order of the integration in (9) and 

S)We note that this tensor, in this (conventional) notation, 
relates the amplitude of the harmonic components, and if its 
dispersion would be neglected, it would be twice as large as 
the tensor of the quadratic polarizability for static fields. 
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make it possible to obtain the final result. It is 
easy to see that when x2 - x 1 ---. oo and I x1 + x21 < oo 

the function v(k) goes over into o3(k); this corre
sponds to the fact that in an infinite homogeneous 
medium the momentum is conserved. 

For the one-dimensional problem in a bounded 
medium the two 6-functions in E(k) eliminate both 
integrations, and we obtain the well-known result 
(see, for example, [1]), even with the correct co
efficient (here and below all the formulas are 
written out for the interaction 1° + 1° ---. 2e in a 
KDP crystal): 
W2 = 25JT3n-3c-1 (2woc-1Z} 2 sin2 8MX2zyx }Y!2S-I sin2 ¢I ¢ 2, 

¢ = (kz -- "2k1)l I 2, l = Xz -x1. (10) 

3. TWO-DIMENSIONAL PROBLEM-SECOND
HARMONIC GENERATION IN CYLINDRICALLY 
FOCUSED BEAMS 

Let us consider the two-dimensional problem, 
eliminating beforehand the coordinate z and the 
momentum kz· In the case of practical importance, 
near the synchronism direction, two essentially 
different methods of orienting the crystal relative 
to the vertical axis z are possible. 

1. The z axis of the beam is perpendicular to 
the line of intersection of the surfaces of the wave 
vectors. In this case the lengths of the wave vectors 
of the laser light k1 and the harmonic k2 do not de
pend on the angle cp, and the vertical direction of 
the beam is chosen such that k2 = 2k1• Such an ar
rangement is convenient to obtain maximum con
version efficiency. 

2. The z axis is parallel to the line of intersec
tion of the wave-vector surfaces. In this case the 
magnitude of the wave vector of the harmonic de
pends on the angle cp; choosing here the one
dimensional synchronism direction as the refer
ence, we get sl 

7J is the angle of the intersection of the surfaces of 
the wave vectors. This problem is more interest
ing for a comparison with a three-dimensional 
case. 

Writing in both cases an integral of type (9) 
with v (q) from (8) without o(kz), we obtain, inte
grating all three 6 -functions 

:n: 

P(k) = P(kz(cp), cp) = (4k~)-1 ~ xee(cos cp!')-1/(cp!)/(cp/) 
-n 

X V ( k2 ( qJ) cos qJ- k 1 cos cp1 - k 1 co.s cp/) dcp1• (11) 

6)Jn the notation corresponding to the crystal axes, 

cp = e- eM. 

In the integral (11) cpj is connected with cp and cp 1 
by the law of conservation of the y-component of 
the momentum: 

k2 ( cp) sin cp = k1 sin qJ1 + k1 sin cp/. (12a) 

If the medium is infinite, then V(q) = o(q), and 

P(k) = (2k~)-2xee[(cos qJt')-1 +(cos cpt)-1] 

(13) 

where cp, cp 1, and cpj are connected also with the 
conservation of the x-component of the momentum: 

k2 (cp} cos qJ = k1 cos (jl1 + k1 cos {jl/. (12b) 

In (13) cp 1 or cpf is one of the two solutions of the 
system (12a)-(12b) (obtainable from each other by 
substitution cp1 ~ cpj). 

For small cp > 0 we have in problem 2 

cp1 = cp + f'.2r:cp, cp/ ='{jl -l'2YJ<p. (12c) 

From this it is seen, in particular, that to calculate 
the intensity of the harmonic in the direction of the 
one-dimensional synchronism (cp = 0) in problem 2, 
and in any direction in problem 1, the concept of 
an infinite medium is not applicable, since it gives 
an infinite result. 

