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Explicit expressions are derived for the probabilities of four-plasmon decays of longitudinal 
waves with a random phase in the plasma. Some particular cases are considered. Qualita
tive analysis of the effects of four-plasmon decays is carried out for longitudinal waves and 
it is shown that they result in a broadening of the noise spectrum. 

1. INTRODUCTION 

IT can be assumed by now that the system of fun
damental equations of a weakly-turbulent plasma 
has been completely derived for the simplest case 
of a plasma without a magnetic field (see, for ex
ample, [1•2]). In most cases it is possible to con
fine oneself in the derivation of these equations to 
the first nonlinear terms, which are quadratic in 
the number of plasmons N ( k) (or in the energy of 
the electric field), that is, only processes involv
ing first and second -order scattering, and decays 
in which three plasmons participate, need be taken 
into account. In some cases, however, it may be 
important to make allowance for terms of higher 
order of smallness, and, in particular, to take into 
account effects of four-plasmon decays. Such a 
situation may arise, for example, if we consider 
nonlinear interactions between plasmons of any 
one particular type ( t, s, or l plasmons), when by 
virtue of the dispersion relations and the energy 
and momentum conservation laws the probabilities 
of the three-plasmon decay processes are identi
cally equal to zero 1>. Generally speaking, it is 
necessary to take into account here the next higher
order terms of the expansion in powers of the elec
tric field, that is, in particular, processes of four
plasmon decay. 

The present paper is devoted to the calculation 
of the probability of four-plasmon decays in the 
case when all plasmons participating in the pro
cess belong to any single type a (a= t, l, s ). 

In the general case, in the presence of four 

plasmons a, Cl!to a 2, and a 3, two essentially dif
ferent processes can occur: 

(I) 

(II) 

The first corresponds to the decay of one plasmon 
a into three plasmons a 1, a 2, and a 3 or conversely, 
to the coalescence of three plasmons Cl!to a 2, and 
a 3 into a single plasmon a; the probabilities of 
the two cases are obviously identical. The second 
process corresponds to the decay (coalescence) of 
two plasmons a and a 1 into two plasmons a 2 and 
0!3. 

However, in the case considered here, that of a 
plasma without a magnetic field, when the disper
sion relations are of the form 2> 

2 4rtee2ne 
Woe=----, 

me 

4nei2ni 
Woi2 =--

mi 

Ti 
VTi2 == -, 

m; 

where ee, me, ne, and Te are the charge, mass, 
density, and temperature of the electrons, while 
ei, mi, ni, and Ti are the corresponding quanti
ties for the ions, it is easy to show that the en
ergy and momentum conservation la'Ys 

Q" = Qa1 + Qa, + Qa, k = k1 + k2 + k3, 

Qa + Qa1 = Qa, + Qa, k + k1 = kz + k3, 

(1) 

1)As in[•], we define t-plasmons as transverse waves, l- plas- -------
mons as longitudinal Langmuir waves, and s-plasmons as lon- 2) As in[• J, we put henceforth c = 1 for the velocity of light, 
gitudinal sonic waves in a non-isothermal plasma. and 1i. = 1. 
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absolutely forbid processes in which one plasmon 
decays into three (or vice versa), and permit only 
processes of type II, that is, the decay of two plas
mons a and a 1 into two others, a 2 and a 3 (and 
vice versa). 

We denote by ya!O!to0!20!3(kk1k2k3) the probabil
ity of decay of two plasmons of type a with mo
menta k2 and k3 and energies 51 a 2 = 51 a ( k2 ) and 
51a3 = Ha( k3 ) respectively, into two plasmons of 
the same type with momenta k and k1 and ener
gies 51a and 51a1• This probability, obviously, 
satisfies the relations 3> 

yaa,, a,a, (kk1k2ka) = ya,a,, aa, (k2kakki) 

= yaa,,a,a,(kklkak2) = ya,a,a,as(kikk2ka) (2) 

second-order scattering processes and three
plasmon decay processes. We shall therefore not 
dwell in detail here on the procedure for calculat
ing the probabilities of four-plasmon decays, which 
coincides exactly with that used earlier, [t, 2] and 
will describe briefly only the general method of 
calculation and present the final results. 

The change in the number of quanta of type 
a, (dNa/dt )~P, connected only with the spontane
ous processes of four-plasmon decays, is obvi
ously equal to 

(5) 

and includes as factors 6 functions which take into Consequently, the change in the average density is 
account the plasmon energy and momentum con
servation laws during the decay process: 

V"'"'" 01' 01'(kk1k2ka) ~ b(51a + Qa,- Qa,- Qa,) 

X b(k+k1-k2-ka). (3) 

Then the change in the number of quanta N a ( k) of 
type a, connected with the four-plasmon decay 
processes, will in the classical limit have the 
form 4> 

(dNa. l = i dk1dk2dk3 V"'"'""''"''(kk1k2ka)[Na(ki)Na(k2) 
\ dt it, J 

2. CALCULATION OF THE PROBABILITIES OF 
FOUR-PLASMON DECAYS 

In [ 1•2] we developed in detail a semi-quantum 
method of calculating the probabilities of first and 

