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A nonlinear kinetic equation is obtained to describe the self-similar motion of an electron
ion plasma in the absence of collisions. The problem of the expansion of a plasma into a 
vacuum is solved. The density and the velocity distribution of the ions is obtained. It is 
shown that in the course of filling the rarefied half-space a part of the ions is accelerated 
by the action of the resulting electric field up to velocities of the order of the thermal ve
locity of the electrons. At the same time the effective temperature of the ions drops 
sharply; it turns out to be many times smaller than the electron temperature (in the case 
of identical temperatures in the initial plasma). Results of a numerical calculation are 
presented. 

AN important place in the hydrodynamics of a 
compressible gas is occupied by self-similar prob
lems which do not contain any characteristic di
mensions in the initial and final conditions. The 
time t and the coordinate x can appear in the 
solution of such a problem only in the combination 
x/t. This enables one to simplify the equations 
considerably and in the one dimensional case to 
obtain analytic solutions [1]_ Self-similar solutions 
in hydrodynamics describe a large class of physi
cally interesting problems (the expansion of a 
gas into a vacuum, a point explosion, the decay of 
a discontinuity in the initial conditions, etc.). It is 
of interest to carry out an analogous investigation 
in the dynamics of a rarefied plasma which is de
scribed by a collisionless kinetic equation with a 
self consistent field. One should keep in mind that 
the system of equations describing a plasma is so 
complicated that it is difficult to exhibit a nonsta
tionary nonlinear problem which would have a 
clear physical meaning and the solution of which 
could be carried through to the end. One can, 
therefore, presume that the investigation of self
similar problems with a sharp physical formula
tion in addition to being of interest in its own right 
will also turn out to be useful in aiding the under
standing of the situation in more complicated cases. 

In the present paper we investigate the problem 
of the expansion of a plasma into a vacuum. We 
assume that the plasma at the initial time occupies 
the half space x < 0 and at time t = 0 begins to 
expand into a vacuum. The plasma is described by 
the kinetic equation for the distribution function 

for the ions 
at + at v _ at :___ acp = 0 
at ax av Max (1) 

( M is the mass of the ion, q; is the electric po
tential) which is analogous to the equation for the 
electron distribution function, and by the Poisson 
equation: 

a2cp 
ax2 = -4:rte(N-N.), 

... 
N = N(x, t) = ) tdv, (2) 

where N is the ion density, Ne is the electron 
density. 

In the hydrodynamics of an ideal fluid such a 
problem is a strictly self-similar one. On our 
case this is, generally speaking, not so, since in 
equations (1)-(2) themselves there exists a param
eter of the dimension of length-the Debye radius 
D = (T/47rNe2 )112, where tis the temperature of 
the plasma in energy units (for the sake of sim
plicity the temperature of the ions and of the elec
trons is assumed to be the same at the initial in
stant). However, it can be easily seen that with 
the passage of time the motion of the plasma rap
idly approaches a self-similar motion. In order 
to verify this, we consider the successive stages 
of the process. At the initial instant during a time 
of the order t 1 "' D(m/2T )1/ 2 the electrons on the 
average will separate from the ions by a distance 
"'D, so that at the boundary there will be formed 
a double layer of thickness 1> D. The electrons 

1>Numerical calculations for the initial stages of the ex
pansion are given in the paper by Stocker[2]. 
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cannot go further due to the electric field. There
fore, subsequently a relatively slow expansion of 
the plasma will begin with a velocity of the order 
of the mean thermal velocity of the ions. 

During a time t2 » D../ M/ 2T » t 1 the boundary 
between the plasma and the vacuum will be smeared 
over a distance - t 2ffi/M »D. The character
istic size of the inhomogeneity will become much 
larger than the De bye radius. At the same time 
the plasma is quasineutral, so that Eq. (2) reduces 
simply to the equation 

(3) 

Since during this time the motion of the plasma 
occurs with the velocity of the ions, i.e., relatively 
slowly, the electrons will, to a high degree of accu
racy, have a Boltzmann distribution (Ne=N0eecp/T) 
Therefore, it follows from (3) that 

ecp = TIn (NINo) 0 (4) 

Substituting this expression into (1) we finally ob
tain 

at at at r a ( ~ ) -+-v----- In fdv =00 
at ax av Max 

(5) 
-oo 

Equation (5) no longer contains any parameters 
of the dimension of length, and, therefore, begin
ning with a time - t 2 the motion is self-similar, 
so that 

f=f(xlt,v)o 

We introduce the dimensionless self-similar 
variable 

't = l' M I 2Tx I t 

and the dimensionless quantities g and u: 

g =, (2nT I M) '/.j I No, u = vl'M I 2To (6) 

After this the desired equation for the dimension
less ion distribution function g( T, u) will assume 
the form 

ag 1 ag d ( ""~ ) (u-'t)------ In gdu =Oo 
8't 2 OU dT 

(7) 
-oo 

(This equation was first obtained in [a].) 

