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We consider the nonlinear stage of development of microinstability in a plasma in magnetic
mirror traps, caused by the "loss cone" in the ion-velocity distribution. The oscillations 
that arise as a result of the instability lead to fast diffusion of the ions in velocity space to the 
"loss cone" and to their subsequent escape from the trap. 

J. Flute instability of a plasma in magnetic-mirror 
traps can be suppressed, in accordance with cur
rent opinion, by special choice of the magnetic
field geometry (the so-called "minimum-B con
figurations") [1]. In this connection, more careful 
attention should be paid to another type of plasma 
instability in devices of this kind-the instability 
connected with local anisotropy of the ion-velocity 
distribution function. It has been shown [ 2•3] that if 
the average transverse energy of the particles 
greatly exceeds their average energy of longitudinal 
motion (along the magnetic field H0), T1 > Til• then 
short-wave fluctuations of the electric and magnetic 
fields should become excited in the plasma spon
taneously. Instabilities of this kind become ampli
fied if the ion-velocity distribution has sharp 
maxima [4], as is usually the case when ion beams 
are injected. 

However, the prevalent conviction was that under 
real conditions there is a certain stability margin 
with respect to this class of instabilities. Recently 
Rosenbluth and PostC5J called attention to the fact 
that in a dense plasma, with n ~ 1013 cm-3 (the 
numerical estimate was made for typical magnetic 
fields H0 ~ 104), the presence of the "loss cone" 
in the velocity distribution of the ions always leads 
to the development of strong instability. It is there
fore of interest to investigate the influence of this 
instability on plasma confinement in traps. 

This raises the question of finding the spectrum 
of the oscillations in an unstable plasma and the 
resultant diffusion of ions in the "loss cone," 
which leads to escape of the ions from the trap 
through the magnetic mirrors. A strict mathe
matical description of the turbulent transport 
processes is possible only in the case of weak in
stability, when the turbulent state of the plasma 
can be represented in the form of a set of weakly 
interacting oscillations. The representation of 

plasma turbulence in the form of a set of oscilla
tions is reasonable if the instability increment is 
small compared with the frequency (y « w) and if 
the oscillation amplitude varies little during the 
time of a single oscillation. Under the simplifying 
assumptions made by Rosenbluth and Post[5J, the 
instability develops within a time on the order of 
one oscillation cycle, so that y ~ w. Therefore the 
method of analysis employed in our paper cannot 
be applied directly to the case considered in [5]. 

However, as we shall show below, in many real 
situations the instability is appreciably weakened, 
and we can use for perturbation theory its rigorous 
description. 

2. The dumping of the ions in the "loss cone" 
can be described in terms of "quasilinear diffu
sion" of ions in velocity space under the influence 
of the oscillations. Since the diffusion coefficient 
depends essentially on the oscillation energy level 
and its spectral distribution, we proceed directly 
to determine these quantities. As in[5J, we assume 
the perturbation scale to be sufficiently small for the 
plasma to be regarded as homogeneous, so that the 
electric field potential cp can be expanded in a sum 
over the fields of the individual harmonic oscilla
tions 1): 

qJ = 2;.«Jlkro e•xp(- iwt + ikzz + ik.Lr), (1) 
k,w 

where kz and k1 are the components of the wave 
vector respectively along and transverse to the 
unperturbed magnetic field H0 = {0, 0, Hz}, w is the 
frequency, and 'Pkw is the amplitude of the oscilla
tion. 

We assume, as usual, that in the interaction be
tween the oscillations themselves and between the 

1>For simplicity we set the volume V of the system equal 
to unity, V = 1. 
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oscillations and the plasma particles, which deter
mines the energy spectrum distribution of the spec
trum, the phases of the amplitude cpkw are random. 
This assumption is valid in the case of weak in
stability. As a result we obtain the following 
equation for the time variation of the oscillation 
energy [ 6• i]: 

a f)gk(il(w) k21(jlkl2 =-~Im{ ek(il(w) 
at aw 8n 4n 

[ 
(2) ( I + ') (2) ( ') _ L B-k',k+k' -w, w w Bk, k' w, w 

(1) ( + ') k', (1) 1 ek+k' (l) (0 

(2) 

where w, w ', and w " are the frequencies of the 
natural oscillations with wave vectors k, k', k" and 

l . d . (1) (2) d (g) 
amp 1tu es cpk' cpk'' cpk"' Ek , Ek',k"' an Ek',k",k"' 

are the coefficients of expansion of the dielectric 
constant in powers of the amplitudes cpk. 