3 ) Analogous relations, which are perfectly obvious from the 
physical point of view, are satisfied, as was shown in[1 ], also 
by the probabilities of the three-plasmon decay processes and 
the probabilities of scattering. This, in turn, makes it possible 
to write down immediately several first integrals for the ob
tained system of nonlinear equations, expressing the laws of 
energy and momentum conservation in a particle-plasmon sys
tem, and, in several cases (for example in the presence of only 
one type of plasmons), the total number of plasmons. The trivial 
manner in which these first integrals are obtained, which is a 
direct consequence of the semiquantum methods employed by us, 
offers evidence that it has definite advantages over other meth
ods of obtaining the fundamental equations of a turbulent plasma 
(see, for example, [• 1), in which these first integrals can be writ
ten only after a very tedious analysis of the properties of the 
kernels which appear in the system of final equations. 

4 )The normalization of N a is chosen such that the energy 
density U of the quanta of type a is equal to 

Ua. = \' Ra.Na.dk. 
J (2n) 3 

( dUa rP = ~ _Q~( dl'.fa )sp dk 
dt It, (2:rt) 3 dt 4 

= I_Q"' V"'"'""''"''lV(k1)N(k2)N(ka)dkdk1dk2dk3 (6) .l (2:rt)3 . 

On the other hand, however, this change in energy 
density can be obtained directly from the nonlinear 
system of Maxwell's equations for the field vec
tors, and from the kinetic equation for the distri
bution function, by expanding the solution in pow
ers of the amplitude of the electric field. Proceed
ing in a manner similar to that in [1], we easily 
obtain 

( dUt \sP . 1 1 
-·-- I = 4:rt2 bm--

dt I 4 T-+00 T v 
V-rco 

( dUt, , ) sp . 1 1 s dk dro 2 
-- -- =8:rt2hm-- ---b(ro2-Qts) 

dt 4 T-rco T V ioe1/orol ' 
V-rco 

x(l_(k6j) lv\ 
k I I , 

(7) * 

where V is the volume and T is the time interval, 
and 

/)j = - ~ S dk1 dk2 dka dro1 dro2 droa 6 (k + k1 - k2 - ka) 
q 

X 6 ( cu + ffit- ffi2- roa) Iq (kk1k2ka), 

lq(kktk2ka)= ieq4-s vdp{F~~[~--a_(·Fa ojq<DJ)]}, 
( 2:rt) 4 X op X2 + Xa op X a op ! 

Fn=F(knron), F=E(1-kv)+(vE)~, 
(J). (J) 

Xn = (l)n- knV, n = 1, 2, 3; (8) 

*[k8j) = k X 8j. 
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the index q = e, i denotes the species of the par
ticles, E(k) is the Fourier component of the elec
tric field vector, and f&0>(p) is the zeroth-approx
imation distribution function of particles of species 
q which we assume close to Maxwellian, while the 
angle brackets denote the operation of averaging 
over the ensemble. 

Taking into account the connection between the 
spectral density of the field energy and the number 
of the corresponding quanta, and reducing (7) to the 
form (6), we can easily obtain the sought probabil
ities. Without stopping to obtain the probability of 
the four-plasmon decays for transverse waves, the 
expression for which is rather cumbersome, we 
confine ourselves here only to the case of longi
tudinal waves. In this case, recognizing that 

k·k· 2 2 
<Ei1• 8 (kw)E}·•(k'w')> = ;./ Ez,s(kw)o{w2 - Qr,s) 

I 8 z ~-~ 
X: 8: 2 1 6(k + k')o(w + w'), 

Nr, s(k) = EL {k, Qz, s) /8n2, 

where El ( wk) is the longitudinal dielectric con
stant, we obtain 

X o(k + k!- kz- ka)o(Qa + Qa,- Qa,- Qa,) IQI 2, 

(9) 

Q = ~ Qq = L; {<Dq ( k, -k!, kz, ka) +<Dq { k, -k1, ka, kz) 
q 

+ <Dq (k, kz, -k1, ka) +<Dq (k, kz, ka, -ki) 

+<Dq(k, ka, -k~, kz)+<Dq(k, ka, kz, -k!)], 

<Dq(k, k1, kz, ka) 

In the case of longitudinal Langmuir waves, 
recognizing that 

Qz ')> kv1e, Qz - Ql, ~ I k - k1l Vrc 

(10) 

and that the contribution of the ions can be com
pletely neglected, the integral (10) can be readily 
calculated, and accurate to small quantities 
~ k2v~e I w~c we shall have 

/". /". + COS kk3 (")S k1k2]. (11) 

