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Melting curves for pressures up to several million atmospheres are calculated for Al, Cu, 
Ni, and Pb on the basis of experimental data on compression of matter by shock waves, and 
a semi-empirical equation of state of liquid metals is presented. The effect of melting of 
shock-compressed matter on the kinematic and thermodynamic parameters of the shock
wave front is considered. 

INTRODUCTION 

THE shock adiabats of substances, especially 
porous matter, pass at high pressures in the re
gion of the liquid phase. For a correct interpre
tation of the obtained data, and also for an experi
mental determination of the melting curve of the 
substance at high pressures by the method of dy
namic compression, it is therefore of interest to 
estimate the influence of melting on these adia
bats. This question was never investigated, either 
experimentally or theoretically, until recently 
(C1J, p. 540 ). 

In this paper we determine the melting curve, 
and consider the difference between the shock 
adiabats in the regions of both phases, on the 
basis of the equations of state obtained for the 
liquid and solid phases with account of the experi
mental data on shock compression. Notice is taken 
of the growth of the entropy of the solid phase 
along the melting curve, which leads to a possibil
ity of melting in the relaxation wave. It is shown 
that melting under shock compression produces 
appreciable breaks in the temperature-pressure 
variation along the shock adiabat, and has rela
tively little effect on the shape of the adiabat 
plotted in pressure-volume coordinates. The shock 
adiabats of the solid and liquid phases are approx-

ture on the pressure behind the front of the shock 
wave. We have succeeded in describing the melting 
curves obtained there, in the pressure range 0.3-
0. 7 Mbar, and also the temperatures and pressures 
of the shock wave in the region of the liquid phase, 
by the method proposed here. The success with 
the description of ionic crystals makes it possible 
to apply this method also to metals, where the 
measurement of the temperature on the front of 
the shock wave, for the purpose of determining the 
melting curve, encounters very serious difficul
ties [2]. The calculated pressure at the point of 
intersection of the melting curve and the shock 
adiabat of the solid phase of aluminum agrees with 
the deduction obtained from the experiments on 
measurements of the viscosity behind the front of 
the shock wave by Sakharov et al. [3], that alumi-
num under shock compression remains solid up 
to a pressure of 1 Mbar. 

EQUATION OF STATE OF THE LIQUID PHASE 

We represent the difference between the free 
energies of the solid and liquid phases F s ( p, T ) 
and Fz(p, T) in the form 

F1 (p,T) -Fs(p,T) = -3RTlna(p,T), (I) 

imated in the D-U plane (D -wave velocity, U- where p is the density, T the temperature, and R 
mass velocity) by straight lines with different the gas constant. The function a is determined 
slopes, making it possible to estimate the position from the condition that: (a) Fz should go over 
of the melting curve from the experimentally mea- smoothly at high temperatures to the free energy 
sured plot of D(U ). The melting leads to jumps of an ideal gas (with a separate account of the 
in the velocity of sound behind the front of the electrons), (b) correct values should be obtained 
shock wave on the boundaries of the coexistence for the entropy discontinuity .6-S = Sz - Ss and for 
region. the specific volume .6. V = Vz - V s at the melting 

The deductions of this paper agree with the re- point T0 at atmospheric pressure. 
sults of an earlier one [2], in which the melting of The free energy F s of the solid phase is given 
shock+compressed ionic crystals was first deduced by the well known theory of metals[4•5J (quasi
from the experimental dependence of the tempera- harmonic vibrations of the nuclei, thermal ener-
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Table I. Parameters of elastic curve 

I I 
Per• 

I 
I a,, Mbar I a,, Mbar ! a,, Mbar j a,, Mbar I a,, n 

~/em3 I a,, Mbar Mbar 

i I 
1 -8.725 

I I I AI 

I 
0 

I 
2. 744 39.127. -69.341 56.589 -20.346 2.696 

118~13 1-152.202 82.453 -14,165 Cu 0 !J.04\l 0 1-34.216 
Ni 1 8.969 -9.872 41.837 -63.242 32.989 I o -1.712 
Pb -1 11.6 -16.51 64.856 -98:131\ 68.989 -21.899 2.695 

gies, and electron pressure ~ T 2 ), and is of the 
form 

Fs =Ee(P)+3RTln B?) -0.5~(p)T2, (2) 

where p = 1/V is the density and 

E>(p) = const p'h _e--n~) ( 
dP 2 P ''/, 

dp 3 p ' 
(3) 

The curve of elastic interaction of the atoms 
will be represented in the form [GJ 

P - 2 dEc_ ~ 
c- p -- - LJ a;(\i/3+1, 

dp 
(4) 

where 6 = p/ Per• Per is the density at absolute 
zero and P = 0. The numerical values of the pa
rameters of this curve, for the metals in question, 
are listed in Table I. 

