
SOVIET PHYSICS JETP VOLUME 22, NUMBER 5 MAY, 1966 

HIGH-FREQUENCY STABILIZATION OF THE SCREW INSTABILITY IN AN ELECTRON

HOLE SEMICONDUCTOR PLASMA. I 

V. V. VLADIMIROV 

Submitted to JETP editor June 5, 1965 

J. Exptl. Theoret. Phys. (U.S.S.R.) 49, 1562-1575 (November 1965) 

It is shown that the high-frequency stabilization of the screw instability in a semiconductor 
is due to waves that are reflected from the ends of the sample. These waves give rise to 
helical modes with different spatial period along the axis of the sample. The time correla
tion of modes with spatial period comparable with the length of the sample, due to the high
frequency modulation of the current, is responsible for the stabilization. It is shown that 
high-frequency stabilization can only be achieved in short samples and certain stabilization 
criteria are given. The results of this theoretical analysis are in good agreement with ex
periment. [12] The stabilization mechanism considered here should also be operative in the 
plasma in the positive column. 

1. Two effects were reported in 1958 which did 
not appear to be related to each other, since the 
exact nature of the phenomena was not clear. 
These two effects are the anomalous diffusion ob
served in the plasma in a positive column in a 
strong magnetic field, which is accompanied by 
low-frequency noise (approximately 105 cps), 
reported by Lehnert, [1] and the low-frequency 
current oscillations (approximately 104 cps) in a 
thin long germanium sample in a strong longitud
inal magnetic field described by Ivanov and 
Ryvkin.[2] The phenomenon observed by Lehnert 
was explained by Kadomtsev and Nedospasov,C3J 
who developed the theory of the screw (current 
convective)1) instability of the positive column. 
This theoretical analysis has received extensive 
verification. [4] 

Glicksman [5] modified this theory and applied 
it to the electron-hole plasma in a semiconductor 
and also obtained excellent agreement with ex
periment. [2•8] Subsequently, a number of experi
mental and theoretical papers appeared [T-tt] 

which discussed various features of the screw 
instability in semiconductors and shed a great 
deal of light on the nature of the instability. [s, 11] 

The work cited above was followed by the 
publication of experimental results concerning 
high-frequency stabilization of the screw (current
convective) instability in semiconductors [12] and 
in the positive column.C13J The application of a 

1>1n the present work, by the screw instability in all cases 
we mean an instability of the diffusional type which Kadomtsev 
and Nedospasov[5] called the current-convective instability. 

high-frequency current of sufficient amplitude 
stabilizes the instability. This work has aroused 
great interest since it provides experimental 
verification of the possibility of preventing 
plasma instabilities by means of high-frequency 
fields. However, the mechanism by which the 
high-frequency field stabilizes the screw instabil
ity in the diffusional regime is not yet clear. 

Up to the present time the theoretical analysis 
of high-frequency stabilization of plasma insta
bilities has been limited to the case of hydrody
namic perturbations;[14J in large part this analy
sis has been concerned with the treatment of 
force equations (dynamic stabilization) because 
the primary factor responsible for the pertinent 
instabilities is the inertia of the heavy ions. If a 
parameter (current, magnetic field) is made to be 
a periodic function of time, these force equations 
are reduced to a Mathieu equation or a Hill equa
tion, and the stability criteria for these equations 
then give the required information on dynamic 
stabilization.[t4] As is well known,C3•5J the equa
tions which describe the diffusional screw 
(current-convective) instability are first-order 
equations in time since the inertia of the particles 
is not important (the development of the instability 
is determined by the balance between the drift 
and diffusional flows). Hence, these equations do 
not lead to the usual Mathieu or Hill equations 
when the ordinary techniques are applied [14] and 
the nature of the stabilization mechanism remains 
unclear. [14] 

It will be shown below that the primary feature 
in high-frequency stabilization of the screw in-
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stability in semiconductors is due to the presence, 
in addition to the primary wave, of waves re
flected from the ends of the sample; these waves 
result in formation of helical modes with different 
spatial periods along the z axis. The time corre
lation of these modes in the presence of the rf 
field can result in stabilization. It will be s.hown 
below that the kind of high-frequency stabilization 
mechanism can also operate in the positive 
column. 