The coefficients E(n) are simply related to the 
corresponding expansion coefficients of the particle 
distribution function with respect to the oscillation 
amplitudes: 

~ j(i) 
/; (r, v, t) = fo; (r, v, t) + Li Jlkw (v, t) (jlkw (r, t) 

k,w 

In the linear approximation we have 

ek<1l(w) = 1- :L, 4~:;- ~ Jlkwi(1l(v)dv. (3) 
j 

The subsequent coefficients E~n) k (w 1, ••• , wn) 
are defined by 1' ••• , n 

To find the distribution-function expansion co
efficients iJ. (n) we use the iteration formula 

(5) 

which follows from Boltzmann's equation integrated 
over the particle trajectories. We are interested 
in a dense plasma: 

QP = 1'4ne2n / M, QH = eHo I Me, (6) 

when the development of a stronger instability is 
possible [5]. Therefore, just as in [ 5], we neglect 
the influence of the magnetic field on the ion motion 
and confine ourselves to a description of the elec
trons in the drift approximation, assuming that the 
electrons are cold. This is valid when 

(7) 

where RH = vTiiQH is the Larmor radius of ions 
with thermal velocities VTi; the corresponding 
quantities for the electrons are denoted by lower
case letters: wp, WH, and PH· 

3. Under the assumptions (6) and (7), the dis
persion equation (3) for the oscillation frequency 
w is written in the linear approximation in the form 

+ k~:2.2 [ ~(0) +F ( k:T. )] = 0; 
' t 

(8) 

+co oo 

'IJ(x)=vd~ foj(VJ...2,vi)dvz,F(y) =2~dx-- d'IJI_~ 
-oo 0 (1-x/y2)·/, 

(8') 

Here 1/! (x) is the ion distribution with respect to the 
dimensionless velocities x = vj_/v~i' and satisfies 
the normalization condition 

00 

~ dx\jl(x) = 1. 
0 

In the integrand of F(y), the required branch of the 
root on the real axis y = Yr + iE is chosen in the 
following manner (see[5J): 

(1- X I y2)-''' = I Yr I (yr2- x) -'/•, y,2 > x; 
(9) 

(1- X I y2)-'f• = -iy,(x- Yr2)-'l•, Yr2 <.X. 

It follows from this definition that Eq. (8) has solu
tions with Im w > 0, corresponding to growing dis
turbances, only if 

~ d'IJ x-'1• > 0. 

Rosenbluth and Post[5J assumed that the parti
cles have time to escape from the "loss cone" 
through the magnetic mirrors and consequently 
there are no particles with vl = 0 in the trap. 
Then 1/!(0) = 0. Because of this, there have always 
existed long-wave solutions kA.n ~ I Fi I (A.n 
= vTi/Qp is the Debye radius and Fi = max Im F(y)), 
which grow with a large increment y ~ w . In real 
traps of finite length L, the time of ion escape 
through the magnetic mirrors is finite and is of the 
order ofT ~ L/vz, where Vz is the ion velocity 
along the magnetic-field force line. It may turn out 
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now that when the "loss cone" is not full turbulent 
diffusion causes it to be filled within times T 

shorter than the time of escape of the particles 
through the mirror, T < T. Consequently, the as
sumption that ljJ (0) = 0 is no longer valid, and we 
must consider the more general case ljJ (0) "' 0 2l. 
When the distribution function lj;(x) is raised at 
zero, the positive maximum of the function 
- Im YrF(y) decreases quite rapidly in magnitude 
and shifts towards small y. Finally, if 

5 dx d'ljl x-'1• ~ 0 
0 dx """" 

even disturbances with very small phase velocity 
w /kVTi = Yk - 0 cannot build up. We can therefore 
assume that in the filled-cone mode this integral 
differs little from zero, and therefore lj;(O) > F for 
positive values of the function - Im yF(y). 