The third term in (2) describes the free energy 
of thermal excitation of the metal electrons. The 
numerical values of the electronic component, 
which is of the form {3 = f3cr6-g, are given in 
Table II. For aluminum, copper, and nickel the 
values of the parameters were taken from [7] 

Table II. Parameters of 
electronic component 

~~·107 , J/g-deg2 

g 
518 1109 11240 

0.5 0.5 1 

To reconcile the results with the experimental 
data on shock compression of Pb, it is necessary 
to introduce a variable parameter g = - d ln {3/d ln 6, 
where 

~ = 1446-02 exp {- 1.15 ( 1- o-2) 

+0.4(1-o-3)}10-7 __ J_2 • 

g-deg 

To satisfy the conditions listed above we as
sume for the function a ( p, T ) the form 

a= (1+z)-'l'exp{b-/(6)T0 /T}, 

Z = lRT( ~!c _}_n Pe)-1 
\ dp 3 p ' 

(5) 

where b and l are empirical constants. The ap
plicability of such a method of interpolation was 
demonstrated earlier (see C7J), where Eq. (5) was 
written in the form a= ( 1 +z )-112 ). The exponen
tial factor was introduced to describe the jumps 
in the entropy and the volume and the conditions of 
phase equilibrium. Its role decreases with increas
ing temperature. Therefore at high temperatures 
the experimental shock adiabats of porous metals 
are described as in [7]. 

The limiting conditions impose no limitations on 
the form of the function f( 6) in (5). We assume a 
power-law dependence 

a [( o 'r J /(o)=c+--;- &;')-1, (6) 

where 60 is the liquid density of the liquid phase 
at atmospheric pressure and at the melting tem
perature; a, c, and r are constants. The param
eters b in (5) and a and c in (6) are determined 
from the experimentally known jumps of the en
tropy and of the volume at P = 0 and from the 
phase equilibrium condition 

F 1 -Fs+P(V1 - Ys) = 0. 

The parameter r for the metals in question will 
be assumed equal to unity, which, as will be shown 
below, agrees with the experimental shock adia
bats. The constant l in Eq. (5), for aluminum, 
copper, and nickel, was taken from [ 7]. In view 
of the definite spread in the experimental values 
of ll.S and ll. V, we assumed in the calculation 
values which were reconciled with the experimen
tal values of the slope of the melting curve at P = 0. 
The calculated parameters are listed in Table III. 

The equation of state in the liquid phase can be 
checked against the experimental isobars of the 
liquid metals at atmospheric pressure. The agree
ment between the isobars p ( T ) calculated from 
the equation of state of the liquid phase (1) and the 
experimental values [B-iO] is fully satisfactory. The 
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Table Ill. Parameters of 
equation of state of 

the liquid phase 

_I l u 

AI 6 1.280 0.386 0.308 
Cu 9 1.328 0.378 0.280 
Ni 10 1,111 0.412 0.299 
Pb 21 1.672 0,386 0.281 

calculated coefficient of thermal expansion of the 
liquid differs from the experimental value by up 
to 30%. 

MELTING CURVES 

We used the parameters obtained above to cal
culate for the metals the melting curves defined as 
the boundaries between the phases with correspond
ing equations of state. The results of the calcula
tions are shown in Table IV and in Figs. 1 and 2. 

Table IV. Melting curves 

I 
T/T0 

Metal T,, deg 

I I I 1 2 3 • I 

P, Mbar 0 0.25 0.69 1.37 
/'js 0.934 1.158 1.395 1.645 

AI 933 l'iz 0,873 1.121 1.363 1.615 
z 0,106 O.OS5 0,074 0.067 

/':,SjR 1,372 1,101 1,058 1,047 

P, Mbar 0 0.45 1.28 2.62 
/'js 0,930 1.132 1.3.57 1,590 

Cu 1356 15z 0.881 1.099 1. 329 1 1.566 
z o. 156 0.141 0,117 I 0,098 

M/R 1.075 0.929 0.928 0.942 

P, Mbar 0 0.79 2.50 5.35 
/'js 0.907 1.172 1.460 1.752 

Ni 1728 l'iz 0.855 1.145 1.438 1.732 
z 0.210 0,148 0.118 0.100 

M/R 1. 217 1.015 1,014 : 1.026 

P, Mbar 0 0.12 
I 

0.34 0.68 
l'is 0.947 1:123 1.319 1.518 

Pb 600 l'iz 0.917 1.104 1.303 1.504 
z 0.191 0.159 0.130 I o.111 

MjR 0.959 0.860 0.865 0,£07 

We calculated also the values of t::.. V /V S• t::..S, and 
z along the melting curve. It is seen from Table IV 
that the first quantity changes quite appreciably 
with increasing pressure. This is in agreement 
with the experimental data obtained by BridgmanC11J 
for metals, and with the data of Kormer et al. [2] 

for ionic crystals. The jump of the entropy changes 
,very little. The value of z, which .is a measure of 
the deviation of the thermodynamic properties of 