For x -- - co the plasma is not perturbed, while 
for x-- +co there is no plasma present. Therefore, 
assuming that the ion distribution in the unper
turbed plasma is Maxwellian, we write the boundary 
conditions for (7) in the form 

't-+ -oo, g-+ 00 (8) 

We investigate first of all the asymptotic prop
erties of the solution of (7) for T-- +co • Large T 

correspond to large distances x. The ions having 

traversed such a large distance have been strongly 
accelerated by the electric field and their own ther
mal motion is of little significance. Therefore, 
neglecting the thermal motion of the ions we seek 
the solution of (5) for large values of x/t in the 
form 

I= N(x,t)b[v- v(x, t)], 

where the ion density N and their directed veloc
ity v are determined by the equations 

aN a 
8t +ax (Nv) = o, (9) 

M[av +vav] = -eacp = -TOinN (10) 
at ox ox ax 0 

These equations, as they must when the thermal 
motion of the ions is neglected, do formally coin
cide with the equations of the hydrodynamics for 
an isothermal gas ( cf., [3], p. 109). In going over 
in these equations to dimensionless variables we 
obtain 2> 

du 1 dlnN 
(u-1:) -+ -~-= o 

dT 2 dT ' 

( - ) din N du 
u-T ---+-=0 

dT dT ' 

from which it follows that 

(ll) 

(u- T) 2 = 1l2, U = 't + 1112-: (12) 

The choice of the root in (12) is determined by the 
fact that, as will be shown below, we have u > T 

for all the ions. Substituting into the second equa
tion of (ll) we obtain 

(13) 

The constant C is determined by joining the hy
drodynamic equation (13) smoothly with the exact 
solution in the region T » 1. 3> 

2)Naturally Eqs. (10) and (11), and formulas (12) and (13), 
which follow from them, are known not to hold for very large 
values of r >v'MTm when the ratio x/t becomes equal to the 
mean thermal velocity of the electrons. Under these conditions 
we can no longer consider the electron distribution to be a 
Boltzmann distribution. We also note that since for large values 
of r the particle density diminishes and the Debye radius grows 
exponentially, D may become greater than the characteristic 
distance over which N changes. However, this does not lead to 
a violation of the quasineutrality of the plasma and of the self
similar character of the motion. The point is that for large 
values of r, as can be seen from (4) and (13), cp is a linear 
function of x. Therefore, the principal term in the asymptotic 
expansion of iJ2 cp j iix 2 disappears, and this guarantees the 
preservation of quasineutrality. 

3 )If the initial ion temperature were zero, the hydrodynamic 
equations (11) would be applicable for all values of r. In this 
case NINo = 1 for ,; < -1 I 12 and N /No 

=exp[-YZ(,;+1/l'25J for <>-1/Y[ 
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It should be noted that in order for the asym
ptotic behavior (12)-(13) to be valid it is necessary 
that at the initial instant the Maxwellian distribution 
would hold not only for the great majority of the 
electrons, but also for fast electrons with energies 
of the order TT, since only such electrons can 
penetrate into the region of large values of T. 

Therefore, any distortion of the "tail" of the 
Maxwellian distribution of the electrons can lead 
to a change in the asymptotic behavior of N. This 
fact must be taken into account in comparing theo
retical results with experimental ones. 

We now investigate the behavior of the charac
teristics of Eq. (7), i.e., of curves along which g 
has a constant value in the plane of T and u. The 
equation of the characteristics has the form 

du 1 F(-c) 
d-e =2 u--r' (14) 

where F is a dimensionless force: 

(15) 

The intensity of the field in the plasma E is ex
pressed in terms of F by the formula 

E=F_!_1/MT _!__ 
e f 2 t 

for T- - oo, F - 0. From (13) it can be seen 
that for T- + 00 the quantity F - f2 = F 00 • 

A more detailed investigation shows that every
where F > 0. This means that the value of du/dT 
along all the characteristics which begin in the re
gion of the unperturbed plasma ( T - - oo ) is 
greater than zero, i.e., the velocity u along a 
characteristic increases monotonically with in
creasing T. Moreover, none of such characteris
tics can intersect the straight line u = T. Indeed, 
near the point T = To at which u = T, the solution 
of (14) has the form 

(u- -c)2 = F(-co) (-c- 'to). (16) 

Both branches of the curve (16) are directed to
wards large values of T. Therefore, taking into 
account the fact that u ( T) varies monotonically 
along the characteristics we conclude that the 
curve intersecting the straight line u = T cannot 
belong to the family of characteristics emerging 
from the region T = - oo. 

