
SOVIET PHYSICS JETP VOLUME 22, NUMBER 5 MAY, 1966 

THE SCATTERING MATRIX FOR FINITE TIME INTERVALS IN THE WAVE FUNCTION 

SPACE OF INTERACTING PARTICLES 

y. V. ALEKSEEV 

Institute for Nuclear Physics, Moscow State University 

Submitted to JETP editor February 25, 1965; resubmitted August 2, 1965 

J. Exptl. Theoret. Phys. (U.S.S.R.) 49, 1470-1474 (November, 1965) 

Using as an example a nonrelativistic system with fixed particle number, the author shows, 
by means of a method which differs slightly from the usual one, how to construct an operator 
S(t, t 0) which transforms the exact solution Wint(t0) in the interaction (Dirac) picture at time 
t0, into the exact solution 'llint(t) at time t. In the space of these state vectors the S-matrix is 
unitary and the coefficient functions S(t, t 0) can be expressed in terms of the wave functions of 
the problem, including the bound-state wave functions. 

THE problem of constructing the S-matrix in the 
presence of bound states in addition to processes 
of "scattering type" has been considered in several 
papers [t •2]. It has been shown that attempts to take 
into consideration bound states lead to violation of 
the unitarity of the S-matrix, if the latter is defined 
in the wave-function space of the free particles. In 
the present paper, which is a sequel to [3], where 
the one particle problem was considered, we show 
that using the space of state vectors which are 
eigenvectors of the total Hamiltonian, one can 
write down a unitary matrix S(t, t 0) which describes 
transitions between finite times. 

We shall investigate the case where the Hamil
tonian has the form 

H=Ho+H~, 

H 0 = ~ d3kkOa(+J(k)aH(k),. 

H1 = ~ dk1 dk" dk/ dk/1a<+>(k1)a<+>(k") 

X 6(k1 + k"- k/- k/1 ) 

X u(l (k1 -k")-(k1:-k/1 ) l)aH(k/)aH(k/1 ), (1) 

and the wave vector satisfies the equation: 

ih :t 'I'IO> = H'I'IO>. 

Here the operators a <+l and a H satisfy the usual 
commutation relations: 

(2) 

(a<-l(k), a<+l(k1)] = 6(k- k1 ), [a<±l(k), a<±l(k1)] = 0. 
(3) 

(Note that the introduction of several kinds of par
ticles will only complicate the problem, but does 
not affect the principle of the method.) 

The wave vector satisfying Eq. (2) for a system 
of n particles has the form 

exp(- iEnit)'I'~~~IO> = exp(- iEnit) ~ dk1, ••• dkn 

X XEn1(k1 ... kn)a<+l(ki) ... a<+l(kn) IO), (4) 

where i is the label of the energy state and n de
notes the number of particles. The coefficient 
function XEi satisfies the equation 

n 

(Eni- P1°- · · ·- Pn°) ~ X.EjP1· · · Pn) 
I 

= ~ (" dk1 dk/'6(Ps + Ps - k/- k/1 } LJ J n-1 n 

X U (IPs n-l- Psn - kt' + k/1 I} XEni (PI · .. Pn::_2, k/, k/1
) 

(5) 

(the sum ~ runs over all permutations of Pt ... Pn 
in XEi and the sum ~ 1 runs over all permutations 

n 
of Pt ... Pn• k(, k(', for which both k( and k;' are 
arguments of XEi ) . 

n 
In addition we note that the quantity '11 <+? and 

El 
n 

its adjoint '11 I-? satisfy the orthogonality relations 
Eh 

(6) 

Here Ki denotes the center of mass momentum of 
the system and wi are all other quantum numbers 
describing the state. Equation (6) is a consequence 
of the self-adjointness of the operator H. For 
equal particle numbers (6) implies 

[W~~~· 'l'~~jl-IO> = 6(Ki- Ki)6"'i"';IO>. (7) 

Using (7) it is easy to show that XEi (kt ... kn> 
n 

is a symmetric function of its arguments and satis-
fies the relations 
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~ x; R.(Pi· · · Pn)xE R.(k! ... kn) 
Enk n n 

1 
= (nf)2Lil(k!-pd .•• 6(kn-Pn) (8) 

where the sum in the right hand side is over all 
permutations of Pi ... Pn. 

In the interaction (Dirac) picture (1), (2) and (4) 
will be replaced by 

aw<+> (t) 
i int IO> =H. :qr~+l (t) IO> (9) at 1nt lOt > 

where the Hamiltonian is 

Hint= ~ldk1' dk{' dk' dk" a<+> (k') a<+> (k") 

X {J (k' + k" - k!' - k{') u [I k' - k" - k/ + k~"l] 

X exp[i(kol + k01"- k 0'- ko")] aH(k{)a<-> (k/'), 

and the wave function 
l 

'I'· (+l(t) jO) = eiHote-iEnt'J''{+) IO> 
lOt Enl 

= exp(- iEnit)'J'<+>.(t) IO> = exp(- iEni t) 
En• 

X~ dk1 ... dknXE ;(k1 ... kn)exp[i(k1°+ ... +kn°)t) 
n 

X a<+>(ki) ... a<+>(kn) I 0). (10) 

From (7) we derive the relations for wH(t), 
w (+)(t): 

We now construct the matrix S(t, t 0). This is 
the operator which transforms the wave vector at 
time t 0 into the wave vector at time t and can be 
represented formally as: 

S(t, to)·= eiH,t6-iH(t-t,)6 -iHoto. (12) 

Another definition of this operator is through 
the chain of expressions 

S(t- to) IO> = IO>, 

.......... ·~ .......... . 

