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Fluctuations in ferromagnetic and antiferromagnetic substances in which a directed move
ment of electrons occurs are investigated. It is shown that when the mean velocity of the 
electrons approaches the critical value above which spin wave instability sets in, the am
plitude of the random spin waves sharply increases. The existence of such anomalous fluc
tuations may result in a sharp increase of the differential cross section for scattering of 
slow neutrons in ferro- and antiferromagnets. 

1. As is well known, oscillations of the magnetic 
moment in ferromagnets and antiferromagnets 
propagate at low temperatures in the form of 
weakly damped spin waves. Under ordinary con
ditions the amplitude of these waves is deter
mined by the temperature of the body. It is pos
sible, however, to produce conditions under which 
the amplitudes of the spin waves will appreciably 
exceed the thermal level. One of the possibilities 
of such amplification of spin waves was consid
ered by A. Akhiezer, Bar'yakhtar, and Peletmin
ski1, who have shown that if directional motion of 
the electrons is realized in a ferromagnetic or 
antiferromagnetic sample, then, starting with a 
certain critical value of the electron velocity, the 
spin waves cease to attenuate and start to grow. [i] 

In the present paper we investigate the spectral 
and angular distributions of the fluctuations in fer
romagnets and antiferromagnets in which direc
tional motion of the electrons exists. We shall 
show that when the average electron velocity ap
proaches the critical value, beyond which insta
bility of spin waves sets in, the amplitude of the 
random spin waves becomes anomalously large. 
This phenomenon is analogous to the anomalous 
level of fluctuations in a plasma whose state is 
close to instability. [2,3] 

Anomalous fluctuations in ferro- and antiferro
magnets can be observed by the same methods as 
ordinary fluctuations, for example, with the aid of 
slow-neutron scattering. If the directional veloc
ity of the electrons is close to the critical value, 
then the scattered-neutron spectrum line connected 
with the possibility of spin-wave propagation in the 
sample should be appreciably more intense than in 

the equilibrium state (a phenomenon analogous to 
critical opalescence). 

The possibility of an anomalous growth of the 
fluctuations on approaching the stability limits is 
connected with the vanishing at this limit of the 
damping decrement of the spin waves, and does 
not depend on the concrete nature of the electron 
current that leads to the instability of the spin 
waves. We shall therefore consider an idealized 
problem, involving a system of ordered spins, 
through which there moves a current of free elec
trons, avoiding thereby the complications due to 
the finite dimensions of the openings in the sample 
(in the case of currents from external sources ) 
or to the interaction of the electrons with the lat
tice (in the case of a current produced by appli
cation of an external electric field to the sample). 

2. To investigate the fluctuations in a system 
of oriented spins, through which a current of 
charged particles flows, we start from the linear
ized kinetic equation for the Fourier component 
of the electron distribution function 
f ( f ~ exp [ ik · r - iwt]) and Maxwell's equations 
for the Fourier components of the electric field E 
and of the magnetic induction B. Introducing, in 
accordance with the general theory of fluctuations, 
random forces y into the equations describing the 
system, we get 1l 

- iGf+ e (E +~ [vB] \!_Po= y(v); [kEJ = ~B; 
m c )~ c 

l) A kinetic equation with random forces was first used by 
Abrikosov and Khalatnikov in the investigation of fluctuations 
in an equilibrium Fermi liquid.["] 
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A we 4:rti ·~ [k · !-l-1B] = -- E -- j; j = e vjdv; 
c c 

ie a i 
G= w-kv+-[vBo]-8 +-; 

me v 't 

{ -m(v-u)2 } 
Fo ~ exp ZTe , (1) * 

where F 0 is the unperturbed electron distribution 
function, B0 the unperturbed magnetic induction 
( B0 II u), P, is the magnetic permeability tensor, 
E is the dielectric constant of the ferro- (anti
ferro-) magnet, and r-1 is the frequency of the 
electron collisions, which we shall let approach 
zero in the final results. (Being interested in the 
case when the fluctuations of the electromagnetic 
quantities greatly exceed the thermal level, we 
have introduced random forces only into the equa
tion describing the electrons, without introducing 
additionally random fields in Maxwell's equations.) 