Starting from general considerations, of the 
uncertainty-principle type, concerning the connec
tion between the coordinate and momentum repre
sentations, we can state that the vector interaction 
in a focused beam occurs effectively only in a 
region of several times leff from the focus; here 

(14) 

(we assume that vector synchronism is allowed, 
that is, k2(cp) < 2k1). It becomes clear now that the 
medium can be regarded as infinite only when cal
culating the intensity of the harmonic in those 
directions, for which the region indicated above 
lies completely inside the crystal. On the other 
hand, for the direction near one-dimensional 
synchronism leff tends to infinity. 

We note that the foregoing reasoning regarding 
l eff is valid to an equal degree also for the three
dimensional problem-spherically focused beams. 
However, unlike the cylindrical problem, the 
growth of leff(n), for n close to the direction of 
one-dimensional synchronism, is not accompanied 
there by an infinite increase of P(n), and the inten
sity of the harmonic per unit solid angle is finite 
for all directions, even assuming that the medium 
is infinite (see Sec. 4 below). 

For a final solution of the problem it is neces
sary to find in both cases the functions f(cp) from 
(5). If the laser beam prior to the focusing does 
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not have too large a divergence 7l and is focused at 
an angle 2y much larger than this divergence, then 
we can use the asymptotic correspondence (5)-(5'), 
taking for u(R, cp) simply the field of the laser on 
leaving the lens. Here and below we shall consider 
the simplest case of ideal focusing of an ideal 
beam. Then the function f(cp) (in the three-dimen
sional case-f(n)) can be regarded as piecewise 
constant: it is equal to a constant for those values 
of cp (or n) in the direction of which there are rays 
of the laser light, and is equal to zero outside this 
region; the value of the constant is determined by 
normalization to the laser-beam power. 

We shall not stop to calculate exactly the inte
gral ( 11) for problem 2 in a bounded medium (for 
an ideal beam this problem was considered in the 
coordinate representation in [4]). In problem 2, the 
dependence of the second-harmonic power on the 
direction near cp = 0 is of the form 

dWz = 26n6n-'*( Wo I c) c-1q-! sin2 eMx.;yx Wt2h-1y-2cp-1dcp. 
(15) 

Here cp is the angle of k2 inside the crystal; when 
the harmonic leaves the crystal dcp air ~ n(2 w 0)dcp. 

Formula (15) was obtained for a focus inside an 
infinite medium, and is therefore valid only when 
cp ~ (ktlTI r 1 ; for smaller values of cp the quantity 
dW2/dcp practically stops growing, and when 
cp ;'S - (k1 lry r 1 it decreases rapidly (in this latter 
region-with normal dispersion-a nonzero value 
of dW2/dcp is obtained only as a result of the con
tribution of the boundaries of the crystal, and has 
an oscillating character). For large positive 
cp = 'Pb the quantity dW2/dcp vanishes quite rapidly 
simply because f(cp 1) = 0 for the corresponding cp 1: 

(16) 

y is the angular half-width of the beam inside the 
crystal. 

In problem 1, with the beam focused in the cen
ter of a crystal of length l, and under the assump
tion y » (klr112, we can readily find that if the 
directions cp are not too close to the edge of the 
beam (j cp- yj ;::, (klr112, we get 

dWz/dcp = 27n5n-3 (wo/ c)2c-l sin2 eMX.2yx WIZh-ly-2l. (17) 

4. SPHERICALLY FOCUSED BEAMS: CONICAL 
LENS 

We assume that a laser beam of round cross 
section is focused so that the direction e = eM, 

7)In the cylindrical model we can already take into account 
the fact that the beam is not ideal in the horizontal direction. 

cp = 45° coincides with the axis of the beam. Then, 
writing the integral (17) for the case of an infinite 
medium and eliminating the integration by means 
of o -functions, we obtain the following result 

