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An expression for the diffusion coefficient of dilute solutions near the critical point is de­
rived and discussed on the basis of the general macroscopic diffusion equations and the 
thermodynamical properties of solutions near the critical point. The nature of the Brown­
ian motion of particles near the critical point is discussed. 

A number of interesting experiments in recent 
years have shown that the diffusion coefficient be­
comes vanishingly small not only at the critical 
point for mixing in a two-component liquid solu­
tion [t], but also at the critical point for vapor 
formation in a dilute solution [2]. This result con­
firms a well known consequence of the general 
diffusion theory as applied to the critical point. 

In view of this it seems reasonable to discuss 
in greater detail the behavior of the diffusion pro­
cess near the critical point for vapor formation in 
a solution by means of the general equation of 
macroscopic diffusion theory and the thermody­
namic properties of the critical point. This is the 
object of the present paper. 

It is well known that there is now experimental 
evidence that the behavior of the thermodynamic 
quantities in the neighborhood of the critical point 
for evaporation is more complicated than was pre­
viously believed, as shown by the appearance of a 
logarithmic rise of the specific heat at constant 
volume [3•4]. One has to expect a similar behavior 
for solutions although this problem has not as yet 
been studied. We shall therefore use in this paper 
the thermodynamic description of the critical point 
which was accepted prior to these developments, 
and which is based on the assumption that the free 
energy can be expanded in a power series in the 
neighborhood of the critical point; we shall also 
use the usual expression for the free energy of a 
dilute solution, which contains the logarithm of the 
concentration. One must therefore bear in mind 
that the formulae derived below may turn out to be 
inapplicable in the immediate neighborhood of the 
critical point. For this reason it might be possible 
to derive further information on this question from 
an analysis of diffusion experiments and their com­
paris on with the equations derived below. 

Finally, we shall consider the question of the 
significance of our conclusions about the macro­
scopic diffusion coefficient of dilute solutions in 

terms of the Brownian motion of individual par­
ticles. We shall show that the fact that the diffu­
sion coefficient tends to zero at the critical point 
does not imply a reduction in the Brownian dis­
placements of the particles, which are determined 
entirely by their mobility. 

1. We start from the general diffusion equations 
for solutions (at constant pressure and tempera­
ture). Denoting by n0 and n1 the molecular con­
centration per unit volume of solvent and solute, 
by uo and Ut their transport velocities, and by 
J.l.o and IJ.t their chemical potentials, we can write 
(for one-dimensional diffusion) a set of four equa­
tions for the four functions n0, n1o u0, u1: 

an! an!ul ano anouo 
at+----az = 0, fft+----az = 0, 

U1- Uo all! n1 allo 
-b-+iii:= 0, bno (ut- u0)- iii:= 0. (1) 

Here b is the mobility of the solute molecules. 
From the last two equations one can derive by 
means of the thermodynamic identity for is other­
mal changes, no d!J.o + n1 d!J.t = dp, (in line with our 
assumption) 

dp=O. (2) 

We can use this equation in place of the last equa­
tion in (1). 

Using 

x = n1 In, n = no + n1 = 1 I v, 

U = Ut - Uo, W = ( 1 - X) Uo + XU!, 

we can transform the set of equations (1) into: 

where 

an+ anw=O 
at az ' 

{ ax ax} a ( * ax ) n -+w- =- nD- , 
at az az az 

D* = bx(1- x) (allt I ax) P 

(3) 

(4) 

(5) 
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is the diffusion coefficient for the diffusion equa­
tion in terms of the relative concentration x. If 
we write an equation for n1o the coefficient is 

(6) 

Making use of (2), (3) and (4) we can replace (3) by 
the equation 

ow=- Px !_D*n ox 
f)z Pv f)z f)z ' 

(7) 

which serves to determine w. The problem is 
thereby reduced to the three equations (4), (7), and 
(2) for the three functions x, w, and n = 1/v. 

The generalization of these equations to the 
three-dimensional case presents no difficulty; how­
ever, some complications may then appear in the 
study of the phenomenon of diffusion near the criti­
cal point. 

