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It is shown that at energies of the order of v/a (v is the Fermi velocity, a the thickness 
of the normal layers ) quantization of the energy levels of electron excitations becomes im
portant. As a result, the temperature dependence of the thermodynamic quantities changes 
at temperatures of the order of 0.1 oK. 

THE intermediate state of a superconductor is a 
system of alternating layers of normal and super
conducting phases. [i] It occurs when a supercon
ductor of finite dimensions is placed in an external 
magnetic field in the range from H0 ( 1 - n ) to H0 

(n is the demagnetization factor, H0 is the critical 
magnetic field ) . 

Let us consider the problem of the spectrum of 
electron excitations with energies that are small 
in comparison with the critical temperature of the 
superconducting transition in the absence of a mag
netic field. It is evident from the very beginning 
that such excitations must be localized in normal 
regions, inasmuch as there is an energy gap ~ in 
the superconducting layers of the same order of 
magnitude as T 0 • 

The nontriviality of the stated problem is as so
ciated with the following circumstance, which is 
significant in the rest of the work. The ordinary 
excitations ("electrons" and "holes") of an infi
nite, normal metal (the spectrum of which has the 
form E = I~ (p)l, where E is the energy, p the 
momentum, ~ = v ( p -Po ) ; v and Po are the veloc
ity and momentum on the Fermi surface ) cannot 
penetrate in the superconducting region, since it 
is assumed that E « ~- On the phase separation 
boundary the excitations must consequently under
go reflection. As has been shown earlier, [2] this 
reflection has a number of specific characteristics. 

The point is that the momentum of the excita
tions can have a value close to p0• On the other 
hand, the width of the transition layer between 
phases, that is, the distance at which the energy 
gap changes from zero in the normal phase to a 
value of the order of T c in the super conducting 
phase, is equal to the coherence parameter ~ 0 
~ 10-4 em. The corresponding uncertainty of the 
momentum of the excitation ~p ~ 1/ ~ 0 is much 
less than Po· The ratio of the "potential energy" 

~(r) to the Fermi energy is also small. Thus 
the inhomogeneity in the transition layer is too 
weak for ordinary reflection processes, i.e., pro
cesses as a result of which the excitation momen-
tum changes by a quantity of the order of p0, to 
take place with significant probability. There ex
ists another reflection mechanism which is pecu-
liar to this problem, as the result of which the ex
citation momentum p is practically unchanged 
(see [2J). Here, however, the "electron," that is, 
an excitation with ~ > 0, undergoes a transition to 
a "hole" ( ~ < 0 ), and vice versa. For this reason, 
all three components of the velocity v = ad ap 
change sign. 

It is easy to see that as a result of such are
flection from both boundaries of the normal layer, 
the excitation will carry out periodic motions in 
which it will be an "electron" during one half pe
riod and a "hole" during the other. In other words, 
standing waves will arise in the normal layer and 
lead to a quantization of the excitation energy lev
els. It is very important that this quantization be
comes significant at values of the thickness of the 
normal layers a ~ 1/ I p -Po I (and not when 
a~ 1/p0 ). This is directly connected with the fact 
that the excitation momentum p is practically un
changed in reflection. 

Since I p -Po I ~ E/v, the quantization of the 
levels becomes important at energies E ~ v/a. 
Excitations with such energies make the main con
tribution to the thermodynamic quantities at tem-
peratures T ~ v/ a. If we substitute the typical 
values v ~ 108 em/ sec, a ~ 10-2 em, then we get 
a temperature of the order of 0.1 °K, which is quite 
accessible to experiment. 

The form of the spectrum of the low-lying en
ergy levels of the electron excitations will be found 
below, and it will be shown that the quantization of 
these levels furnishes significant information on 
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the thermodynamic and other properties of the in
termediate state. 

1. We assume that the mean free path of the 
electrons and the Larmor radius in a magnetic 
field, equal to the critical field at absolute zero, 
significantly exceed the thickness of the normal 
layers. (This was essentially assumed by us in 
the discussions carried out above.) Then, to find 
the energy levels E, one must start out from the 
equations for the wave functions of the excitation 
(see [2]): 

[iv(8~- ieA) + E-lrJ + i~(r)x = o, 

[iv(~+ ieA J- E-l X+ i~*(r)rJ = 0, or . 
(1) 

where v = vn, n is a unit vector along the direc
tion of the excitation momentum, A is the vector 
potential, .6.( r) is the energy gap, and e is the 
electron charge. We choose a system of coordi
nates such that the z axis is normal to the bound
ary separating the phases while the plane z = 0 
lies in the middle of the normal layer. From sym
metry considerations it is evident that I ~ ( r) I de
pends only on the z coordinate, so that .6. has the 
form F ( z )ei<P (r). Inasmuch as <P ( r) can be made 
equal to zero by means of a gauge transformation, 
the gap .6. can be considered to be real and depen
dent only on z. 