The investigation carried out above shows that 
in our problem the distribution function is equal to 
zero for u < T. Indeed, for large negative values 
Qf T the distribution function is Maxwellian and 
there are no particles with u < T due to the expo-

nential decrease of this function for u- ±oo. But 
subsequently the characteristics will not intersect 
the straight line u = T so that no particles with 
u < T will appear. For T-oo all the character
istics must in accordance with (12) bunch near the 
straight line u = T + 1/f2. The nature of this 
bunching can be determined directly from (14). 
Indeed, for T-oo, F- f2. The solution of (14) 
for F = f2 has the form 

't = u - 1 I )'2 + A exp ( -u)'2), 

or for T- +oo 

u --c -1 I 1'2-:::::::: A' exp(--c)',2). (17) 

We see that the bunching of the characteristics 
occurs very rapidly (exponentially). Correspond
ingly, the distribution function will just as rapidly 
degenerate into a 6-function, which confirms the 
assumption made in the derivation of (9) and (10). 

The properties of Eq. (7) noted above were uti
lized to integrate it numerically with an electronic 
computer. The solution proceeded in steps with re
spect to T starting with the negative value To = - 3. 
The value of the function g( T, u) for T = Tk + D..T 

was evaluated in terms of the value of g( Tk, u) by 
means of the formula 

which is an obvious consequence of the equation 
for the characteristics (14). At the same time we 
have 

F(-rk) =- [ ln lr g('th, u)du -ln ~ g(-r,.- ~z. u)du J I ~z. 
'tk 'tk-6:t 

Over the first two steps the function g was as
sumed to be Maxwellian for u > T. 

The results of this calculation are shown in the 
diagrams. In Fig. 1 are plotted the values of the 
ion density (curve 1 ) . 

N 1 oo 

- =-= ~ g(-r, u)du. 
No in" 

For comparison the dotted curve shows 

1 00 

-::::. ~ e-u' du 
in"' 

which describes collisionless expansion into a 
vacuum of a neutral gas. We see that the effect 
of the electric field for T ~ 2 is not very great. 
On the contrary, for large values of T the ion 
density increases greatly under the influence of 
the field. 
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Comparing the value of the ratio N/N0 for 
large values of T with (13) we find in this asym
ptotic formula the coefficient C = 0. 70. Curves 2 
and 3 in the same diagram show the variation of 
the potential ecp/T and of the force F 
= - d ln (N/N0 )/dT. For large values of T the 
force F approaches the constant F co = ..f2 in 
agreement with (13). This means that the inten
sity of the electric field diminishes with increas
ing t for large values of T in accordance with 1/ t. 

Figure 2 shows the distribution function g ( u ) 
for different values of T (these values are shown 
by numbers near the corresponding curves). We 
note that the distribution function for an expanding 
neutral gas is equal to the Maxwellian value e -u2 

for u > T and is equal to zero for u < T. Taking 
into account the fact that the distribution function 
shown in Fig. 2 for T = -2 is in fact close to 
e -U2, we can compare the distribution functions 
for the ions and for neutral particles. It can be 
seen that for T ~ 0 these functions are sufficiently 
close to one another. For large positive values 
of T the difference between them is, on the con
trary, exceedingly great. Consequently, the elec
tric field produces a decisive effect on the distri
bution of the ions for T ~ 1. In Fig. 2 one can 
clearly see the gradual conversion of the Maxwell
ian distribution function into a 6-like one. We also 
note that the maximum value of the distribution 
function for any value of T is equal to unity. This 
is clear in advance since, in virtue of the previ
ously established properties of the characteristic 
curves of our equation, a characteristic along which 
the distribution function is equal to unity exists in 
the u, T plane for any value of T. 

We now consider the fundamental qualitative 

g 

t'=J 

~--~----~----~L---~~--~-L~~-L~ 

-J,o -z.o /) t.!J z.o J,O 4,0 

" FIG. 2 

special features of the solution obtained above. 
First of all, as can be seen from Fig. 2, the elec
tric field strongly accelerates a portion of the ions 
which fill the rarefied region. In particular, it fol
lows from formula (12) that for large values of T 

the mean energy of the ions is equal to 

e = M"";j./2 = T(-t! + Tl"2 + 1/ 2) ~ Tt:2• (18) 

Taking into account the restrictions on the value 
of T mentioned in the second footnote we see that 
the energy of the accelerated ions can exceed by 
several orders of magnitude the initial thermal 
energy. The effect of acceleration can be even 
greater in a plasma in which the electrons and the 
ions have different temperatures for Te/Ti > 1. 