2. We now quote the necessary thermodynamic 
equations relating to the critical point of the solu­
tion. For this we must use the variables v, x, T, 
rather than p, x, T since the thermodynamic quan­
tities are not single-valued functions of the vari­
ables p, x, T near the critical point. Let f(v, x, T) 
be the free energy per molecule of solution. The 
chemical potential 11-t and the pressure p are then 
of the form 

!11 = f- vf, + (1- x)fx, p = -f,. (8) 

We find therefore 

(8111 I ax)p = (1- x) (f,,fxx- fvx2 ) If,,. (9) 

The expansion of the thermodynamic potential near 
some given state v, x ( T = const ) in a series of 
powers of 6.v and 6.x is then: 

! {fvv L\v2 + 2fvx 11vL\x + fxx L\x2} + ! {/vvv L\v3 + ... } 

_ 1 (/ A +f A ) 2 + fxxfvv-fvx A 2 - -- vvl.l.V v:x;LJ.X -- LJ.X 
2fvv 2/vv 

+! {f,,,.(\v3 + ... }. (10) 

We note that for the further arguments we re­
quire only the possibility of an expansion to second 
order in 6.v and 6.x i.e., the existence of the de­
rivatives fxx, fvx = - Px and fvv = - Pv· 

The critical point represents a stable state. In 
its neighborhood, however, there exist two stable 
states rather than one. This is possible only if at 
that point the quadratic form in the two variables 
6.v and Ax, which appears in (10), vanishes for 
certain values of Ax/ 6.v. This leads to 

2 
fxxfvv- fxv = 0. (11) 

as a necessary condition at the critical point. 
Here of course fvv > 0 and fxx > 0. Further­

more, the third-order terms in (10) (assuming the 
existence of the third derivatives of f) must van­
ish for the same values of Ax/ 6.v; otherwise the 
state would be unstable. It follows that at the crit­
ical point the following condition must apply 

3 2 2 3 
fvvv fvx- 3/vvx fvx fvv + 3/vx:x; /vx fvv- fxxx fvv = 0, 

which is equivalent to the equation < a211-l ax2 )p = o. 
By solving this equation, together with (11), for 

v and T at given x, we find the critical values of 
v and T for a given concentration x. 

From (11), (9), and (5) we find for the diffusion 
coefficient the expression 

D* = bx(1- x)2(f,,fxx- f!x)/f,,, (12) 

which evidently vanishes at the critical point. 
We note also that from the well-known equa­

tions of fluctuation theory we can write for the 
rms fluctuations 6.v and Ax: 

(L\x2) = fvv (L\v2) = - f,, (L\vL\x) = _!_ '--1"_"---::-::-
fxx fvx N fxx fvv- fvx2 

Here N is the total number of particles in the vol­
ume for which the fluctuations are considered; the 
temperature T is here and subsequently expressed 
in ergs. We can therefore obtain from (12) an 
equation that connects the diffusion coefficient di­
rectly with the fluctuations in the concentration: 

D* = bTx(1- x) 2 I N(L\x2), (13) 

i.e., the diffusion is slower the greater the concen­
tration fluctuations. 

3. We consider now dilute solutions. We require 
an expression for the free energy, which is valid in 
the neighborhood of the critical point. 

We write this equation in the form 

f(:c, v, T) = Tx In x + j* (x, v, T), 

and in particular as x - 0 

limf(x, v, T) = fl(v, T), 

(14) 

where f0 ( v, T ) is the free energy of the pure sol­
vent. In this formulation we do not assume that f* 
can be expanded in powers of x. The point is that 
the experimental facts obtained in [ 3] suggest the 
possibility that the free energy may, at the critical 
point, have not only a singularity as a function of v 
and T (a logarithmic singularity according to [3J), 
but even a singularity as a function of x beyond that 
already contained in the term Tx ln x. 