In the region - a/ 2 < z < a/ 2 (a is the thickness 
of the normal layer), occupied by the normal phase, 
.6.( z) is practically equal to zero and the set (1) is 
materially simplified: 

[ iv ( ~ - ieA J + e lll = 0, 

[ iv (~ + ieA J- e J X= 0. 
\or / 

(2) 

In the regions z > a/ 2 and z < - a/ 2 occupied by 
the super conducting phase, .6.( z ) is equal to the 
equilibrium value .6.0 and the system (1) has two 
solutions for E < 6 0, one of which decreases ex
ponentially with depth in the superconducting phase, 
and the other increases exponentially. 

We are interested in values of E that are small 
in comparison with .6.0• In this case, the excitation 
is localized essentially in the normal layer and the 
corresponding solutions of the set (1) must decay 
with depth in the superconducting phase. It is clear 
that to find such solutions it is necessary to solve 
the set (2) with boundary conditions for z = a/2 
and z = - a/2, which would guarantee "matching" 
with the decaying solutions in the superconducting 
phase. Since (1) is a linear homogeneous set of 

equations of first order, the most general form of 
these boundary conditions is the following: 

l] = C+X for z = a I 2, 

rJ = C-x for z = -a I 2, (3) 

where c+ and c_ are generally functions of the 
vector n. It is essential that when E « 6 0 these 
can be assumed to be independent of the energy E. 

Let E0(n) be a certain energy level. This 
means that there exist functions 1Jo ( r ) and Xo ( r ) 
which satisfy (2) for E = Eo and (3). We shall seek 
a solution of (2) and (3) in the form 1J = 1Jo1J' and 
x = XoX'. Substituting these in (2) and (3), we get 

. OrJ' ' 0 ~v--+(e- eo)l] = , or 
. ox' , 
~v- -(e- eo)x = 0, (4) or 

where 

ll' = x' for z = ±a I 2. 

Equations (4) have the following solutions: 

e-eo 

[(e -eo)] 
"-'------=n, 

v 

q2n =--v- , q2x = qlx, q2 11 = q111 , 

where A and B are arbitrary constants. 

(5) 

(6) 

(7) 

Substituting (6) in (5), and setting the determi
nant of the resultant system of equations for A and 
B equal to zero, we have, with account of (7): 

{ e-eo } sin ---a = 0, 
vnz 

(8) 

whence 

e = eo + nvn,m I a, (9) 

where m is an integer. The last formula can now 
be rewritten in the form 

(10) 

where k = 0, 1, 2, ... , and y is some function of n 
such that 0 < y < 1. 

We see that the energy of the excitation can take 
on a series of equivalent values while the distance 
between the levels is proportional to I nz 1. The 
latter circumstance is quite natural, since the 
excitation traverses the distance from one bound
ary of the normal layer to the other, equal to 
a/lnz 1. 

2. Let us proceed to a calculation of the thermo
dynamic quantities. For this, it suffices to find an 
expression for the free energy of the normal layer, 
which is determined by the well-known relation 

F = Fo- T ~Jn(1 + e-•.IT) (11) 

( F 0 is the free energy at absolute zero, while the 



SPECTRUM OF THE INTERMEDIATE STATE OF SUPERCONDUCTORS 457 

summation is carried out over all states of the ex
citation). These states are determined by specify
ing the vector n and the integer k (for a given spin 
projection). 

We shall find the number of levels with a given k 
per element of solid angle dor. For this purpose, 
we note that the vector n is uniquely determined by 
specifying the momentum projections Px and Py= 
nx = Pxlp0, ny = PyiPo· The number of states in 
the interval between Px• Py and Px + dpx, Py + dpy 
is equal to 2SdpxdPy I ( 27f )2, where S is the area 
of the normal layer, the factor 2 being connected 
with summation over the spin. The latter expres
sion can be rewritten in the following fashion: 

2S dpx dpy = 2S. Pt dpt drp = 2S ___!!_rt__ In I dn, drp· 
(2rt:)2 (2rt:)2 (2n)2 z ' 

Pt = fPx2 +Pi, cos rp = PxfPt· 

We have used the relation Pl = p~( 1- n~ ), whence 
it follows that PtdPt = p~ I nz I dnz. The product 
dn d<P is equal to the element of solid angle don, z . 
so that the desired number of level 1s equal to 

2 {2n) -ZSpo2l n, I don. 