T, "K 
6/JIJ/J 

.. (]/}(} 

2/JIJ/l 

1.2 

,0//lcr 

AL 

P, Mbar 

FIG. 1. Melting curves and shock adiabat of aluminum in 
the liquid and solid phase regions: o - experimental data; 
0, 1, 2 - melting curve and shock adiabat in the region of the 
liquid phase with r = 0, r = 1, and r = 2 in Eq. (6), respectively; 
3 - shock adiabat in the region of the solid phase; 4 - isen
trope; dashed - "superheated solid phase"; A0 , A., A2 , B0 , B,, B2 -

start and end of the melting. 

the liquid from the properties of the solid, also 
changes little. From the data of Table IV we can 
calculate the dependence of TdP/dT on P by 
means of the Clapeyron-Clausius equation dP/dT 
= t::..S/ t::.. V. For the metals considered here it is 
close to linear, being slightly convex towards the 
pressure axis. This coincides at low pressures 
with the known experimental fact for the melting 
of the majority of substances-that TdP/dT is 
linear in P (Simon's equation). 

We calculated the isentropes from the points 
with T = T0 and P = 0, using the equation of state 
of the solid phase. In Figs. 1 and 2 they are shown 
by the dash-dot curves. For all the metals consid
ered, the temperature on the melting curve at equal 
pressure is higher than on the isentrope. This in
dicates that the entropy of the solid phase increases 
along the melting curve. It is clear therefore that 
if the substance has not gone into the liquid phase 
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FIG. 2. Melting curves and shock adiabats for nickel, 
copper, and lead with r = 1. Notation same as in Fig. 1. 

I 2 J 4 ~ Mbar 

under shock compression, it can melt partially on 
relaxation from this state. Conversely, relaxation 
in the liquid state behind the front of the shock 
wave never will bring the substance to the solid 
phase.0 

SHOCK-ADIABAT ANOMALIES DUE TO MELTING 

The equations of state (2) and (1) of the solid 
and liquid phases were used to calculate the shock 
adiabats of solid metals, which are shown in Figs. 
1 and 2, and in coordinates D (wave velocity) and 
U (mass velocity) also on Fig. 3. The shock adia-

(JJ- f.JIU), km/sec At 

s.z 
s.o 

B, 
0 

0 0 
0 

~----~------~------~------L-----~-
0 2 ' 5 8 tO 

U. km/sec 

FIG. 3. Wave velocity D vs. mass velocity U for a shock 
wave in aluminum: 0 - experimental data; 0, 1, 2 - shock 
adiabats in the region of a liquid phase with r = 0, 1, and 2, 
respectively; A0 , A,, A2 , B0 , B,, B2 - start and end of melting. 

l)Taylor [12 ] measured the residual temperature after relaxa
tion to atmospheric pressure from the state behind the front of 
the shock wave in copper. The isentrope of the solid phase, 
going out of the melting point at P = 0, coincides in this paper 
with that calculated by us (see Fig. 2). 

bats of the "superheated" solid phase are shown 
by the dashed lines. As can be seen from Figs. 1 
and 2, the shock adiabats experience strong kinks 
in the T-P plane on entering and leaving the region 
of coexistence. This is inherent in all the phase 
transitions that occur in the front of the shock 
wave, except those having the slope of the lines 
of phase equilibrium dP/dt = 0, since, on the one 
hand, the pressure can only rise along the shock 
adiabat and, on the other, the states on the shock 
adiabat which passes in the two -phase region 
should lie on the curve of phase equilibrium in 
T-P coordinates. The kinks in the T-P plane 
were found experimentally on the shock adiabats 
of ionic crystals. This has allowed the authors 
of [2] to find the melting curves at 0.3 -0.7 Mbar. 
This method, however, entails measurement of the 
temperature behind the front of the shock wave, 
and is applicable only for substances which are 
transparent prior to compression [2]. 

To determine the melting curves of metals it 
becomes necessary to search for other methods. 
Shock adiabats experience kinks on the boundaries 
of the region of coexistence also when plotted in 
P-p coordinates. Inside this region, the slope of 
the shock adiabat depends on the slope of the melt
ing curveC13J. The larger dT/dP, the greater the 
slope. This can be seen in Fig. 1 with aluminum 
as an example. 