Introducing the tensor of the electric suscepti
bility of the electrons 

e2 ~ {} 
'Xi·e=-- ViG-1 --Fodv, 

1 mw av; 
(2) 

we rewrite (1) in the form 

c A A( 1 ) 4:rt -[k·f.1-tB]+eE+4:rtxe E+-[u B) =-Y, 
w c w 

[k E] = ; B, Y = e S vG-1y dv. (3) 

In order to find the average values of the prod
ucts of the random forces, we differentiate with 
respect to time the expression for the entropy S 
of the system. We confine ourselves to an exami
nation of fluctuations with k ¢ 0, and represent S 
in the form 

S = - S drdv:i:X; :i: = - -r-1/ + y; X= F0- 1f. 

Using further the method developed by Landau and 
Lifshitz [4] and Abrikosov and Khalatnikov [5], we 
normalize the random forces: 

< y (v) y* (v') )u = 2-r-1Fo (v) 6 (v - v'). (4) 

We can now determine the correlators of the 
quantities characterizing the system. To this end, 
expressing these quantities in terms of random 
forces, it is necessary to construct their bilinear 
combinations and then average over the random 
forces with the aid of (4). According to (3), the 
correlators of all the electromagnetic quantities 
are expressed in this case in terms of the aver
aged products of the components of the vector Y. 

*[vB] = v x B. 

Taking (2) into account and confining ourselves 
for simplicity to the case of not too cold electrons 
( Te » mu2 ), we have 

We note that according to this relation we get 
k· Y « kY for low-frequency fluctuations (w2/k2 

«Te/m). 

(5) 

3. We consider first the case of an antiferro
magnet with sublattice magnetic moments oriented 
along a chosen axis (axis 3 ). We assume in this 
case that the external magnetic field is zero. Not
ing that in this case the tensor P, is diagonal with 
J.Laa = 1 and J.Lu = J.L22 = J.Li> we rewrite (3) in the 
form 

Bt = 4:rt(ck)-1 cos8·D1- 1Yz; Bz = 4:rt(cksin8)-1Dz-1Y3; 

Bs = -tg 6·Bt; 

Dt = sin2 6 + f..lt-1 cos2 6 

- (w I ck) 2 [e + (1- ku I w)4:rtx1e]; 

Dz = f.1C1 - (w I ck) 2 [e + (1- ku I w)4:rtxt], (6)* 

where Kf is the component of the electron electric 
susceptibility which is transverse to the wave vec
tor, and e is the angle between k and the axis 3, 

f..lt = (Qz2- w2) I (Qt2- w2); 

Re Qt2 = (gMo) 22c'l[~ + (a- atz)k2], 

Re (Qz2 - ~~t2) = 8:rt(gMo) 2 [~ + (a- atz)k2], (7) 

g is the gyromagnetic ratio, M0 -the magnetic 
moment of the sublattice, {3 -the magnetic aniso
tropy constant, and a, a 12 and o are constants 
characterizing the exchange interaction in the anti
ferromagnet (see, for example, [GJ), while the 2-
axis is chosen perpendicular to the vector k. 