2. To analyze the problem we start with the 
equation of continuity and the equations of motion 
for the electrons and holes: 

an 
Tt + div nve = Zn, 

ap 
fit+ div pvh = Zp, (2) 

(3)* 

(4) 

where Z is the coefficient of volume generation 
of non-equilibrium carriers; n and p are the 
electron and hole densities respectively; m: and 
mh are the effective masses for the electrons and 
holes; Te and Th are the temperatures for the 
electrons and holes (we assume hereinafter Te 
= Th ); Te and Th are the relaxation times; 

ffieH = eH I m,* c, 
ffihH = eH I mh*c. 

We consider a thin cylindrical sample, in 
which case the nonequilibrium carriers recom
bine only at the surface (the volume recombina
tion time for the carriers is much longer than 
the diffusion time Tb » a 2/D ). A constant mag
netic field is applied in the z-direction. For 
purposes of simplicity we consider the case of a 
natural semiconductor ( n = p ); experimental in
vestigations of rf stabilization of the helical in
stability in semiconductors [12] have also been 
carried out in the region of natural conductivity 
of the germanium samples. The carrier diffusion 
is assumed to be ambipolar so that the equilibrium 
distributions of potential and density are given by 

dqJo De- Dh 1 dno 
no(r) =nolo(l~or), (5) 

dr be+ bh n0 (r) dr' 
where 

- ( z )'/, 
~ --

- \ Da ' 

b·_eT;. ,---.. 
m; 

T·T· 
D·--~ 

1.- * 1 
m; 

bi is the mobility of carriers of type i and Di is 
the diffusion coefficient for the carriers. The 
distributions in (5) are obtained under the as
sumption that Yi = bi H/ c « 1. This case is the 
one of most interest in semiconductors. 

The boundary conditions at the surface of the 
sample are 

r = -Da Vn I = snlr=a, 
n r=a 

(6) 

where r is the flux due to ambipolar diffusion of 
the carriers to the surface of the sample and s 
is the rate of surface recombination for the car
riers. Hereinafter the zero subscript will be 
omitted on the equilibrium quantities. 

From (6) we find 

Gx = lo(x) I Ji(x), x = ~oa, G = Da I as. (7) 

For a given value of G we can find x and the 
value of the equilibrium density of carriers at 
the surface of the sample. When s--... oo ("dirty" 
surface) J 0 ( x) - 0 ( x --... 2.41) and the equili
brium density vanishes at the surface. Under 
these conditions, to a high degree of accuracy[3•5J 
the radial dependence of the drift quantities can 
be approximated by the Bessel function J 1 ({3 1r) 
where {31a is the first root of the function J 1, 

thus allowing a considerable simplification of the 
problem. 

If the surface is highly finished, the quantity 
G » 1 and the equilibrium density at the surface 
is essentially the same as at the axis. Helical 
surface waves can also be excited in this case 
but the mechanism by which these waves are 
generated is not connected with the gradient of 
the equilibrium density distribution.[11] This 
problem allows of a rigorous analytical solution. 
However, in discussing high-frequency stabiliza
tion there are appreciable difficulties because it 
is necessary to solve partial differential equa
tions in three variables ( r, z, t) with specified 
boundary conditions at the surface and at the 
ends. 

In order to simplify the problem we shall use 
the approximate method (proposed by Glicksman [5] 

in the investigation of the helical instability in 
semiconductors); this approach gives good agree
ment with experiment when G > 1. The method 
consists of the following: the radial dependence 
of the perturbed quantities is assumed to be given 
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by Bessel functions J 1 (/3 1r) where /3 1 is chosen 
to make J 1 ( {31r) vanish at the same point as 
Jo(/3or). 

Now, using the formalism of Kadomtsev and 
Nedospasov [3] for quasineutral perturbations 
( n' = p') of the form 

A'= A'(z, t)J1 (~ 1r)ei"' (first mode), (8) 

after some lengthy calculations [5] from (1)-(4) we 
obtain the following set of equations for the small 
oscillations, these being the point of departure for 
the subsequent analysis: 

on' on' f)2n' 
Tt+ Voaz:-DefiZZ 

on' Vo On1 o2n' 
Tt - -b 7iZ- D~: oz2 

(9) 

(10) 

where v0 = -beE, E = Eoc + E sin w0t, Eoc is a 
constant longitudinal electric field; E and w0 are 
the amplitude and frequency of the high-frequency 
component; j30a, j31a, L, Q, R, and T are con
stants that depend on the parameter G. These 
equations are derived under the assumption that 
Yi = bi H/ c < 1. The generation of carriers is 
neglected in the perturbation equations (9) and 
(10). 