From ( 8) we find for this case that the ratio of 
the increment y to the frequency w 

'VI <D = -F; I [k2A.2v(1 + <Dp I <DH2) + F, + 'ljl (O)] (10) 

attains a maximum at wavelengths 

k}.v< (F,+'Ijl)'i•(1+wp21wH2)-'i, 

and remains smaller than unity (y < w). In the 
short-wave region of the spectrum 

Hv > 'ljl'i•(i + <Dp2 I <DH2)-'" 

the ratio y /w decreases in inverse proportion to 
~ k2. Thus, the filling of the "loss cone" by diffu
sion due to the development of the instability sup
presses the instability itself. 

This attenuation of the instability can be readily 
understood from an examination of the ion distri
bution relative to one of the velocity components, 
say Vx, transverse to the magnetic field H0• It can 
be seen from Fig. 1 that when l/J(O) = 0 the distribu
tion has the form of two ion "beams" displaced 
relative to each other; when the cone becomes 
filled (l/J(O) increases) the difference in the veloci
ties of these two groups of particles becomes 
smeared out and the instability weakens. The 
weakening of the instability, and consequently of the 
turbulent diffusion, continues until the ion flux into 
the "loss cone," due to the turbulent diffusion, be
comes equal to the flux of ions leaving the trap 
through the magnetic mirrors. For purposes of 
controlled thermonuclear fusion, practical interest 
is attached only to plasma confinement times 
longer than the time of departure of the electrons 
from the trap as a result of Coulomb collisions. 
We can therefore assume that the electrons leave 

2 )The author is grateful to R. Z. Sagdeev for this remark. 

FIG. 1. Distribution of the ions with respect to the veloci
ties Vx in the case of empty (1) and full (2) "loss cone." 

the trap more rapidly than the ions, and the plasma 
becomes positively charged. This in turn leads to 
repulsion of the very slow ions, along the force 
lines, towards the ends of the system. We can 
therefore assume that the time of departure of the 
plasma from the "loss cone" to the ends is deter
mined by the time of flight T of the thermal ions 
with velocities Vz ~ VTi between the magnetic mir
rors. This time of flight is of the order of 

T ~ Llvr;. (11) 

Thus, in such systems the plasma distribution 
relaxes rapidly under the influence of the instability 
to a more stable state. The confinement time is 
then determined by the ion time of flight between 
the magnetic mirrors, and we need not consider 
the detailed spectrum of the resultant turbulence. 
Some of the parameters of the newly established 
ion distribution could be determined from the con
dition that the time of turbulent diffusion T(Fi,l/J(O)), 
expressed in terms of the distribution characteris
tics Fi and 1/J(O), be equal to the time of flight T. 
The calculation of the times T for the case of a 
suppressed instability is also useful because in the 
limiting case of an empty "loss cone," ljJ (0) :::::: Fi, 
it gives an order-of-magnitude estimate of the 
time of turbulent diffusion Tmin for the case 
T < Tmin and the value of the critical length 

L* = vTiT min· 
4. We proceed to consider the turbulence spec

trum and the turbulent ion diffusion in velocity 
space. To this end we turn again to Eq. (2). Under 
the assumptions (7), the contribution of the ions to 
the coefficients E(n) with n 2:: 2 turns out to be 
smaller than the contribution of the electrons by a 
factor (Qp/QH)n-t, and can always be neglected. 
The contribution of the electrons to E< 2l and E<3l 
under conditions (7), was calculated in the revi~w [7] 

by integrating over the particle trajectories* 

(2) ( , ") • Cup2e [k'k"]z 
lOk', k" w' w = t (k' + k")ZmwH 

+oo 
X \ _ dvz dfoe/dvz 
' }oo w' + w"- (kz' + k/') Vz + iO 

*[k'k"] = k' X k". 
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( k.'' kz' ) 
X -- - ----,---,-:--

w"- k.''vz w'- kz'vz : ' 