The second kink of the shock wave occurs on 
going out into the region of the liquid phase. Here 
the slope decreases, because the liquid is more 
compressible than the solid. For a given substance, 
the kinks in the dynamic adiabats increase strongly 
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with increasing degree of its porosity in front of 
the shock wave. 

The considered jumps in the slopes of the shock 
adiabats are manifest in the D(U) curve. More 
significant here, however, is the difference in the 
variation of the function D ( U ) in the solid and 
liquid phases. It is knownC14 •15] that the experi
mental data on most metals in the region up to 
1.5 Mbar are well described by a linear depen
dence. The calculated D(U) variation in the re
gion of the liquid phase can also be roughly repre
sented in the form of a straight line, but with a 
smaller slope than for the solid phase (see Fig. 3 ). 
The slope of the function D(u) is connected with 
the average Gruneisen coefficient 

y= (P-Pc)/p(E-Ec). 

It is smaller in the region of the liquid phase 
(as can be readily seen from Eq. (1)), and this 
leads to the indicated change of the slope. The 
experimental data on shock compression of solid 
metals up to 9 MbarC 16J confirm this picture quali
tatively. This is especially typical of the easy
melting metals Pb, Cd, Zn, Sn, which were inves
tigated in the last-cited reference. 

Some smooth decrease in the slope of D ( U ) 
is connected with the increased role of the elec
tronic component in the equation of state of the 
metal at higher temperatures. For the metals 
considered in this paper, this component is as
sumed in accord with C7J, where it was investi
gated on the basis of experiments on shock com
pression of metallic powders. 

The experimental data plotted in D-U coordi
nates, taken from [15 •6], exhibit no noticeable 
kinks connected with the region of coexistence, 
but can be approximated by two straight lines with 
different slopes. This already gives some infor
mation on the melting curve of the substance. The 
position of the melting curve is calculated more 
accurately from the equation of state of the liquid 
(1), with the parameter r in (6) obtained from 
the experimental shock adiabat in the region of 
the liquid phase. 

In Fig. 1 we show for Al three shock adiabats 
with r = 0, 1, and 2. The best agreement with 
experiment is for r = 0 and r = 1. The adiabat 
with r = 0 differs little from the adiabat of r = 1 
in the plane P-p, just as the melting temperatures 
differ at 1 Mbar by only 20%. 

Sakharov et al. [J J concluded on the basis of a 
measurement of the viscosity behind the front of 
the shock wave in aluminum that aluminum re
mains solid under shock compression up to 1 Mbar. 

This agrees with the position of the melting curve 
calculated in the present paper with r = 1. 

More clearly pronounced kinks in D(U ), con
nected with the melting, can be observed in dielec
trics, where the role of the electronic component 
in the equation of state is small in the region of 
interest. This is indicated by the experimental 
data on the measurement of shock adiabats of ionic 
crystals [17•18], and the measurement of the tem
peratures in them [2]. Alder and Van Thiel [ 19] also 
relate the experimental kink in the D ( U ) plot for 
liquid argon to the crossing of the boundary of the 
region of coexistence with the liquid phase by the 
shock adiabat. 

The effect of melting on the speed of sound be
hind the front of the shock wave was also consid
ered. The difference between the squares of the 
speeds of sound in the two -phase region Cl 
= ( 3P/8p )~ and in the solid phase at the melting 
temperature c~ it is described by the equation 

~ - 1 = iC ( ~£ J (~I!_ ) [ C z dT - T ( ~p ) Jz 
Cr2 · T , oP 1 s oT p s dP p2 oE p 

(7) 

where E is the internal energy. The partial de
rivatives in (7) are taken with respect to the equa
tion of state of the solid phase at a value of P on 
the melting curve, i.e., at the point (P, T,ps). We 
see that Cf is always smaller than Cs, and the 
jump depends essentially on the slope of the melt
ing curve dT/dP. An analogous conclusion can be 
drawn also for the velocity of sound in the liquid 
phase. For the melting curves obtained in the pres
ent paper, the numerical value of the jump lies 
within 0.5%. However, for the melting curves with 
r = 2 in Eq. (6), it increases to 2-3%. The exist
ing experimental data on the dependence of the ve
locity of sound C ( p) [2o] did not allow us to draw 
any definite conclusions regarding the position of 
the melting curve, but a more detailed investiga
tion of this dependence gives at least the limit of 
the position of the melting curve. 

In the paper we do not touch upon the question 
of the characteristic time of the melting process 
in the shock wave. We present only the calculated 
curves for two cases: when the relaxation time is 
small compared with the time necessary for the 
shock wave to traverse the measurement base, 
and when it is large. In the latter case, shock 
adiabats of the "superheated" solid phase are 
realized. 
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