Using (9) and (10) we obtain an equation for 
n'(z,t): 

(11) 

3. Since we are interested in the question of 
stabilization, we neglect in (11) all terms that 
have no bearing on the stabilization criterion 
(terms ~Yi• with the exception of the current 
term). With this simplification (11) becomes 

h ( a•n' f)2n' ) 
Ln' = 2De -- - P~12 --f)z4 f)z2 , 

t = (1 +b)~(!:_- P~12 ) + 2De~t2 ( !!:.._- Pfh2) 
at f}z2 f)z2 

a 
- iR~o2 (Ye + Yh) Vo az. 

We give values of the quantities ({3 0a )2, 

(12) 

(12') 

( j3 1a )2, P ( {3 1a )2, R ( j3 0a )2 for various values of 
the parameter G: 

6=n(a)/n(O): 0 0.2 0.5 0.8 0.95 0.98 
G = Dafas () 0.17 0.59 2.11 10 25.19 

(~o a)2 5.78 4.17 2.32 0.84 0.20 0.082 
(~1 a)2 14.68 10.58 5.83 2.14 0.51 0.21 
R (~o a)2 3.85 2.74 1.39 0.45 0.10 0.041 
P (~1 a)2 11.79 9.01 5,91 2.43 0.61 0,25 

A table of these values is given by Glicksman [5] 

for values of the parameter o = n (a )/n ( 0 ). How
ever, the parameter G has more physical signif
icance and for this reason we have included it in 
the table along with the corresponding values of 
the other parameters. 

The relation in (12) is the starting point for 
investigating high-frequency stabilization. We 
note that the right side of (12) is ~ a/L times the 
left side and when L » a the right side can be 
treated as a perturbation. 

If we write the dependence of perturbed quan
tities in the z-direction in the form of a plane 
wave exp ( ikzz ), as is usually done in the theory 
of the screw instability, the time variation of the 
perturbed density is given by the equation 

1 dn' R 2 + k 2 - - = -A • + B*v A • = 2D ~'-' 1 z 
n' dt 0' e 1 + b ' 

(13) 

where A* is a diffusion term, which stabilizes, 
while B * is the destabilizing drift term. It is 
evident that (13) does not describe high-frequency 
stabilization: in the first half cycle the high
frequency field tends to drive the instability, but 
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in the second half cycle it tends to stabilize it and 
the net effect vanishes when averages are taken 
over the high-frequency cycle. It will be shown 
below that the high-frequency stabilization is due 
primarily to the presence of waves reflected from 
the ends; these lead to the appearance of helical 
modes with different spatial period along the z
axis. The time correlation of a mode whose 
spatial period is comparable with the sample 
length L then leads to stabilization of the insta
bility in the presence of the high-frequency field. 
Under these conditions the plane wave approxima
tion, which holds when L » A.z, no longer ap
plies. In order to get a proper description of the 
effect we must solve (12) taking account of the 
boundary conditions at the ends. 

The variables do not separate in (12) because 
v0 depends on the time. Let us first consider the 
simpler equation 

Ln' = 0, 

in which the variables do separate: In (14) we 
take n' = f( t) .P ( z) in which case it is easy to 
obtain the following equation for the functions 
f ( t ) and .P ( z ) : 

1 (__!__ df + 2DhPt2 ) 

iRPo2YhVo f dt 1 + 1/b , 

d<l> [ d2<1> ]-1 
=- --P~t2<1> =a, 

dz dz2 

where a is a separation constant. 
Using the boundary conditions 

n'lz=O,L = 0 

(14) 

(15) 

(16) 

(it is assumed that the input and output are un
perturbed since the development of the instability 
is due to volume processes) we can find the func
tion .P and the characteristic value a. 