The equations D1, 2 = 0 determine the frequen
cies w1, 2 and the damping decrements y1, 2 of two 
branches of the natural modes of the antiferromag
net with directional electron motion. We note that 
the interaction with the electron current affects 
little the frequencies of the spin waves, but can 
greatly change their damping; recognizing that 

4:rtiiD'Xte = QB2 (wk)-1 (:rtmi2Te)'l•, 

we obtain 2> 

w1 (k)= {Qt2+(Q22 -Qt2)sin2 6}'"; w2(k)=!Jt; 

'\'t,z(k) = '\'~,2(k) {ku)t,2- ku} {(ku)t,2- Wt,2}-t, (8) 

*tg =tan. 
2 >Hereafter 0 12 will stand for the real parts of the corre

sponding quantiti~s. Analogously, in relations (15) - (18) we 
shall omit the symbol for the real part in the case of Re 0. 
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where yt 2 are the damping decrements of two 
types of spin waves in the free antiferromagnet 

(ku) 1,2 = w1,2 { 1' + 2y~,2 k (2Te/ nm) 'I'( ckiQB) 2 

X (Q22 - W2t,z)-1} (9) 

and QB = ( 4rre2nB )112m - 1/ 2 is the plasma frequency 
for the electron flux (we take account of the fact 
that w2E/c2k2 « 1 ). According to (8), the damping 
decrements decrease with increasing k · u, van
ishing when k.u = (k.u) 1, 2• With further increase 
in k • u, the spin waves cease to be attenuated and 
start to grow. 

We now determine the correlator of the mag
netic induction in an antiferromagnet with direc
tional electron motion. Using (5) and (6), we 
obtain 

(10) 

Knowing the correlator of the magnetic induction, 
we can determine with the aid of Maxwell's equa
tions the correlators of the other electromagnetic 
quantities. In particular, for the correlator of the 
magnetic moment M, taking (7) and (8) into account, 
we get 

(M;M/)kro = 1_ T.(Q22- Qt2) 
2 

X { 6il6t.i6 ( w2 - Wt2 ) --l- 6;z6zj6 ( w2 - w22) } (ll) 
(ku) 1- ku srgn (J) (ku)2- ku sign (J) • 

Noting that in an equilibrium antiferromagnet 

<I M1,2l ~)kro "' max {li I w I; T} Q 1- 1 (Q22 - Q 12} 6 ( w2 - w~,2 ) 

( T is the temperature of the sample ) , we see that 
in the presence of directional electron motion the 
square of the amplitude of the random spin waves 
can exceed the equilibrium level by a factor A, 
where 

T o 
A "' _•_ ( eiTtro/T _ .1) 'i_ . 

liw y 
(12) 

We emphasize that relations (10)-(12) [and (17) 
and (18) as well] have been obtained within the 
framework of the linear theory and are valid in the 
stability region l1 k · u I < ( k • u )1 2 ]. It follows 
from these relations that in an a~tiferromagnet 
with directional motion of the electrons the cor
relation functions are proportional to [ 1 - I k · u I 
x ( k · u )j:2 ]-1, and increase strongly on approach
ing th~ limit of the instability region, determined 
from the condition y( k) - 0. According to these 
relations, the amplitude of the random spin waves 

becomes infinite on the border of the stability re
gion; the limitations on the growth of the fluctua
tion amplitude as the limit of stability is approached 
are imposed only by the nonlinear effects. 

4. We proceed to consider the interaction be
tween a current of charged particles and spin 
waves in a ferromagnet. In this case the nonvan
ishing components of the magnetic permeability 
tensor are J..!H = J..L22 = J..L1 as well as J..L 12 , J..!2t and 
J..L33 ; in this case (see [6]) 

J.l1 = [Q{Q + 4ngMo) - w2] (Q2 - w2)-1, J.laa = 1, 
- 1f2i(f.Lt2 + 1121•) = J.lz = 4ngM0w(Q2 - w2)-1; 

Re Q = gMo(ak2 +~+Hoi Mo}, (13) 

wheN a and {3 are constants characterizing the 
exchange interaction and the magnetic anisotropy 
[the external magnetic field H0 is applied along 
the easiest magnetization axis (the 3 -axis ) ]. 