+r a df0el dv. 
X-~ v, w' + w"- (kz' + kz'') Vz + iO 

Finally, to rewrite Eq. (2) more compactly, we 
introduce the "number" of oscillations nk of fre
quency w: 

+ 2n ~. I V k, k', k" 12 b ( w - w' - u>'') 
k'+k"=k 

(12) 

where the instability increment is 

ek =sign wae:k(w)/8w-sign of the oscillation en
ergy; 

-I· Wp2e [k'k"] ( kz' kz'' ) ( kz kz' kz'' \I vk k' k"- t ----- --+--+--1 
' ' 8nmwHw w' w" w w' w" i • 

[ kk'k" I aek(wL aek'(w') aeku(w") 1''']-i . 
X (8n) ''• aw aw' 8w" ' 

R (k k')=- 16nQp2e2 [kk']2 

' M2vdQ~cJJ2k2k'2 1 aek ( w > 1 aw II aek"( w'> I aw' I 

( 
(J) + {J)' ) 

X lm F (k + k') VTi • 

The physical meaning of the terms in the right 
side of (12) is obvious. Thus, the first term des
cribes the resonant buildup of oscillations by ions 
with increment 'Yk• the second the resonant absorp
tion of the energy of the forced oscillations of 
frequency w + w' and wave vector k + k' by the 
ions, and the third the damping of the oscillations 3) 

3)The scattering of the waves by electrons 
(w - w' ~I kz - k'z I VTe), which is also possible, may turn 
out to be smaller in order of magnitude for cold electrons be
cause of the mutual cancellation of the second and third terms 
describing this process, in (2). 

The change in the total energy of the oscillations 
is due only to the first two terms, whereas the 
damping processes only redistribute the energy 
among the modes or transfer it to the stable region 
of the phase space (w, k), where it is absorbed by 
the ions. 

By comparing in the kinetic equation the terms 
corresponding to the energy acquired by the oscil
lations as a result of the instability with the terms 
corresponding to the energy lost to linear Landau 
damping and to outflow into the damping regions of 
the spectrum, we obtain an expression for the 
spectral energy density of the oscillations in the 
steady-turbulence mode: 

~kJ.2 ~ e2 lcPkl 2 :::::: 0.1FiY~t2 (13) 
2n "• M2vT/• kJ.2RH2fD~t 

where 

-y;-: = (y" + y,.") I ( 1 - 2x cos 8 + x2) 'I•, x1 - 1. (13') 

We have changed over here to the continuous varia
bles e and k1, in accordance with the rule 

1 2>t 00 

~ :::::: 42 S ae S kj_ dkj_. (14) 
k..r.. n o o 

The term ( e2F) takes into account the simul
taneous absorption of two oscillations with wave 
vectors k and k' by the ions (nonlinear Landau 
damping). The most intense absorption is observed 
when 

w + w' - I k + k' I vn 

This is possible if I k + k'l :S w lvTi and ww' > 0. 
Let us consider further that oscillations build 

up with dimensionless phase velocity w /kvTi 
= Ym < 1 near the maximum of the function 
- Im F(y), i.e., 

Fi = ImF(ym). (15) 

Then the maximum of ( e2F) can be approximately 
estimated at 

(82F) - Ym"Fr, 

where F r is the maximum absolute value of 
- Im F(y) in the region where it is negative. We 
thus arrive at the conclusion that in most real 
cases, when Ym « 1, nonlinear damping of the os
cillations can be neglected compared with decay 
processes. 

Expression (13) with 1/! + Fr > ( 92F) has been 
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obtained from a crude comparison, in the kinetic 
equation (1), of the linear terms 2yknk with the 
nonlinear terms describing the oscillation damping. 
If the opposite condition ( e2F) > 1/J + Fr holds, then 
(13) is an expansion of the exact solution in powers 
of Ym « 1. 