The equation for .P is 

d2<1> 1 d<l> 
--- --PPtZ<fl = 0. 
dz2 a dz 

(17) 

It is easy to solve this equation taking account of 
(16), the solution being obtained in terms of the 
characteristic functions ( <P ) and the character
istic values (a): 

i 
an=--, 

2pn 

where n = 1, 2, ... ; Pn = [P,B~ + (7rn/L)2 J112. 
The spatial period of the function .Pn ( z ) in 

long samples 

(18) 

(19) 

varies from 2a to Sa respectively as the parame
ter G varies from 0 to 10. 

If (19) is satisfied the functions <Pn ( z ) form 
an orthogonal set. If we keep the factor 
exp i [ P,B~ + ( 1rn/L )2 ] 112z, in the functions <Pn ( z) 
these functions are weakly orthogonal and the 
departure from orthogonality is given by 
""'ao/L2• Hereinafter a characteristic function 
associated with a given value of n will be called 
the n-th mode. It is evident that the notion of a 
mode is not meaningful in long samples (19) be
cause the variable kz = 1rn/L becomes continuous 
when L- 00 • 

The time variation of the n-th mode, as follows 
from (15), is given by 

(20) 

This equation, like (13), does not describe high
frequency stabilization. The stabilization criter
ion for the n-th mode is given by 

It is evident (see above) that when G increases 
the instability arises at lower values of yhv0• 

This is related to the fact that when G is in
creased the quantity o = n (a )/n ( 0) is also in
creased, with a consequent reduction in the diffu
sional flux which acts to damp the screw insta
bility. 

An analysis of the more general equation (11) 
similar to that given above shows that at the 
stability limit the oscillation frequency 

_ _ RPo2DhYe~ _ R~Q2YhVo 
Cllcr - 1 + b ~ '\' - 2pn ' (22) 

where /' is the growth rate for the instability. 
Since I Wcr I « 'Y the notion of an oscillation 
frequency is not meaningful at the stability limit 
in natural semiconductors, and one can only 
speak of the growth rate of the instability. As the 
order number of the mode ( n) is increased the 
growth rate is reduced. 

4. The solution of (12) can be written in the 
form of an expansion in characteristic functions 
of the operator £: 

n' = ~ Cn (t) <l>n (z). (23) 
n 

In this representation the solution of (12) satisfies 
the boundary condition in (16). Taking account of 
(17) and (18) we write (12) in the form 



HIGH-FREQUENCY STABILIZATION OF THE SCREW INSTABILITY 1075 

~ {- 2bpn [ ( 1 + -}) d~tn + 2Dh~t2 (1 + P)Cn J 
n 

+ 2Dh~t2 (1 + P)Cn 1- 8DePn [ Pn2 + ( ~n YJ Cn 

1 + R~o2 (Ye + Yh) uoCn f. (24) 

It is evident that as L - oo (19) the change in 
the function n' in time is given by (20), which 
does not describe high-frequency stabilization. 
Thus, high-frequency stabilization does not oper
ate in long samples, as is verified by the follow
ing calculations. 

In (24) we consider the first two modes 
( n = 1, 2 ), which have the highest growth rates. 
The solution of (24) is carried out by perturba
tion methods, in which we neglect all Cn for 
which n > 2. 

Let us require that the system of functions 

([)1 = exp(iptz)sin~ z, <!>2 = exp(ip2z)sin 22 z, (25) 

be orthogonal to the system of functions lf!: 
:rt 

'1-'t = exp (- ip2z) sin L z, 

2:rt 
¢ 2 = exp (- ip1z) sin L z, (25') 

so that 

(26) 

(27) 

L L 

~ 'P1<!>2dz = ·~ '¢2<!>1dz = 0. (28) 
0 0 

In long samples A, B R:> L/2: For a "dirty" sur
face G ~ 0 when L/ a > 5 and for a "clean" 
surface G R:> 10 when L/a > 10. 

Multiplying (24) respectively by zf!t and lf!2 and 
integrating with respect to z from 0 to L we ob
tain two equations for the coefficients C1 and C2 

which describe the time dependence of the per
turbed quantities: 

{-2(1 +b) ri\- 4De[4Pt2 + (1-3P) ~!2] PIC! 