2n 

P(n) = 2-3 (nwo/c)-1 ~ d1Jlxeef(n!)f(nt'). (18) 
0 

Here 

n = {8, cp}, n1,1' = {8!,1' (j)1,1'} = {8 +·~cos 1jl, 

cp ±~sin 1Jl}, 

For (18) to be applicable it is necessary to 
stipulate, as in Sec. 3, that y » (klr112 and leff(n) 
« l; it is easy to see that the first is the condition 
that the length of the focal region fit well inside 
the crystal. It is obvious that for e < eM in an 
infinite medium the intensity of the harmonic is 
equal to zero, as in the two-dimensional problem. 
However, in the case when e ~ eM, e > eM the in
tensity of the harmonic flattens out, in spite of the 
growth of leff(n), and its value is 

dWz I dQz = 29n 7c-1 ( IJ)o I c) 2n-3x.~yx W12QJI ~z sin2 eM. (19) 

Here Ql = 7TY2 is the solid angle of the laser radia
tion. For a non-ideal beam, the dips on this 
plateau occur at values of e such that 2V'2_ry_(_e ___ e_M_) 

~ f3k· Here f3k is of the order of magnitude of the 
angular distance at which the phases of the function 
f(n) are correlated; that is to say, f3k can be rela
ted to the linear distance xk of the correlation of 
the field on the laser front prior to entering a lens 
with focal distance fair (in air): 

(20) 

On the other hand, for an ideal beam the dips 
of the plateau occur when the cone of the vector 
synchronism (n1 - n;> goes partially outside the 
solid angle in which f(n) differs from zero; for a 
still larger e no pairs of points (n1, nf) lying inside 
the foregoing solid angle remain on the cone at all, 
and dW2/dQ 2 = 0. For an ideal laser beam of round 
cross section, the described regions are shown in 
the figure; the circle corresponds here to the solid 
angle of the fundamental radiation, and the doubly 
or singly shaded regions are respectively of the 
plateau and of the dip of the harmonic; in this case 
'Pb is given by (16). 

For an approximate calculation of the efficiency 
of the transformation it is necessary to estimate 
the order of magnitude of Q 2eff· When y :S 11 we 
have 

(21) 
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and then Bl W 2 ~ y-1; at larger values of y, on the 
other hand, neff is smaller than given by (21). 

As in Sec. 3, the ratio dW2/dQ 2 for e < eM is 
governed only by the contribution from the crystal 
boundaries. It is customarily stated that one
dimensional interaction is realized when e < eM; 
actually this is not so at all. In particular, the law 
governing the intensity near the edge of the plateau 
in the region e < eM has the following firm (we take 
the intensity in the plateau as unity) 

~W2= I_!___~~ sinx dx 12• 

dQ2 2 31 J X 
0 

Here if; is given by (10); when if; ~ 1 we have 
dW2/dQ 2 ~ cos21f;/1f; 2 in place of sin21f;/lf;2• 

Picture showing generation of second harmonic in a spheri
cally focused ideal beam in an infinite medi urn. Circle- di
rection of laser radiation. Doubly and singly shaded areas 
correspond respectively to the plateau and the dip of the 
harmonic; the value of cpb is taken from (16). 

We note that in the three-dimensional problem 
the growth of l eff leads to a growth of dW 2/ dQ 2 

only for focusing near one of the boundaries of the 
crystal instead of in its center. In this case ex
pression (19) must be multiplied by a quantity of 
the order of (1 + lln(a1/a2)1 )2, where a1 and a2 are 
the distance to the focus from the first and second 
boundaries. Naturally, such a distance cannot be 
regarded as smaller than the length of the focal 
spot (ky2r 1, so that the maximum gain due to focus
ing on the boundary is of the order of (1 + ln k l 
+ 2 ln y) 2 and is small in a real situation. Obviously, 
with such a focusing the distribution of the har
monic becomes smeared out over angles t. a 
~ (kamin?Jr1 compared with (18). 