5. Knowing the turbulence spectrum, we can 
describe with the aid of the ''quasilinear'' equation 
the turbulent diffusion of the ions in velocity space 
under the influence of the oscillations that build up 
in the unstable plasma. Averaging Boltzmann's 
equation over the time of the rapid oscillations, we 
obtain a "quasilinear" equation for the averaged 
ion distribution function [B,S]: 

atoi- e2 ~ a kl 12 '\'k k {} f. (16) 
at - M2 ~av cpk (Cilk- kv)2 + '\'k2- a.; o,. 

Simultaneous absorption of two oscillations by the 
ions are accounted for here by summing in (16) not 
only over the natural oscillations <Pk (r, t), but also 
over the forced oscillations, with amplitude 

(2) e~:\.(Cil, Cil')<pk<jlk• ie [kk'b 
<jlk+k' = - (!) ( + ') ::::::: <jlk<jlk'· (17) 

ek+k' Cil Cil mCiiHCilk 

The resonant interaction of the ions with the 
oscillations in (16) can be described more illustra
tively by integrating (16) with respect to the angles 
of revolution of the ions along the orbit and with 
respect to the longitudinal velocities vz. As are
sult we obtain the diffusion equation 

(18) 

It follows therefore that the strongest turbulent 
diffusion is produced by the long-wave oscillations. 
For traps not much longer than the critical length 
Let indicated in [5], however, oscillations with ex
cessively long wavelengths cannot develop in the 
plasma. The longest wavelength of the growing 
perturbations k~in can be obtained, following[ 5J, 
from the inequality 

lm kz£;;2;10. 

It expresses the requirement that the perturbations 
increase to nonlinear effects before they reach the 
ends, where they are damped as a result of the 
increased Landau damping by the electrons. 

Using the dispersion equation (8), we rewrite 
this inequality in the form 

kt.D;;2; 10 I:JL v M [( 1 + Cilp
2

) k2f.D2 
Ym 1 i m CiiH2 

(20) 

It is assumed here, of course, that the trap diam
eter R is not very small, so that Im k1R » 10. 
This takes place when R/L » ·Nm/M. In the oppo
site case the wavelength will be limited for the 
condition Im k1R ~ 10. 

It follows therefore that when 

L < Lc1 = 10 Ym~;;j [ ~ ( 1 + ::2)]"' (21) 

no oscillations can build up at all. When the critical 
length L ~ Let is reached, the oscillations that in
crease most rapidly are those with wavelength 

1/Zk'Av = ('¢ + Fr) '/, ( 1 + Cilp2 / CiiH2) -'h. 

The time required for the ions to fill the empty 
"loss cone" as a result of turbulent diffusion is 

2 10Qp<l> "fFr I 
the first sum in (18) being taken in the region x > yk QHTct::::::: (Q 2 + g 2/M)'f, 41F·I 
and the second in the region x > (w + w')2/ (k + k')2v~.. H m. P Ym ' 1i>(Ol=O 

We see therefore that the slow ions give up their 
transverse energy (8) to the oscillations and are 
dumped in the "loss cone." The oscillations in 
turn give up their energy to the "thermal" ions. 
Consequently all that takes place is a redistribution 
of the energy among the ions with different veloci
ties, no resultant force acts on the ions, and their 
total energy is conserved during the process of 
turbulent diffusion. 

From the expression for the turbulence spec
trum and from (18) we obtain the order of magni
tude of the coefficient of turbulent diffusion: 

1 and turns out to be much longer than the time of 
flight of the ions T = LctiVTi at densities smaller 
than 

-:-::::--::--:--Q-=--=-p ( M ) I /.1 
(QH2 + mQp2/ M) '/, < Ym'l• mFr<I>2 11>(0),:0 (22) 

Under these conditions, when L > L01 the develop
ment of instability always causes the ions to leave 
the trap within a time on the order of the time of 
flight of the ions between the magnetic mirrors, 
T ~ L/VTi· 

If condition (22) is not satisfied, there exists a 
length interval L* > L > Let in which the time of 
diffusion of the ions into the "loss cone" T exceeds 
the time of flight T and determines the time of 
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confinement of the ions in the trap. Here, as follows 
from (20), the wavelengths of oscillations that de
velop increase with increasing trap length L, and 
maximum diffusion occurs. From (19) and (20) we 
have for this case 

(23) 

With further increase in length, L > L*, we again 
go over to the filled "loss cone" mode, and the 
time is T :::; L/vTi. (A qualitative plot of T (L) is 
shown in Fig. 2.) We note that when L increases 
from Lc1 to L* the wavelength of the growing os
cillations remains much shorter than the Larmor 
radius (k(L*)RH:::; (MFr/m.P 2 ) 1 14y~2 > 1), the incre
ment is 

and the frequency w » Q H· We therefore remain 
at all times within the limits of applicability of the 
theory. 