+ R~o2 (Ye + Yh) uoCt}A P1 + 4/ai{-2 (1 + b) P2C2 

-4DeP2 [ 4p22 + ( 1 - P) ~12] C2 

+R~o2 (Ye+Yh)uoCz} =0, (29) 

{-2(1 +b) pzt\- 4De[4pz2 + (1- 3P)·~NpzC2 

+R~o2 (Ye + Yh)uoCz}Bpz- 4/ai{-2(1 + b)p/:;1 

-4DePt[4Pt2 + (1- P)~t2]Ct 

+R~o2 (Ye+Yh)uoCt} =0, (30) 

where C = dC/dt. 
It is evident from (29) and (30) that the func

tions C1 and C2 are shifted in time phase. In 
long samples this shift is approximately rr/2. The 
phase shift arises because of the reflected waves. 
There is no correlation between C1 and C2 in 
long samples (19) and each of them varies in time 
in accordance with a first-order equation 

C 2Dh~t2 Rf3o2YhVo 
C =- 1 + 1/b + 2~1P'h (31) 

which does not allow a stabilization effect. 
When mode correlation does exist, i.e., when 

(32) 

the presence of a phase shift in time with the ap
plication of the high-frequency field can lead to a 
stabilizing effect which we will consider qualita
tively for the phase shift rr/2. In the first half 
cycle the high-frequency field amplifies the first 
mode and weakens the second; the pattern is re
versed on the second half cycle. Thus, the effect 
of stabilization and destabilization due to the 
high-frequency field exists at each instant of 
time, whereas in (13) these effects are shifted 
with respect to each other at the frequency of the 
variable component. The total effect of the high
frequency field on the screw instability described 
by (29) and (30) can be found from the generalized 
Hill equation which, in turn, can be developed 
from the equations for the coefficients c1 and 
C2 starting from (29) and (30). It should be noted 
that in samples with clean surfaces the condition 
for strong correlation of the modes (32) is sa tis
fied over a wider range of variation of sample 
length L/a; hence, the stabilization effect should 
be more pronounced in such samples. (This as
sumption will be verified by further calculation.) 

5. Solving the system of equations (29) and 
(30), which are first order in each of the functions 
C1 and C2, we obtain a second-order equation of 
the form 

(33) 

where 

Dea-2 ( L\ VoYh ( L) 2e = --- ft -1 - -- fz - , 
1+b .a. a a 

(34) 
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The coefficients f1, f2, x1, x2, x3, and X4 are 
functions of the dimensionless sample length 

(35) 

( L/ a) only. Expressions for these coefficients 
are given in the Appendix. The coefficients E and 
K in the equation for the function C2 can be ob
tained by interchanging p 1 and p2 in the coeffi
cients f and x given above. 

(38) can be reduced to the inequality 

A> e > - 1-rx2- (X22- 4x:tXa)''•l. (42) 12 2x3 

The condition in ( 42) determines the allowable 
values of e for which high-frequency stabilization 
is possible. In Fig. 1 this relation is shown in the 
form of a cross-hatched region for various 
values of L/ a. The narrow band corresponds to 
a dirty surface ( G = 0) and the wide band to a 
clean surface ( G = 10 ). It is evident from this 
figure that high-frequency stabilization can be 
achieved more easily in samples characterized 
by G » 1. 

As L/ a increases both regions tend to vanish. 

Hereinafter we will only consider (33), which 
describes the time variation of the most dangerous 
mode, the first. The solution of (33) is written in 
the form Thus, it is more difficult to satisfy the condition 

for high-frequency stabilization (42) as L/a in
(36) creases. 

C1 = const · exp {- 5 B dt} u (t), 

B=Bc + B sin ro0t, 

where u ( t) satisfies the equation 

ii + (x- B2 - ~) u = 0. (37) 

It is evident that high-frequency stabilization 
can be described by (37). When L- oo the quan
tity K - E2 - €- 0 and the time variation of the 
function c1 is given by an exponential factor 
which agrees with (31). As we have noted above 
this equation does not contain high-frequency 
stabilization. 