Multiplying these equations respectively by 

(Oj, (0ja<+l(pi)a<+J(P2), ... , (Oja<+>(p!) ... a<+>(pn), 

we obtain equations for the coefficient functions of 
the S-operator such that the first equation contains 
only S00, the second equation contains only S00 and 
s 22 , the third involves S00 , s 22 and s 33 ... and the 

n-th equation involves s 00, s 22, s33, ... ' snn 1) 

The first equation has the solution s 00 = 1. In 
order to solve the second equation we substitute 
S00 into it and solve for s 22, then we multiply the 
expression so obtained by XEk(8i, 82) and sum over 

• 2 
E~. As a result we obtain 

~ r.: ; (s1, s2) e-iE,i <t-t.J "'.E i (Ph Pa) 
""-J Ez z 
E.} 

= ~ x• . (s1. s2) "'.E i (Pl. l'z) exp [i (Pl0 + P2°) (t- t 0)] LJ EzJ z 
E,'l 

+ ~ dk1dk2 ~ 822 (Ph P2. kh k2, t, to) 

X exp {i (k1° + k2°) to- i (Pl0 + P2°) t} 

X ~ "/.• ;(s1s2) "'.E i (kl k2). 
~ E 2 z 
E,i 

(The first sum in the second term on the right is 
over the permutations of Pi and p 2.) 

If we make use of ( 8) we obtain 

~ S22 (p1, P2, s1, s2, t, to)= ~ X ~.i(sh s2) exp {- i(s1° + s2°) t0 
E2i 

where the summation is over all permutations of 
Pi and P2• 8i and 82. This yields for S22 the 
expression 

S22 = L x;,;(s!,s2)exp[- i(s!O + s2°)to- iE2i(t- to) 

E,l 

0 1 
+ £ (Pt0 + P2°) t] "'.E,i (Ph P2)- 21 {J (Pi- si) {J (P2- S2). 

(14) 

The other coefficient functions are obtained in a 
similar manner, i.e., the equation for snn is ob
tained by substituting into (13) the expressions for 
s 00, s22, ... , sn-i,n-i, multiplying by xi;i , summing 

. n 
over E~ and making use of the orthogonality rela-
tion (8). 

We will not carry out the involved computation 
here, but write down the final expression for snn: 

Snn (ki ... kn, k{ ... k./, t, to) 

= L q i (k1 ... kn, k{ . .. kn', t, t0) 
E,. 

1 )The superscripts in sii denote that the corresponding 
quantity is the coefficient function in the S-matrix of the part 
which has the operator structure 

a<+J ... a<+) (-) (-) a ... a 
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E£,._1 

+ fL2n-2 ~ fJ (k.n- kn') fJ (k~-1- kn-t) 

... k~--2, t, to)+ ... + an2 ~ 6 (k.,'- kn) ... 6 (ka- ka') 
i 

E, 

X q E: (kt, k2, kt', k{, t- to)+ an°b (kt- kt') 6 (kn- kn'). 

Here 

q 1(kt ... k,, kt' ... k{, t, to)= r: i(kt ... kl) 
~ ~ 

Xexp {- i(kt0 + ... + k1°)t0} 

X exp {- iEzi(t- t0)} exp {i(k1°' + ... + kn°')t} 

x xE;(kt'- kz'). 
l 

(15) 

The af satisfy the following recursion relations: 

0 0 
a 0 __ an-I_ an-2_ 
n- 1! 2! (n- 2)! 

1 
azo= --, 

2 

a l< ank~-2 I< n-1 
an = -1!- 21 

k~2, ak11 =1. 

1 
-1i!, 

If we consider the n-th term of the S-matrix 
(S11 == 0 and we do not count it) it is easy to observe 
that the part corresponding to 

~qE ;(kt ... k,,kt' ... kr.', t, t0 ) 
n 

determines completely the behavior of an n-particle 
system. In effect, making use of (11) we obtain 

Sn (t- t0) e-iE:t, '¥<+>.(to) 1 O) = ~ '¥(+) i (t) e-iE~(t-t,) 
En En_ 

Eh 

The other elements of snn are produced by the 
unitarity requirement for the S-matrix and cancel 
out in a trivial manner when S(t, t 0) acts upon 
'l!int(t0). Similar non-square-integrable terms 
have also appeared in other investigations which 
however were carried out by means of the resol
vent method (cf. e.g. [4] ). 

In conclusion the author considers it his pleas
ant duty to thank V. I. Grigor'ev for help and 
encouragement while carrying out this work and 
also V. Ya. Fa'inberg for valuable advice. 
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