In order to obtain a more realistic idea of the 
order of magnitude of the critical lengths Lc1 and 
L* and of the confinement time, we use for the ion 
distribution function the approximation [5]: 

/oi =( V_L2 - Vz2 ) 'lzexp (-Mv j_2 I 2T), 

Vj_ > I Vz I, 
foi = 0, V j_ < I Vz 1. (24) 

The function F can be expressed in terms of a well 
known function[10,i1] 

F(y) =- y (1- 2y2)Z(y) + 2y2, 

+oo t' 
' 'I e- d Z(y) = ,.-!, r--- t. 

-oo t- Y 

The maximum of Im F(y) < 0 is reached when Ym 
= 0.367, and is equal to Fi = -0.31. The real part 
of Fr(Ym) :::; 0.44, and the constant <I>:::; Fr. Using 
this expression for F(y) we have in the case of 
hydrogen 

Lei~ 4·103A.D(1 + Wp2 lwH2)'h, L. ~ 1.5·103RH. (25) 

Let us consider, finally, the evolution of the 
turbulence spectrum as a function of the trap length 
L. As already noted, in the case of large densities 

QP I QH ;:.2:; (M I mF,cD2) 'I• 

there exists a wavelength interval Lc1 < L < L* in 

L 

FIG. 2. Dependence of the lifetime r of the ions in the trap 
on the trap length L. 

which the turbulence spectrum is described ap
proximately by expression (13) under the conditions 
1/J(O) = o and (82F) « Fr: 

"" ezl (j)k 12 0.1FiYI,z 
~ M2vr;4 ~ -[k2A,D2(1+wp2/wH2)+F,Jk2RH2' 

kL > 1MF,jmym-1Fci, (26) 

where the lower limit of the wave-number spec
trum is obtained from condition (21). This estimate 
remains valid in order of magnitude also for 
L > L*' up to lengths 

Lcz = RHVM I m\jl, 

at which oscillations can build up with wavelengths 
of the order of the Larmor radius kRH ~ 1. In that 
case, however, it is necessary to take into account 
the effect of the filling of the cone 1/J(O) .,c 0. 

To consider the spectrum of the long-wave os
cillations kRH :S 1 it would be necessary to take 
into account the effect of the magnetic field on the 
motion of the ions in such oscillations and to obtain 
in this manner a new kinetic equation for the waves. 
However, even an examination of the linear approxi
mation shows that oscillations with very large 
wavelengths, kR H « 1, with frequencies w :::; l Q H• 
can not be excited. Indeed, it is now necessary to 
replace the function F(y) in the dispersion equation 
(8) by 

F(w k) = ~oodv r Vy·2dx8fo;(vzZ,x) __ wN(kj_RH1""X) . 
' J z ' ox w - lQH - kz + iO 

-00 0 

The region of small velocities x, where Bf0/Bx > 0, 
enters with a smaller weight when kRH « 1. There
fore 

~ dfo; /12 < 0, 

and the plasma distribution is stable to such long 
wave oscillations even in the presence of a "loss 
cone.'' For this reason, the estimates (26), where 
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we must put kRH ;:::: 1 at all times, suffice for a des
cription of the turbulence spectrum. 

Summarizing our results, we can state that for 
a sufficiently long magnetic-mirror trap, with 
L > Let• the plasma leaves the trap practically 
within the time of flight of the ions between the 
magnetic mirrors. 

The author considers it his pleasant duty to 
thank B. B. Kadomtsev and R. Z. Sagdeev for much 
valuable advice and discussions. 
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