Further, from Fig. 2 it can be seen that as T 

increases the thermal velocity spread of the ions 
diminishes rapidly. Utilizing Eq. (7) and expres
sions (12) and (13) for N(T) and u(T), it can be 
easily shown that the quantity T eff i = 2T ( u 2 - U:2 ) 

which has the meaning of an effective ion temper
ature varies with increasing T in accordance 
with 4 > 

Teff i"' T exp (-2-rl"2). 

This result can also be obtained directly by 
taking into account the constancy noted above of 
the maximum value of the distribution function. 
Indeed, for a constant height the width of the curve 
g(u) must vary proportionally to the density N( T ). 

The last formula expresses just this relationship. 
The same result also follows from formula (17) 
which describes the asymptotic bunching of the 

4 >This decrease in the temperature refers, naturally, only 
to the thermal motion of the ions along the x axis. Because of 
the absence of collisions the temperature corresponding to 
the motion of the ions in the perpendicular direction is not 
altered in the expansion process. 
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characteristics of the equation. But the temper
ature of the electrons does not change (it is just 
because of this that (9) and (10) coincide with the 
equations of isothermal hydrodynamics). Conse
quently, for large values of T the electron tem
perature is several times (even by several orders 
of magnitude) greater than the effective ion tem
perature. As is well known, the absorption of ion 
waves in such a plasma characterized by different 
electron and ion temperatures is small ( cf. [3], 

Sec. 14 ). This reduces the stability of the plasma 
under such conditions. 

In order to investigate the stability of the self
similar solution fa ( x/t, v) constructed above we 
must investigate small deviations from this solu
tion by setting f = fa+ f' and linearizing the equa
tion in f'. Naturally, in this discussion the pertur
bation f' can contain x and t in an arbitrary 
fashion, and not only in the combination x/t. How
ever, it turns that by means of the substitution s 
= ln t one can make the coefficients of the equa
tion for f' independent of s (or t ) . This means 
that f' can be represented in the form of linear 
combinations of solutions of the form 

f' = f' (u, 't) e-iqs =f (u, 't) e-iq In t, (19) 

where the function f' ( u, T) satisfies the equation 

. !'+( ) of' I Fa('t) of' 
zq 't- U ---a:t T --2- OU 

1 8fa d { r } +-ifhi: d't -~f'du/Na('t) =0. (20) 

Here Fa ( T) and Na ( T) are respectively the force 
and the ion density in the self -similar solution. 

The investigation of stability reduces to the de
termination of the spectrum of the eigenvalues of 
q. Analysis shows that within the framework of the 
quasiclassical approximation the dispersion equa
tion in the case under consideration does not have 
any roots in the upper half-plane. In other words, 
with respect to perturbations whose wavelength is 
small compared to the characteristic size of an 
inhomogeneity the solution constructed above is 
stable. However, the damping of perturbations in 
this case is very small for large values of T. But 
the investigation carried out above does not ex
haust all possible types of instability. We note in 
connection with this that for large values of T the 
velocity distribution of the ions turns out to be 
sharply anisotropic ( cf. footnote 4 >). Under such 
conditions an instability arises [4] in a homoge
neous plasma on taking into account the magnetic 
field of the wave itself. Investigating oscillations 
of short wavelengths it is also necessary to take 
into account the term with 82c.p/8x2 in the Poisson 

equation, particularly since neglect of the leading 
derivative in the equation always requires careful 
attention (cf., for example, reference [5J). 

There exist experimental papers in which the 
expansion of a plasma into a vacuum has been ob
served [S-B]. The published results are, however, 
insufficient in order to carry out a detailed com
parison of theory with experiment. We merely 
note that experimentally a large number of ions 
with velocities exceeding thermal velocities is 
observed. 

In conclusion we note that the problem under 
consideration has a direct relation to the problem 
of the flow of a rarefied plasma past a rapidly 
moving objectC9J. The curves of Fig. 1 yield 
directly for this case the distributions of par
ticles near the trailing edge of the object (at dis
tances large compared to D). In this case we 
must interpret T to mean T = ( Mva I 2T ) 1/ 2 x/ I z I, 
where V0 is the velocity of the object (it is as
sumed that MV5/2T » 1 ), z is the coordinate in 
the direction of motion of the object ( z < 0 ), x is 
the coordinate in the direction of the normal to the 
edge of the object. The results are applicable in 
the region x « R0, I z I (2T/MV~) 1/2 « R0, R0 is 
the characteristic transverse dimension of the 
object. 

It is important to note that in the flow past a 
finite object the perturbed region turns out to be 
unstable. Indeed, as can be seen from what has 
been said above, monochromatic streams of ions 
leave the edges of the object. Colliding near the 
axis of the object they give rise to the "bunching" 
instability of a plasma. 

The authors are grateful to A. A. Vedenov, 
V. L. Ginzburg, L.A. Rudakov, A. A. Rukhadze 
and V. P. Silin for discussions. 
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