We have previously proposed[5J to use a conical 
lens to realize vector synchronism, and we calcu
lated there in the coordinate representation the 

81t may turn out in the experiment that the region of ap
plicability of formula (21) corresponds to angles y much 
smaller than those at which the formulas (18)- (19) are by 
themselves valid (owing to the boundedness of the crystal and 
the nonideal nature of the beam). 

laser field in such a system. The momenta of the 
photons focused by a conical lens lie almost all on 
the same vector-synchronism cone. Estimating for 
an ideal laser beam of diameter D 

Ql,.., (kD/2}2nsin~t, Q2 ~ n(kD/2}-2, 

we obtain, in accord with (18)-(19) 

W2/W1 ~ 27n6c-1n-3 (CiJ0 /c) 2:x;;yx W1 (sin~ 1 )-2 . (22) 

We have chosen here the axis of the conical lens 
in the direction e = 90°, cp = 45°. 

With such a generation method, the light of the 
emerging harmonic has a very small angular width; 
for an ideal input beam it is of the order of its 
ideal width. The necessary angle {3 1 for the con
vergence of the rays to the beam axis in the crys
tal can be determined from the equation 

(23) 

The necessary length of the crystal l ~ D/2 tan {3 1 

under ordinary conditions (KDP crystal, ruby laser, 
D ~ 1 em) does not exceed 3 em, but the orientation 
of the plane faces must be perpendicular to the 
direction indicated above. Numerical estimates by 
means of formula (22) yield for the ideal beam 

W2/Wt = Wt/A, A~ (:x;zyx/10-9CGSE)-2 ·1.6·10s W. 

5. EFFICIENCY OF SECOND-HARMONIC GENER
ATION BY AN IDEAL BEAM 

We have solved several problems involving the 
second-harmonic generation for different methods 
of laser-beam focusing. This raises the natural 
question of finding the optimal generation method. 
To this end we calculate in this section, for an ideal 
laser beam in the specified-field approximation, 
the efficiency of transformation as a function of the 
system parameters: crystal length, beam diameter, 
focusing angle, etc. The maximum efficiency for 
each method of generation corresponds to limiting 
values of the parameters; near these values, the 
formulas themselves cease to be exact. In this con
nection, the results of this section are tentative in 
character. 

1) One-dimensional interaction. We must first 
indicate the limit of applicability of the strictly 
one-dimensional model of interaction of the laser 
wave and the harmonic. We assume the laser beam 
to be ideally parallel, that is, its angle of diver
gence is 0! ~ A./d (dis the transverse dimension of 
the beam). We stipulate in this connection that the 
divergence of the beam 0! not lead to an appreciable 
change in the transverse dimension d of the laser 
wave and, by the same token, of the field amplitude 
in it over the crystal length l: 
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al ~ d-r d '";2:;D1 = 1/lt ... 
We also stipulate that no "aperture effects" be 

noticeable (see [sJ), since an analysis of these ef
fects necessitates going beyond the framework of 
the one-dimensional model. To this end it is neces
sary that the shift of the harmonic beam relative 
to the laser beam, over the length of the crystal, 
not exceed the "vertical" transverse dimension d2 

of the laser beam: 

d2'";2:;D2 =:TJl. 

We note that at lengths l ?:. L = A.0n_ir)_2 (which 
amounts in KDP to "'1 mm) D1 < D2, that is, the 
second requirement is more restrictive. 

As a consequence of these requirements, we find 
that the quantity sin 1/J/1/J, which enters in the formu
las of the one-dimensional problem, is the same 
for all the three-dimensional Fourier components 
that constitute the one-dimensional beam. We can 
therefore put 1/J = 0, sin 1/J /1/J = 1. The beam area is 
S = 1rd1d2/ 4. It is advantageous to consider here the 
following two methods. 

A. If we use ordinary telescopic systems, then 
a beam of round cross section can be contracted 
to a limiting diameter d1 = d2 = D2, and then we 
have from (10) 

w2 I wi = B-0,4 'f)-2 sin2 eM, 

B = 27:rt4c-1n-3 ((!)o I c) 2X~yx wi. 
(24) 

B. Since the aperture effects operate in the ver
tical direction, we can visualize a telescopic sys
tem that contracts the beam to d1 = D1 in one direc
tion and to d2 = D2 in the other; then 

W21 wi = B ·0,4'Y)-1 (ln roo I c).,, sin2 eM. (25) 

