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The current flow in a slightly deformed axially symmetric conductor is considered in the case 
of a strong Hall effect. It is shown by numerical calculations and by analytic methods that 
( 1) in a ridged conductor the current is pushed out of the ridges, (2) in a cavity made up of 
crossed corrugations the current flows in a thin layer which skirts the walls. The current 
layers near the walls are calculated. 

1. INTRODUCTION 

A paper by one of the authors and Shubin[lJ con­
sidered some electromagnetic effects in a slightly 
deformed conducting medium in the presence of a 
strong Hall effect. It was assumed that in such a 
medium Ohm's law can be written in the form1> 

u = -k(E + c-1[uH]). (1)* 

Here u is the mean electron velocity, E and H 
are the field intensities, and k the electron mo­
bility: 

k =a I en. (2) 

The conductivity a and the electron concentration 
n are assumed constant. The electron velocity u 
is connected with the magnetic field H by the Max­
well equation: 

rot II = -vu, 'V = 4:rten I c, (3)t 

hence (1) is non-linear, and this makes the inves­
tigation of a number of phenomena substantially 
more complicated. 

The set of equations (1) to (3) apply, with a cer­
tain degree of approximation, to the behavior of 
semiconductors, but may also allow conclusions 
about the behavior of a plasma. [ 21 

In the planar case when the magnetic field is at 
right angles to the plane of the current flow, the 
equation for the single field component Hz is iden­
tical with the corresponding equation in the ab­
sence of Hall effect. [ 11 This is due to the fact that 
in this case 

l) Our notation differs from['] by taking the electron charge 
as negative. 

*[u H] = u x H. 
trot= curl. 

rot [u HJ = 0, (4) 

and therefore the Hall effect is brought about only 
by changes in the boundary conditions. On the other 
hand the current flow in an axially-symmetric 
conductor in the presence of only a field compo­
nent Rep leads to the differential equation[ 1l 

iJ2J + r-8- (.!___!_!__ \ = -~ (v__!!!_ + __'!:_! _!!__) (5) 
iJz2 iJr r iJr 1 c . iJt r2 iJz 

for the function 

I= -Hrpr. 

This equation differs from the usual skin-effect 
equation by the non-linear term. 

(6) 

Equation (5) is the simplest form of a skin­
effect equation modified by the Hall effect and 
therefore deserves special attention. A prelimi­
nary discussion of (5), reported earlier/ 11 showed 
that the presence of the non-linear term leads to 
stationary solutions which vary sharply with ra­
dius in the limit 

wee= aH I enc--+ oo. (7) 

In the present paper we investigate the form in 
which these rapidly varying solutions appear in 
simple concrete geometries, viz., a full or hollow 
ridged axially symmetric conductor. This investi­
gation was first carried out numerically and this 
helped us to visualize the over-all picture; the 
study was then extended analytically. 

2. NUMERICAL INVESTIGATION 

A. Method of Calculation 

It is convenient for the numerical calculation 
and also for analyzing the current pattern to put 

1223 
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Eq. (5) into dimensionless form. On substituting 

r = Lp, z = L~, t = 4ncrL2c-2.r, (8a) 

I= (encL I a) Y, (8b) 

Eq. (5) takes the form 

_av_+_2_y aY = a2Y ~P_!__( _!__ aY). 
a. p2 a~ a~z ap \ p ap (9) 

The properties of the medium, represented by the 
conductivity cr and the carrier density n, are no 
longer explicitly shown here. We choose L to be 
a characteristic radius of the conductor. Then the 
characteristic time 

T = 4ncrL2 I c2 (10) 

is that connected with skin-effect. The quantity Y 
is connected with the Hall parameter 

We't =a! HI I enc 

by the simple relation 

Y = -We'tP sign H. 

.(11) 

(12) 

Equation (9) was solved numerically for the 
shapes shown in Figs. 1 and 2 with the following 
boundary conditions: on the corrugation crest we 
took 

Y(•) = Y0 (1- e-t!T), T = 0.1, Y0 = 10; 50; (13) 

and on the t axis or the corrugation bottom we 
put Y = 0; the values on the end surfaces were 
connected by the cyclic condition 

Y(p) l~=o = Y(p) l~=bo· 

The computation was performed by a step-by­
step calculation from the inside outwards; the sta­
tionary solution was found by following the time 
development. 

B. Results of Computation 

The stationary current pattern was first ob­
tained for the ridged conductor shown in Fig. 1. 

Y=0.9Y0 I 
Y=O.IYo 

0.9 1.9 2.9 J.9 4,8 ( 

FIG. 1. Lines of constant Y (p, () (stream lines) in a 
continuous ridged conductor. The upper lines correspond 
to 0. 9Y 0 and the lower ones to 0. 1 Y 0 • The full curves 
are for Y0 = SO, the broken ones for Y0 = 10. 