Inserting the derivatives of the expression (14) 

fvv = -p,, fvx = -px, fxx = T I X+ fxx" 
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in (12), we obtain 

D"=bT{i- ;( p~v -fxx")}. (15) 

For a dilute solution with small x the value of 
Px may be taken at x = 0. If f,tx remains bounded 
as x- 0 it may also be taken at x = 0. In the 
term with p~/py the denominator becomes very 
small for x near the critical point of the solvent 
where Pv = 0. This term therefore dominates the 
behavior of D*. Retaining only this term we find 

D" = bT{ 1- _..::. Px2
}. 

T -pv 
(16) 

The expression in brackets in (15) is of course al­
ways positive. It equals (fxxfvv - f~x)/xTfvv· At 
the critical point of the solution it becomes zero; 
the size of the region of densities and tempera­
tures in which D*/bT is small decreases with de­
creasing x. 

We see from (16) that the solute concentration 
affects the diffusion coefficient if the equation of 
state depends on concentration (i.e., Px ;I! 0 ). As­
suming (as in [a,4]) that f can at the critical point 
be expanded in a series of powers of Av and AT, 
we find the dependence of the diffusion coefficient 
on the distance from the critical point of the pure 
solute ( T0k, v0k) 

D" L\v2 + aL\T + (~- y)x 
bT L\v2 +aM'+ ~x 

where 

2 Ok I Ok R 2 Ok/ OA 2( Ok)2/T Ok a = p.,T Pvvv, t' = Pvx Pvvv, 'Y = Px Pvvv, 

or at a given pressure p = p0k + Ap 

where 

{) = 2'1'(Px0k)2/3'fa(p~~v)'l• T. 

We emphasize that near the critical point and 
at low concentrations the diffusion equation is non­
linear. Even for an arbitrarily small concentration 
gradient the transport term nw ax/ az can be shown 
to be of the order of magnitude of 

bT- D* !_D*n ax 
bT az az ' 

and may therefore be neglected only if D* - bT, 
i.e., far from the critical point. The simple linear 
diffusion equation applies only if the changes in the 
concentration are small compared to some constant 

concentration x0 (which itself is small). Writing 
x = x0 + ~. we have then 

a~ = D* (xo) a2~. 
at az2 

We note that in the derivation of the diffusion 
equation in (1) we have taken no account of vis cos­
ity, i.e., of terms proportional to the second de­
rivative of the velocity with respect to the coordi­
nates. An estimate shows that these terms contain 
a factor of the order (r/L )2 by comparison with 
those taken into account (here r is a measure of 
the molecular dimensions and L the dimension 
characterizing the concentration gradient ) . 

In these arguments we have assumed that the 
free energy depends only on the values of the den­
sity and the concentration at a given point and have 
neglected any dependence on their gradients. As a 
result, Eq. (1) contains only the first derivatives of 
1-'t and 1-'o with respect to z. An attempt to include 
the gradient terms in the free energy was made by 
Fisher [&J. Such terms cannot in order of magni­
tude be greater than ( l/ L )2 where l is the corre­
lation length. In experiments concerned with ma­
croscopic diffusion they will hardly be observable 
even very close to the critical point. 

4. In cases in which we are concerned with the 
diffusion of particles which move independently of 
one another, their concentration will satisfy the 
usual linear differential equation of diffusion. This 
is the same equation as that satisfied in this case 
by the distribution of the displacements of individ­
ual particles. The equation for the concentration 
is then obtained as the equation for the mean den­
sity of particles and is a consequence of the equa­
tion for the distribution. In this case, therefore, 
the mean square displacement of an individual par­
ticle, 

( (z(t) - z(O) )2) = 2Dt 

contains the same diffusion coefficient as the equa­
tion for the concentration. 