In order not to complicate the formulas that 
2 

follow, we shall assume that krL » 1, where rL 
= Temc2( eB0 ) - 2• Recognizing that in this case 
according to (2), 

4n Im x;j" = ( 6;i - k-2k;kj} 4n Im xt• 

= ( 6;i- k-2k;kj} QB2 ( wk) - 1 (nm I 2Te) '!', 

we can rewrite (3) in the form 

Bt = 4n (ck)-1 cos 8 D-1 (Yz- iJ.lzYt I !Jt); Ba = -Bt lg 8; 

B2 = -i112Bt I 111 + 4n(ck sin 8)-1!1t(1- 1122 I 11 12) Y 3 ; 

D = sin2 8 + J.lC1 cos2 8 - ( w I ck) 2 

X [e + (1- ku I w)4nx(] 

(14) 

(we assume that Te » mu2 and u ~ w/k ). 
Solving the equation D = 0, which determines 

the frequency and the damping decrement of the 
natural oscillations of the ferromagnet with direc
tiona! electron motion, we obtain 

Ws (k) = Q'/, (Q + 4ngMo sin2 8) '/,, 

Ys(k) =ys0 (k){(ku).-ku}{(ku)s-Ws}-t, (15) 

where y~ is the spin -wave damping decrement in 
the free ferromagnet, and 

(ku)s = Ws{1 + y,0k(2Te I nm) 'f•(ck I QB)2Q (2ngM0)-1 (w82 

+ Q 2 cos2 8) - 1} (16) 

[in the derivation of (14)-(16) we took into account 
that w2E/c2k2 « 1]. According to (15), the damp
ing decrement decreases with increasing k · u, 
vanishing when k·u = (k·u)s. With further in
crease of k • u, the spin waves cease to attenuate 
and start to grow. 

We now determine the correlator of the mag-
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netic induction in a ferromagnet with directional 
motion of the electrons. Using (5) and (14) we 
obtain 

b;i = 15;i - k;ki j k2 (i, j = 1, 3); b12 = -b21 = iw I Q; 

b23=-b32=iwtg6IQ, b22=w2IQ2cos28. (17) 

For the magnetic-moment correlator, taking (13) 
and (15) into account, we find 

(M;M/)u, = 2l'tTeriigMoQ [ (ku) s 

- ku sign w] - 115 ( w2 - wi!), 

r11 = 1; r12 = -r21 = iw I Q; r22 = w2 I Q2; 

ra; = r;3 = 0 (i = 1, 2, 3). (18) 

Noting that in an equilibrium ferromagnet 

< IMt, 2l 2>k., "' max {li I w I; T} gMo/5 ( w2 - w.2), 

we see that in the presence of directional motion 
of the electrons the square of the amplitude of the 
random spin waves can exceed the equilibrium 
level by a factor A, where A is determined by 
formula (12). 

We note in conclusion of this section that all 
the relations obtained are valid for not too large k, 
tik21m « w(k), when quantum effects can be dis
regarded in the determination of the electric sus
ceptibility of the electrons. 

5. Anomalous fluctuations in ferro- and anti
ferromagnets can be observed by the same methods 
as equilibrium fluctuations, for example, with the 
aid of slow-neutron scattering. The differential 
cross section of this process, da, is proportional, 
as is well known, (see, for example, [7]) to the 
correlator of the magnetic moment and differs 

from zero if the condition I k • v I = w ( k) is sat
isfied, a condition equivalent to the conservation 
of the energy and momentum in the scattering (we 
assume for concreteness that w » tik21mn, where 
mn is the neutron mass and v its initial velocity). 
The neutron scattering cross section increases 
sharply when the change in the neutron momentum 
upon scattering, tik, approaches the critical value 
satisfying relations (9) or (16). Then da exceeds 
in order of magnitude the scattering cross section 
in an equilibrium ferro- or antiferromagnet by a 
factor of A where A is given by (12). 

In conclusion I thank A. I. Akhiezer and V. G. 
Bar'yakhtar for valuable advice and a discussion. 
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