High-frequency stabilization can be realized 
only when the development of the instability in 
the absence of the high frequency field is deter
mined by the time behavior of the function u i.e., 
stabilization can only be realized if 

Be> 0, Xc< 0. (38) 

The first condition means that the perturba
tions are damped if the function u does not grow; 
the second indicates that the instability is excited 
in the absence of the high-frequency field. Using 
(34) and (35) we can reduce (38) to the following 
inequalities: 

We now write (37) in the form 

d2 ( 2 
) ~ + eo + 2et. sin 2't + 2 ~ eve cos 2v't u = 0, 

d't2 V=l 
( 43) 

where 

4 [( De a-2 ) 2 ( 1 ) VocYh ( Dea-2 ) 
eo=- roo2 1 + b 4N-xt +-a- 1+b 

2 _ Yh [ Yh ( 1 2 ) 
e1s = - - 2 Vo- 2Voc- -4 fz - Xa 

roo a a \ 

2 Yh _ 1/ 1 2 etc= -----vo V -4 12 -xa, 
roo a 

root 
't=z· 

1 
4 N-xt>O, 

fJz 
xz--2-> 0, 

Be > 0, e < it I fz; This equation ( 43) is the generalized Hill equa-
(39) tion. [15] 

< - 1-[x2 + (X22- 4XtXa) '"]; 
2xa 

where the quantity e is given by 

s = VacYh ( Dea-2 \-1 

a 1+b .J · 
Since 

(40) 

When 

I Sol~ 1 (44) 

the first region of stable solutions of (43) is given 
by the inequality 

St2 s2cz 
St- 1 < I So I< 2 + -8-' ( 45) 

(41) where 01 = ..Jetc2 + 01s2· 
The condition in (44) determines the frequency 

of the high-frequency field which is capable of 
stabilization while the inequality in (45) gives the 
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,:or 

JOO~ 

210 

120 

30 n 5 10 15 u 

L/a 

FIG. 1 

boundaries of the modulation coefficient 
( 1) = volvoc) for which stabilization is possible. 
Under the assumption that 1J :S 1 (44) can be 
written in the form 

( D.a-2 ) [ 1 ( hh ) Wo~2 1+b 4N-x1+8 xz--2-

(46) 

The quantity 'Yo diminishes with increasing L/a; 
it does not vary appreciably with 8 for a clean 
surface and is essentially independent of 8 for a 
dirty surface. Curves showing the dependence of 
the quantity~= 1/ 2 y 0 1De/a2 (1 +b)]- 1 on L/a 
are given in Fig. 2 for the cases G = 0 and 
G = 10 (8 = 8min and e = 8max)· The values 
Omin and Bmax correspond to the lower and 
upper boundaries of a region of allowable values 
of e (cf. Fig. 1). 

For germanium samples at room temperature 
the condition in (46) with (De """ 10 2 cm2/sec, 
b """ 2, a= 0.05 em) taking account of the depend
ence of 'Yo on L/a is given by 

wo ~ 0.5-3 ·105 sec-t. (47) 

Calculations show that the left side of (45) is 
always satisfied while the right side can be re
duced approximately to the following condition for 
the modulation coefficient 1J ( wo = ho ): 

- z (N )'"[N ( /dz\ '11 >1'2- --xa --x1+8 Xz---1 
82 4 4 2 I 

+ 82 ( ~~ - xa ) J [ !~ - xa + ~8 ( xz- /~z ) r1. 

( 48) 

This expression holds if the modulation fre
quency is not too high: for the case of a dirty 
surface l < 15 - 40 as L/a varies from 5 to 15; 
for the case of a clean surface l < 30 - 60 as 

~ 3 

10 

7 z 

4 

't~--~----~----7 o m M 
l/a 

FIG. 2. Curve 1 corresponds to G = 10, 8 = 8m;0 ,curve 
2-G= 10, 8 = 8max• curve 3-G = 10. 

L/ a varies over the same range. The limitation 
on the modulation frequency arises from the fact 
that we have gone from the rigorous expression 
for the stabilizing modulation coefficient 1Jc, ob
tained from (45), to the form in (48), which is 
simple and convenient for calculation. 

A calculation of the lower limits of the modu
lation coefficient 1Jc as the function of sample 
length has been carried out using (48) for the 
cases 

1) G = 0, 8 = Bm;n, 8 = Bmax; 

2) G = 10, 8 = 8min, 8 = Bmax· 

In both cases l = 3. The results of the calcula
tion are shown in Fig. 3. 

In each of these cases the values of the stabiliz
ing modulation coefficients lie above the corre
sponding curve. It is evident from (48) that the 
stabilization modulation coefficient T/c increases 
as the modulation frequency increases (it being 

0,7. 

0 10 15 
L.ja. 