This is not the case for the diffusion near the 
critical point, which is considered in this note. The 
equation for the concentration is nonlinear. The 
displacements of different particles are in this case 
not independent events. We are therefore in this 
case not justified in identifying the equation for the 
concentration with that for the probability distribu­
tion of individual particle displacements, and there­
fore it is impossible to draw any conclusions about 
the displacements of individual particles. The dif­
fusion is slower in these circumstances, not be­
cause the particles move more slowly, but because 
one particle takes the place of another. 
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The mean -square displacement of the particles 
in Brownian motion and its time dependence are 
determined entirely by the mobility of the particles 
(and the variation of mobility with frequency). This 
is a consequence of the general fluctuation-dissipa­
tion theorem (the Callen-Welton theorem [7] ). It is 
easy to derive from that theorem an expression for 
the mean square displacement of a particle during a 
time t 

4T ~ dw 
((z(t)-z(0)) 2)=-~b'(w)(1-ooswt)-2 • 

n 0 w 

Here b' ( w) =Reb( w) is the real part of the mo­
bility of a particle moving under the influence of a 
force F = F0eiwt. The quantity b' ( w) is connected 
with a "generalized permeability" a( w ), used 
in [T]: 

b'(w) = a"(w) I w = Im a(w) I w. 

If the mobility is independent of frequency, b' ( w ) 
= b, this expression directly leads to the Einstein 
formula 

( (z(t)- z(0)) 2) = 2bTt. 

For the macroscopic particles of a col:loidal so­
lution near its critical point (which is practically 
that of the solvent) it is not only true that the 
Brownian motion has no singularities other than 
those arising from the behavior of the mobility in 
these conditions, but the same applies also for the 
diffusion. This follows from the fact that the mo­
lecular concentration of the colloid solution is 
practically zero and in that case the diffusion 
coefficient equals bT. 

The problem of finding the mobility of macro­
scopic particles moving in a liquid near its criti­
cal point reduces to the solution of a hydrodynamic 
problem. This requires the inclusion of the high 
compressibility and a correlation length which 
may be comparable with the dimensions of the 
particles, and also the behavior of the viscosity 
of the liquid in this region. This problem will be 
considered in a separate paper. 

The Brownian motion of molecules manifests 
itself in self-diffusion. As in the case of macro­
scopic particles, the coefficient of self-diffusion 
depends only on the mobility of the molecules in 
the liquid. Noble and Bloom [B] have shown by 
means of the spin-echo technique that the self­
diffusion coefficient of ethane molecules changes 
near the critical point by amounts of the order of 
50% of its magnitude (and not by several orders 
of magnitude, as the diffusion coefficient of the 
solution ) . This change in the diffusion coefficient 

must be connected with a corresponding behavior 
of the particle mobility in the critical region. 

Krichevskil et al. [5] have shown that the rate 
of recombination of iodine atoms into molecules 
in solution (the solvent being carbon dioxide) near 
the critical point of the solution and the rate of 
recombination of chlorine atoms in ordinary mo­
lecular chlorine ( Cl2 ) at the critical point are ex­
tremely slow. These authors attribute this phe­
nomenon to the fact that the diffusion coefficient 
is decreased and deduce from this that the Brown­
ian displacement of the individual iodine and chlo­
rine atoms is reduced thereby. Using for the re­
action rate ideas similar to the Smoluchowski 
theory of the coagulation of colloids they then ar­
rive at the conclusion that the time required for 
two atoms to meet will become exceedingly large, 
and that therefore the recombination will be slowed 
down. From the arguments given above it follows 
however that this explanation of the observed facts 
cannot be accepted as justified, and that a differ­
ent explanation is required. One may imagine, for 
example, that in the conditions near the critical 
point the foreign atoms in the solution are sur­
rounded by solvent molecules so that their close 
approach becomes very difficult, while the proba­
bility of recombination decreases rapidly with 
atomic distance (or else one may look for an ex­
planation in the decrease of the atomic mobility ) . 

The hypothesis has been put forward that the 
reduction of the diffusion near the critical point 
may lead to an anomalous behavior of the electric 
fluctuations in solutions of electrolytes in these 
conditions. This conclusion is however, unjusti­
fied. The closeness of the critical point causes no 
limitations to the applicability of the Nyquist equa­
tion and other general equations of the theory of 
electric fluctuations. Here again everything will 
depend on the mobility of the ions. 

An experimental study of the conductivity of 
electrolytes, as well as of the Brownian motion 
of colloid particles near the critical point, is of 
interest because it could provide information about 
the behavior of the mobility. For this it is, of 
course, necessary to know the behavior of the vis­
cosity of the solvent in this region. 
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