J.J a :J.ol; 

FIG. 2. Lines of constant Y(p, () (stream lines) in a 
hollow corrugated conductor. The upper lines correspond 
to 0. 9Y 0 , the lower ones to 0. 1 Y 0 • The full curves for 
Y 0 = SO, the broken ones for Y 0 = 10. 

The pattern of the stream lines depends on the 
magnitude of the total current Yo which flows 
through the conductor, and with increasing Yo the 
current was pushed out of the ridges. Hence, as 
WeT- oo, current which flows in the corrugated 
conductor is itself no longer corrugated. We then 
considered the current pattern in a hollow tube in 
which both the external and the internal surface 
were corrugated. The dimensions of the corruga­
tions were chosen such (Fig. 2) that in the limit 
as WeT- oo the current could not confine itself to 
a straight cylindrical shell. With rising Y0 the 
stream lines show a tendency to form thin layers 
which skirt the tube wall. On the basis of these 
results it is plausible that in the limit as Yo - oo 

(or equivalently as w0T-oo) the layer will become 
infinitesimally thin and have the shape shown in 
Fig. 3. In the picture of stream lines shown in 
Fig. 2 it is noticeable that the most widely spread 
out parts of the current layer are those parallel 
to the t axis . 

p 

FIG. 3 

In the analytic discussion below we shall con­
centrate on two problems: firstly, to explain the 
fact that in the limit as weT - oo the current is 
pushed out of the ridges, and secondly to deter­
mine the thickness of the current layers that skirt 
the walls of the conductor when WeT- oo in the 
case of overlapping corrugations. The case 
weT~ 1 is analytically very complicated while the 
case weT « 1 has already been considered. [ 1 J 
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3. ANALYTICAL MODEL OF THE FLOW 
PATTERN 

A. Elimination of the Current from the Ridges 

Following [ 11 , we linearize (9) by letting 

Y =Yo+ Y1+ ... (14) 

However, whereas in [1] the leading term in the 
solution of (9) was taken as 

Yo= const, (15) 

which excluded the treatment of current in a solid 
conductor, we now take a different solution of (9), 
which represents a uniform current distribution 
in a cylindrical conductor: 

a= const. (16) 

In that case the equation for stationary flow is, to 
first order, 

o2 Y1 a ( 1 aY1 \ oY1 
~-+paf) pap)= aar-· ( 17) 

The use of perturbation theory in this case means 
that we consider only the case of a weakly corru­
gated conductor with a surface given by 

p = Po + P1 cos k'(,, 

Inserting in ( 17) the expression 

Y1 = Re [eik~Q ( p)] 

( 18) 

( 19) 

and using the condition of regularity on the !; axis 
we find 

a+ i~ = (k2 + 2ialc) •;,, a>O. 

We see that the Hall effect is strong when 

k2 G; 2aiki. 

(20) 

(21) 

Assuming for simplicity that k » 1 and Po = 1, 
Ne can use in the neighborhood of p ,..., Po the 
:tsymptotic form of the Bessel function: 

(22) 

Using the fact that the surface of the corrugated 
cylinder ( 18) has the property 

Y = const, 

Ne can find an expression for Y = Y0 + Y1 in 
terms of p1. 

(23) 

In the limiting cases in which the Hall effect is 
either negligible (a-- 0) or very large (a-- oo), 

the expression for Y takes the forms 

Y = a(1/zp2 - P1l"P exp [ -jka(i- p)] 

xcos [ks -l"k~(i- p) n, a-+ oo. (25) 

We now construct the lines of constant Y, e.g., 
for 

p=i-v/k, v=0;0.1;0.2; ... , (26) 

and we then see easily that for a -- 0 the lines 
are practically parallel (Fig. 4a), whereas in the 
case a- oo the distance between the lines with 
v = 0 and v = 0.1 varies appreciably. In this case 
the lines v = 0.1, v = 0.2 etc. turn out to be prac­
tically straight (Fig. 4b). Thus we account ana­
lytically for the pushing-out of the current from 
the ridges of the corrugation. Obviously the dif­
ference in the behavior of the lines of constant Y 
for a-- 0 and a-- oo arises simply from the dif­
ference in the exponents in (24) and (25). 

v~o p~ 
• 

V•O,I 
v~o.z . 

a 

FIG. 4 

It is easy to see that these arguments remain 
valid also in the case k .$ 1, as in the numerical 
example. 

