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The e + Li atomic system is investigated by a variational method. A positron binding energy 
of "'2.13 eV and a positron lifetime against annihilation by an optical electron of Li of 
3.2 x 10-10 sec are obtained. The last value agrees precisely with the one found experimen
tally by Bell and J0rgensen. [ 6] 

1. INTRODUCTION 

IN recent years, methods using positrons have 
found widespread application in solid state theory, 
chemical kinetics, and several other fields. In 
this connection, a number of papers have appeared 
in which the interaction of positrons with atomic 
and molecular systems is investigated theoret
ically. [ 1- 3] The most thorough study has been 
made of the annihilation of positrons in the system 
negative ion-positron, [4] where the Hartree-Fock 
method has proved convenient. Of the systems 
positron-neutral atom, only the case of hydrogen 
has been investigated. [ 1•3•5] 

In the present paper we study the properties 
of the system Li atom-positron. The ground 
state energy of the system is determined by the 
variational method. Then the probability for anni
hilation of the positron with the optical electron is 
calculated using the variational wave functions. The 
calculations lead to a binding energy of the posi
tron in Li of 2.13 e V. The lifetime of the e + Li 
system against two-photon annihilation of the 
positron is found to be "'3.2 x 10-10 sec, which 
almost precisely agrees with the experimental 
value obtained by Bell and J0rgensen. [6] 

2. THEORY 

The stationary state of an atomic system con
sisting of n electrons and one positron is de
scribed by a Schrodinger equation with a Hamil
tonian given by 

11¥ "z z 1n,1 n1 
H= --- ~ 'v?- ~-+-+- ~ -- ~ -. (1) 

2 i.=t i=t r; rh 2 i, i={iJ i=t r;h 

Here N = n + 1, Z is the charge of the nucleus, and 
the prime at the summation sign indicates that the 
term with i = j is omitted. 

For a system alkali metal + positron it is natu-

ral to divide H into the following parts: 

H = Ho + He + Hoc, (2a) 

where H0 is the Hamiltonian of the core, 

1 N-2 N-2 z 1 N-21 1 
Ho = -- ~ V;2- ~-+- ~ -, (2b) 

2 i=t i=t r; ;, i={ii 

He is the Hamiltonian for the coupled system 
outer electron +positron, 

1 2 z z 1 
He=--~ Vc 2 --+---; (2c) 

2c=t r1 r2 r12 

and Hoc is the interaction of the outer electron 
and positron with the electrons of the core. Here 
r1o r 2 denote the distance from the outer electron 
and the positron to the nucleus (at the origin), anO. 
r 12 denotes the relative distance of the two. 

In the calculation of the energy of this system 
we shall neglect the polarization of the atomic 
core caused by the outer electron and the posi
tron, and consider the motion of the outer par
ticles in a self-consistent field formed by the nu
cleus and the electrons of the core. With these as
sumptions the wave function 'It is given in the form 

qr = \jlcore'i'c, (3) 

where 1/Jcore refers to the core electrons and 1/Jc 
to the outer electron and the positron. The func
tions 1/Jcore and 1/Jc (and hence, 'It) are assumed 
normalized. Thus the Schrodinger equation for 
the system under consideration can be written in 
the form 

(Ho + H0 +Hoc )'i'core'i'c = ElJlcoreWc· (4) 

Applying the variational method to (4) and taking 
into account that the operator Hoc acts only on the 
function 1/JK we find 

E = {'i'core'i'c,lfo\j;c0 re'i'c} + {'i'corelJlc, [Hc+ltoc]'i'core'ilc). 
(5) 
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Using the normalization of the functions ¢core and 
lf!c, we rewrite (5) in the form 

E = ('llcore, Ho,Pcore) + ('!Jc, [H c + Hoc],Pc), (6) 

i.e., 

E = Ecore + Ec. 

3. BINDING ENERGY OF THE POSITRON IN THE 
e•Li SYSTEM 

Let us determine the energy of the ground state 
of the e + Li system with the configuration ls22s (2s) 
(the symbol in parentheses refers to the state of 
the positron). According to (6) we can write 

E(e+Li) =E(Li+) +Ec(e-e+). (7) 

Ec is defined by the equation 

where 

00 

Vm(rm) = 2 ~ f(r')Ko(rm,r')dr', m = 1, 2, 
0 

(Sa) 

{ 1/rm for r' < rm 
Ko(rm, r') 1/r' for rm < r' (Sb) 

and f ( r )/ r is the radial wave function of the core 
electrons, which is taken in the form of a hydrogen
like function. f ( r ) satisfies the normalization 
condition 

00 

~ f(r)dr = 1. (9) 
0 

Equation (Sa) is an integro-differential equation 
of second order. It can be solved by the variational 
method if f( r) is known and an appropriate trial 
function for 1/Jc is chosen. In the actual calcula
tions, f(r) and 1/Jc were taken of the form 

f(r) = 2a'i're-ar, a= Z- 5/ 16; (lOa) 

,P (r1, r2) = M<l> (r1, r2) = Mr21 exp [ -6 (r1 -j- r12)]; (lOb) 

l and ~ are parameters, and M is a normalization 
factor defined by 

M-2 = ~ I<D(r~.r2 ) l 2 dr13 dr23• (lOc) 

Setting l = 2, we obtain the energy (6) as a func
tion of the parameter ~ after quite involved cal
culations. The computation of Ec min and the 
corresponding value of the parameter ~ was car
ried out on the electronic computer Minsk-2. The 
values obtained are 

6 = 0,602, E c = -0.275415 at. un. 