2) Cylindrically focused beams. We consider the 
orientation method 1 of Sec. 3. In deriving formula 
(17) it has been assumed that there are no aperture 
effects in the vertical direction (h ?: D2) and that 
the length of the focal region when the beam is 
focused at an angle y lies entirely inside the crys
tal: (nw 0c-1 y 2r 1 ;S l, which is equivalent to the con
dition d1 = yl ?:. .../lA./27r. In other words, we obtain 
method B of case 1, but now as the limiting case of 
cylindrical focusing. Substituting the minimum val
ues of h and y, we obtain a result with a coefficient 
that differs somewhat from (25): 

W2IW1 =B·3.14 'f)-~(nroollc)'"sin2 eM. (26) 

3) Spherically focused beams. For applicability 
of formula (19), even in half the solid angle n2 eff• 
it is necessary to have 

lerf = (2k1-k2(n))-1 = (2'f)krcpb)-1 = (nrooy2c-1 )-1 ~l. 

Further, if l ~ L and y :S 11, then n 2 eff is deter
mined from (21). Substituting the minimum value 
of y, we obtain 

w2 I wi = B ·5.7TJ-1 (nrool I c)'" sin2 eM. (27) 

We note that although (27) differs from (26) and 
(25) only by a small factor, the generation picture 
differs here greatly from that described in case 2 
and in case 1 (method B). Namely, here d1 = d2 

= D1• The harmonic beam then shifts strongly 
relative to the laser beam; formulas (19) and (21) 
take these aperture effects into account automati
cally. 

4) Conical lens. For a conical lens (see [5]) the 
efficiency and the limitations were obtained in Sec. 
4. We present them here: 

(28) 

and in this case 

in a KDP crystal {3 1 ~ 0.12. 
We present numerical values for the coeffi

cients of B in formulas (24)-(28) for a KDP crys
tal of length l = 3 em: these are 2 x 102, 3.5 x 103, 

2.8 x 104, 5 x 104, and 6 x 102 in (24), (25), (26), 
(27) and (28), respectively. We see that the best 
efficiency of transformation is obtained with spher
ical focusing; somewhat worse values are obtained 
with cylindrical focusing and telescoping. We note, 
however, that the dependence on l and 11 for these 
three cases is the same. One cannot exclude that 
such a strong difference in the coefficients of 
11-tzth is connected not only with the effective ad
vantage of one generation method over the other, 
but also with the uncertainty in the estimate of the 
limiting parameters (of the type 0! = A./D or 
0! = A./D = A./27rD). 

For the methods described for cases 1-3, the 
beam should be contracted quite strongly: D1 = 11l 
~ 0.1 em, D2 =Iii:~ 0.1 em, and the transformation 
efficiency decreases rapidly with increasing 
parameters, compared with the limiting values. 
At the same time, for a conical lens D = 2l tan {3 1 

~ 0.8 em and the efficiency does not depend on D at 
all. We note also that, owing to the inherent diver
gence of the laser beam, the usual focusing and 
telescoping may not give the desired effect, while 
for the conical lens the situation is somewhat more 
favorable. In this connection the generation of the 
second harmonic with the aid of the conical lens is 
quite promising. 

Almost everywhere above we assume the laser 
beam to be ideal. For a nonideal beam, on the 
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other hand, it is necessary to have some sort of 
model of the function f(n); at the present time we 
have no such model (see the discussion in [ 5]). 

Essentially, the function f(n) should be regarded as 
a random function. Knowledge of its autocorrela
tion function 

makes it possible to represent f(n) in the form of a 
series in fixed functions gi (n) with noncorrelated 
coefficients. As is well known, the functions gi (n) 
are solutions of the integral equation 

S R(n1, n2)g(n2)dnz = Ag(n1). 

Thus, to study a laser beam it is quite advantageous 
to determine experimentally the function R (n1, n2). 

The author thanks R. V. Khokhlov, A. P. 
Sukhorukov, and S. A. Akhmanov for a discussion 
of the problems touched upon in this article. 
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