FIG. 3. The curves apply to the following values of the 
parameters: 1) G = 10, 8 = 8max; 2) G = 10, 8 = 8min; 
3) G = 0, 8 = 8max; 4) G = 0, 8 = &min· 
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assumed that (46) is satisfied in all cases). A 
similar situation is characteristic in the analysis 
of the dynamic stability of the inverted pendulum [14] 

and is due to the reaction in the high-frequency 
correction, which goes as w0 2, when one carries 
out the averaging procedure over the high-fre
quency component. It is easy to find the modula
tion coefficient 7Jc required for an arbitrary 
modulation frequency by using the results of the 
calculation (Fig. 3) and the relation in (48). As e 
is reduced [within the allowable range ( 42)] the 
required modulation coefficient 7Jc increases 
(this effect is very weak in long samples); when 
L/ a increases (for a fixed value of ...; 0/l'o) the 
modulation coefficient is reduced. Experimental 
verification of the dependence of 7Jc on L/ a re
quires that the generated frequency be changed 
in such a way as to keep the quantity w01l'o con
stant. It should be noted that the modulation co
efficient 7Jc in clean samples is appreciably 
smaller than in dirty samples, assuming all other 
conditions to remain unchanged. 

The above calculations show that high-fre
quency stabilization of the screw instability in 
semiconductors should be realized in short sam
ples characterized by small rates of carrier sur
face recombination ( G » 1 ) over a specific 
range of variation of 0 (42). 

The criteria in (42), (47) and (48) are in good 
agreement with the experimental results on high
frequency stabilization of the screw instability in 
germanium samples obtained by Dubovo'i and 
Shanskil. [12] 

6. Great interest attaches to the experimental 
observation of helical modes in the sample. One 
possible means of doing this, indicated to the 
author by V. F. Shanskil consists of measuring 
the spatial distribution (along the z-axis) of the 
resultant signal due to the superposition of cor
related modes which are shifted in time phase. 
We compute this distribution for the case of the 
first two modes: in accordance with (25) these 
are described by 

n 
<1>1 (z, t) = Ao cos ~1P'f,z sin L z sin wt, 

Ao , . 2n . 
<l>2(z, t) =-cos ~~p /, z sm-z sm(wt + cp), (49) 

m L 

where q; is the phase shift in time. The parame
ter m gives the mode amplitude and ratio. 

The resulting signal from the superposition of 
these two modes is 

<I> = Aol (z) cos ~ 1P'I'z sin ( wt + cp0)·, (50) 

where 

FIG. 4 

[ -4 c_os_2 (::-:~ :-:-zJ-,-si_n2_cp 1-'f, 
I(z) = g(z)sin (\~z) 1 + 

L .. m2g2(z) 

2 (n ) . tancpo = mg(z) cos Lz smcp, 

g(z) = 1 +!cos (;:Z) cos <f. 

The spatial distribution of the resulting signal 
is given in Fig. 4 for the case G = 0, L/a = 15, 
m = 1, q; = rr/2. The shape of the envelope is 
given by the function I ( z ). 

It is evident that this distribution is symmetric 
with respect to the center of the sample when 
q; = rr/2, with a clearly defined peak at the center. 
The peak spreads as m increases. The same 
pattern is observed for a clean surface, but the 
period of the spatial oscillations becomes larger. 

The formalism developed in this work can be 
applied to the study of high-frequency stabiliza
tion of the screw instability in a positive column. 
A subsequent paper will be devoted to this topic. 

In conclusion I wish to express my gratitude to 
B. B. Kadomtsev for proposing the problem and 
for guidance, to Academician M. A. Leontovich 
for a number of valuable comments, and to L. V. 
Dubovo'i, I. M. Rolfe and V. F. Shanskil for fruit
ful discussions of various questions encountered 
in the course of the work. 

APPENDIX 

The expressions for the coefficients f and x 
are given by 

+ (1- 3P) (a~i)2J Y + 4XYZ, 
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xz =- 2PRAB~t2 (a~o)2(ap 1 ) Y 

+ R(a~o)2 XY + R(a~o) 2 z, 
ap2 ap1 

here 

X= ABpt2[4(apt) 2 + (1- 3P) (a~t) 2] 

-1.78(ptf pz)'/•[4(apt) 2 + (1-P) (a~t)2], 

y = [ ABp12 -1.78( ~: rri. 
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