In order to find the binding energy of the posi
tron e: ( e +) we used the relation e: ( e +) = E ( Li ) 
- E ( e + Li ) . Since the binding energy of the outer 
electron in Li is equal to 0.197 at. un. (in the 
Hartree-Fock method [TJ), we obtain e:( e +) 

= 0.07S4 at. un. or 2.13 eV. We note that Ore[lJ 
has shown, under several assumptions, that only 
ions with n > Z form bound systems with a posi
tron (n is the number of electrons, Z is the num
ber of protons). Our result leads us to assert that 
a bound system is also possible for n = Z. 

It is known[5J that the system e•H is unstable 
against decay into a hydrogen atom and a positron. 
The system e + Li considered in this paper differs 
from the system e•H only in that the outer elec
tron and the positron move in the self-consistent 
field formed by the nucleus and the core electrons. 
This has the effect that the system is stable against 
decay into a neutral Li atom and a positron. On 
the other hand, the system e + Li is also stable 
against decay into a positive Li ion and posi
tronium. Indeed, the energy of the system Li+ 
+ positronium, which would result from such a 
decay, is 

-6.7S eV+ 5.39 eV= -1.39 eV> -2.13 eV 

( 5.39 eV is the ionization energy of Li ). This 
does not, of course, exclude the possibility of the 
process 

Li + e+-+ Li + positronium + 1.39 e V. 

4. ANNIHILATION OF POSITRON 

The annihilation of the positron has been in
vestigated in detail mainly in the case of free 
electrons and positrons [BJ without account of 
their mutual interaction. Yuan Li[9] has consid
ered positron annihilation in a system consisting 
of n electrons and one positron and obtained a 
formula which permits the calculation of the prob
ability for the two-photon annihilation of the posi
tron with one of the electrons. The probability 
per unit time is 

(11) 

where n0, Un are the wave functions of the initial 
and final states, H' is the Hamiltonian of the in
teraction of the particles with the radiation field, 
and k is the momentum of the photon. 

In our case we consider only the two-photon 
annihilation of the positron with the outer electron 
and neglect the effect of the annihilation of the pair 



POSITRON ANNIHILATION IN THE e+Li SYSTEM 439 

on the core wave function, so that the wave func
tions have the form 

Q0 = 'I' o,o,o,v, (rs, r4, r1, r2) = ¢.core·¢S ( c5sl'l4111'\'2), 

Qn = 'I'M,(ra, r,) = ..PcoreS(c5sll,). 

(12a) 

(12b) 

Here 63, 64 , and 61 denote the spin states of the 
core and outer electrons, and y2 labels the spin 
of the positron. According to the formula of Yuan 
Li, we have 

(Qn, H'Qo) = - 1te2-fi-yn (' 'ljJc.oreS*,( llsl\4) exp { -i(ki + k2)r2] 
km J 

X (Ky,6,- Ko,y,)'IJJ,core 'ljJ (r2, r2)S( llsl\4c51'\'2) dridr43dr23• 

(13) 

The integral sign in (13) implies integration over 
the space coordinates as well as summation over 
the spins. 

Separating out the spin part in (13), we have 

{Qn, H'Q0) =- 1te21iyn p S exp[- i(kt + k2)r2] 
km 

(14) 

Here S( o3o4 ) is a function of a system of two par
ticles with spin Y2; in the para-state it has the form 
of a matrix 

( 0 2-'/,) 
S(l'lsc54) = , _ 2_,1, 0 . (15) 

S( o3o4o1o2 ) is a function of a system of four par
ticles with spin 7'2• According to the theory of the 
coupling of angular momenta, [ 10] we have, taking 
account of the fact that the Clebsch-Gordan coeffi
cient is equal to unity for the pa1"a-state, 

After some computation we obtain for p the ex
pression 

(17) 

Taking out the matrix element for free positronium 
we obtain from (14) and (17) 

(Qn, H'Qo) =- (Qn, H'Qo) pos-y;, 

X 1B1t ~ exp [-i(kt + k2)r2.] '¢~oreWcore'¢ (r2, r2) drs3dr,3dr23• 

2 (18) 

It is known that the probability for the two
photon annihilation is largest for I k1 + k2 I = 0. 
Using (11) and (18), summing over the photon po
larizations, and taking account of the normaliza
tion of 1/Jcore• we obtain with the help of (lOb) 

(19) 

Finally, for l = 2, ~ = 0.602 we have after some 
computation 

(20) 

The lifetime of positronium against annihilation 
is well known. If the positron is bound in an atomic 
system, one must sum over the annihilation proba
bilities of the positron with the electrons in differ
ent states, and the reciprocal of this sum gives the 
lifetime of the positron in the system. Since the 
annihilation probability of the positron with the 
electrons of the core is much smaller than the an
nihilation probability with the optical electron, the 
lifetime T is equal to 

't = W-1 = 'tpos/ 0.392. (21) 

Using Tpos = 1.25 x 10-10 sec, we find T = 3.18 
x lo-10 sec. This value for the lifetime agrees 
with the experimental value of Bell and Jlllrgen
sen: [SJ T ~ ( 2.9 ± 0.2) x 10 -to sec. We note that 
our value of T for e + Li is somewhat larger than 
the lifetime of the positron against annihilation 
in the system e+H, as calculated in [3J. This is 
in agreement with the experimentally observed [GJ 

increase of T with Z. 
In conclusion the author expresses his sincere 

gratitude to M. A. El'yashevich and S. A. Anisimov 
for a discussion of this work, and also to A. V. 
Samusev for carrying out the numerical calcula
tions. 
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