Formula (11) for the free energy thus takes the 
form 

Sp 2T 00 
\ [- ( Bk (n) )] F = F 0 -- 2~2 ~ ~ do0 In, lln 1 + exp - -T- , 

k=O (12) 

where Ek(n) is determined by Eq. (10). 
If the temperature T » vI a, then the summation 

over k can be replaced by integration, and we get 
the usual formula for the free energy of the layer 

(13) 

We now consider the inverse limiting case of 
low temperatures, T «via. The principal contri
bution to the integral (12) is made by the region of 
small I nz 1. of the order Ta/v, in which the slowly 
changing function y can be regarded as constant. 
Integration over nz can be extended from -co to 
+co: 

X~ n,dn,ln{ 1 + exp [- n~:z (k + v)l}. 
0 

(14) 

By means of simple transformations, the latter ex
pression can be reduced to the form 

F = F 0 - aS(poa I v)2T3, (15) 

where a is a constant of the order of unity: 

t(x) is the Riemann zeta function. Formula (15) 
shows that the value of F - F 0 at low temperatures 
is proportional to the cube of the temperature and 
the square of the thickness of the normal layer a. 

The foregoing formulas pertained to a single 
layer of normal phase. With their help, one can 
find the thermodynamic quantities pertaining to 
the intermediate state as a whole. For this pur
pose it is first necessary to compute the value of 
the magnetic field Hn in the normal phase. The 
latter is determined by the condition 

(16) 

which follows from the equality of the normal forces 
on both sides of the boundary between phases ( Hco 
is the critical field at T = 0 ). 

For T »via, we get from (16), with the aid 
of (13) 

Hn2 I 8n = Hco2 I 8n- po2TZ I 6v, (17) 

which is identical with the expression for Hc(T) 
for T « Tc (see [aJ). 

For T « vi a, we have 

Hn2 I 8n = Hco2 I 8n- 2a (poI v)2T3a. (18) 

The total free energy per unit volume of the in
termediate state fF is made up of two parts. The 
first comes from the free energy of the normal 
layers (the energy of the superconducting layers 
is exponentially small in the considered region of 
temperature T « T c ) and the second from the en
ergy of the system in the external field H. The 
first of these is equal to F IS( a+ b), where b is 
the thickness of the superconducting layer; the 
second is equal to MHI2, where M is the mag
netic moment per unit volume due to the currents 
flowing close to the boundaries between the phases. 
Its value is connected by a simple relation with the 
field Hn and with the concentration of the super
conducting phase Xs = bl (a+ b) ( cf. [4]): 

M= Hnxsl4n. (19) 

The value of xs is determined by the usual for
mula (see [4J), in which we replace He by Hn: 

Xs = n-1(1- HI Hn), 

where n is the demagnetization factor .1> 

(20) 

l)We are considering a superconductor of ellipsoidal form in 
an external field parallel to one of its axes. 
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Taking all the foregoing into account, and also 
the fact that the second terms in the right hand 
side of (17) and (18) are small in comparison with 
the first, and that the value of F0 in (12)-(15) is 
equal to SaH~0 I 81r, we get 

lF = lfo(H) + (F- Fo) I S(a +b), (21) 

where l1'0( H) is the value of lF at T = 0. 
From (21), with account of (13) and (15), one 

can easily obtain by simple differentiation the 
formulas for the specific heat per unit volume of 
the intermediate state at a given H: 

2 
C=~--a-T 

3v a+b 

for T » v/a, and 

C = ~ ( poa )2 T2 
a+b v 

for T « v/a. 

(22) 

(23) 

We also write down the expressions for the 
magnetic moment, obtained from (19) in both lim-
iting cases: 

po2 
M=Mo(H)--6 H T2, T'>v/a, (24) 

n coV 

2aa ( p0 ) 2 
M=Mo(H)--H - rs, T~vja. 

n cO V 
(25) 

Here M0 is the magnetic moment at zero tempera
ture. 

As is seen from a comparision of (22) with (23) 
and (24) with (25), in the temperature region T 
"' vi a an important change occurs in the tempera
ture dependence of the fundamental thermodynamic 
quantities which characterize the intermediate 
state. 

Equations (23) and (25) cease to be valid at tem
peratures T"' vll where l is the mean free path 
of the electrons. For T « vll a linear tempera-

ture dependence for the specific heat should again 
be observed, and a quadratic dependence for the 
magnetic moment. The reason for this is that in 
the region T « v/l the principal contribution to 
the thermodynamic quantities is made by excitations 
for which l is much less than the length all nz I, 
which must be traversed by the excitation on going 
from one boundary between phases to the other. 

In conclusion, we note that quantization of the 
energy levels of the electronic excitations can be 
observed even at temperatures much higher than 
v/a. For example, let us consider the absorption 
of high frequency sound in the intermediate state. 
It is known that the fundamental mechanism of ab
sorption is the decay of sound quanta into "elec
trons" and "holes," that is, two electronic exci
tations. Inasmuch as excitations with not too small 
values of nz cannot have an energy much smaller 
than vI a in the presence of quantization, then at 
the sound frequencies w « v/a the probability of 
decay will be much less in comparison with the 
case of a completely normal metal. 
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