B. Structure of the Current Layer Near a Wall, 
for weT» 1 

It was already noted (Fig. 3) that the electron 
current in skirting the wall is compressed close 
to it and forms when weT » 1 an extremely thin 
layer. We consider this effect first using as an 
example the flow near a conical wall (Fig. 5). 

p - a(, = const. (27) 

Using the fact that as weT- oo the stream lines 
duplicate the geometry of the wall with great accu­
racy, we can write in the neighborhood of some 
point P of the wall 

(28) 

(24) where Y » 1 is a characteristic current ampli-



1226 V.I. BRYZGALOV and A. I. MOROZOV 

L_ ______ -z; 
FIG. 5 

tude and Op is the effective thickness of the cur­
rent-carrying layer near P. We insert (28) in (9) 
and remember that f, f', and f" z> are of order of 
magnitude unity, and Y0 and 1/0p are much 
greater than unity. We then obtain to the leading 
order in Op the following equation for f in the 
neighborhood of P 

!" ( 1 + az) = _ 2aYoo!!___ f'f. 
pp2 

(29) 

The quantity p must in this equation be treated as 
a parameter that does not depend on the argument 
of the function f. In view of what we know about 
the orders of magnitude we can find from ( 29) the 
value of 6p: 

a b c d 

FIG. 6 

are formed only when the electrons "surge" to­
wards the wall. Consider now case a of Fig. 6, 
assuming, as is the case in the computed example, 
the boundary conditions 

Then 

I = 0 when £ = 0, 

f' = 0 when I = 1. (33) 

f' + 1/zf = 1/z, (34) 

eo-1 
I= e£ + 1, ( 35) 

i.e., f-1 as t-oo. 
In case c of Fig. 6 we can take as boundary 

conditions 
I = 1 when £ = 0, 

( 36) 
Op = (1 + aZ)p = (1 + a2)p2 

2lalwe1' 2laiYo 
(30) /'=0 when 1=0. 

We see that Op is inversely proportional to WeT 

and to a, in agreement with the results of the 
numerical work. The cases a = 0 or oo call for a 
separate investigation. 

The choice of the expression (30) for Op allows 
(29) to be written in the form 

!" = -/'18, 8 =sign a. 

Equation ( 31) has the first integral 

f' + 1/zf8 = const. 

( 31) 

( 32) 

This equation has an important singular property. 
Consider a free current layer which is not pushed 
against a wall. Then outside of this layer f'- 0. 
However, this fact is not described by Eq. (32). 
We must therefore conclude, in line with Fig. 3, 
that there can be no free current layers which 
flow at an angle to the t axis. 

In principle there are four possible cases of 
the formation of current layers near walls (Fig. 6). 
It is easy to see that cases b and d of Fig. 6 are 
incompatible with (32). This agrees with there­
sults of the numerical work, where boundary layers 

2)The primes denote derivatives with respect to 
~"" (p- a()/op. 

Then Eq. (32) takes the form 

(37) 

and consequently 

1=(1-£,)-1, £ < 0, (38) 

i.e., f-0 as t--oo. 
The great difference in behavior of the current­

carrying layer in the cases of Figs. 6a and 6c 
presents considerable interest. 

The calculations of the boundary current layers, 
presented in this section and based on Eq. (31), 
remain valid when the current skirts not a straight 
but a curved profile. This is caused by the local 
character of (31) and, in the general case, a should 
be understood to be the slope of the tangent to the 
profile. 

C. Structure of Layers Parallel to the t Axis. 

For the discussion of such layers we must dis­
tinguish between the behavior of the current near 
the axis of the conductor, where Y- 0, and in the 
region in which Y » 1. Near the axis of the con­
ductor the Hall effect does not arise and here the 
current distribution is well described by the usuaJ 
equation of the Laplace type 
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(39) 

Hence, the penetration of current into the region 
near the axis will be very strong. 

In the region of large Y, on the other hand, 
Eq. (9) takes the form 

p ~ (~ :;)= ~ y~~· (40} 

By linearizing this equation near Y = Y1 we can 
see that Y must vary very rapidly with p in the 
limit as Y- oo, This justifies for the main part 
the current picture shown in Fig. 3. 

Finally we want to discuss the possible impor­
tance of these effects. In a hot plasma WeT may 
be very large, therefore the elimination of the cur­
rent from the ridges of a corrugated plasma cylin­
der may considerably slow up the development of 
the narrower part of the cylinder, at least in those 
cases in which the build-up time of the narrow neck 
is greater than the flow time of the current into 

the ridges. The pushing of the current from the 
ridges should also affect the diffusion of plasma 
in a magnetic field, since a magnetic field ceases 
to confine the plasma in the ridges. 

In semiconductors (such as InSb}, which cannot 
carry heavy currents, the effects described above 
would require the use of external magnetic fields 
(for example a field H "" 1000 Oe gives for InSb 
weT"" 1). This could be realized, for example, by 
using a hollow corrugated rod and placing inside it 
a metallic conductor carrying a heavy current. In 
that case the current passing through the semicon­
ducting rod could be quite weak. 

1 A. I. Morozov and A. P. Shubin, JETP 46, 710 
(1964}, Soviet Phys. JETP 19, 484 (1964). 

2 T. F. Volkov, Yaderny! sintez (Nuclear Fusion) 
4, 305 (1964). 

Translated by R. E. Peierls 
229 