Substituting this expression in (9), we obtain 
finally the sought probability 

e 4 /". /". 
V 11 " l,l, (kklk2ka) ~-, ---i'-T- [cos kkz cosklka 

me VJ'e 

/', /". 
+ cos kk3 cos k1k2J2 

0 (k + k1- kz- ka) 0 (Qz + Qz,- Qz,- ~lz,) (12) 
X ( 4n)a 

For sound oscillations the situation is some
what more complicated. In the region of short 
waves, kvTe » Woe• where the principal role is 
played by ions, the contribution of the electrons 
in the integral (10) can be neglected; we then ob
tain for the probability an expression which is 
perfectly analogous to (12), namely: 

0 {k + k1- k2- ka) 0 {Qs + Qs,- Qs,- Q,,) 
7' ( 4n)3 

(12') 

In the region of long waves, kvTe « w0e the 

expression for the probability ySSt.S2s3 has a 
very complicated form, and will not be presented 
here. We note only that to determine it we must 
take into account not only the ions, but also the 
electrons, and that the term connected with the 
ions (that is, Qi) has rather sharp maxima in 
regions where Qs2,3 - Qs1 < I k2,3 - k1 lvTi. where 
inside these regions the ionic term Qi is larger 
by a factor ( Qs lkvTi )2 than the corresponding 
electronic term Qe. while outside these regions 
the contribution from the ions has the same order 
of magnitude as the contribution from the elec
trons, that is, Qe ~ Qi. Taking into account that, 
as can be readily verified, 

ee4ne 1 
Qe = Te3 kk1k2k;' 

we can obtain an estimate for the probability 
yss1,s2s3 in the region of long waves: 

(13) 

ei4 /) (k + k1- kz- ka) /) (Qs + Q.,- Q.,- Q.,) 

~ mi4vr/' ( 4n) 3 

(14) 

Inasmuch as kvTe I w0e « 1 and TiiTe « 1, it fol
lows that the contribution from the four-plasmon 
decay processes, connected with small k, gives a 
summary effect which is much smaller than the 
corresponding contribution from the region of 
large k. And since furthermore, unlike in the case 



ON EFFECTS DUE TO INTERACTION OF PLASMONS 171 

of Langmuir waves, the linear decrement of the at
tenuation of the sound waves is finite as k- 0, in 
a large number of cases the role of the four
plasmon decay effects can be allowed for suffi
ciently well by confining oneself only to the long
wave region k > w0eiVTe• assuming that outside 
this region the influence of the four-plasmon de
cays on the dynamics of the waves is negligibly 
small and that when k « Woe lvTe the probability 
yss1os2sa is identically equal to zero. 

3. ANALYSIS OF THE EFFECTS OF FOUR
PLASMON DECAYS; SOME PARTICULAR 
CASES 

We now attempt, using several particular cases, 
to ascertain the new effects which can result from 
four-plasmon decay processes. Bearing in mind 
that the structure for the expression for yllt.Z2Za 
and ySSt.s2s3 is perfectly analogous, we confine 
ourselves only to the analysis of the case of 
Langmuir waves. 

1. We note first several general properties of 
four-plasmon decay processes. Multiplying the 
right and left sides of (4) in turn by na and k, 
integrating over all of k-space, and taking into 
account relations (2) and (3), we can easily verify 
that 

r n (dNa.) dk=O J a. dt 4 ,, 
~ k( dNa.~ dk == 0. 

dt 14 
(15) 

These relations are obviously the consequence of 
the laws of conservation of plasmon energy and 
momentum during scattering. 

On the other hand, inasmuch as the conserva
tion laws allow only the process in which two 
plasmons decay into two other plasmons, the total 
number of plasmons in such decays must also be 
conserved. Indeed, integrating (4) over all of k
space and taking into account relations (2), we 
can easily verify that 

( dNa.) ~ dk dt 4 == 0, (16) 

i.e., four-plasmon decays do not change the total 
number of plasmons. 

2. If we assume that the noise is strictly one
dimensional, that is, Na(k) = Na(kll) o(kl ), and 
integrate (4) with respect to k1 with (12) taken 
into account, we get 

(17) 

i.e., in the case of the purely one-dimensional 
spectrum four-plasmon decays do not change the 

density of the number of plasmons. This can be 
readily understood physically. Indeed, in the one
dimensional case the conservation laws (3) cause 
the probability of the decays to differ from zero 
only if k2 = k and k3 = k1 or k2 = k1 and k3 = k, 
that is, if the two quanta k and k1 decay into pre
cisely the same two quanta. 

We must recognize, however, that the noise dis
tribution is, strictly speaking, never purely one 
dimensional and there is always a certain number 
of plasmons with k1 ,.o 0. Allowance for this cir
cumstance causes the four-plasmon decays to re
duce the number of plasmons with k1 = 0, while 
the number of plasmons with k1 ,.o 0 increases, 
so that the one-dimensional spectrum "broadens" 
in the direction of k1, becoming practically three
dimensional. 

3. Using the expression obtained above for the 
probability yllt.l2la and the expressions given 
in [1] for the probabilities of the scattering of l
plasmons by subthermal particles (or the corre
sponding cross sections), we can now write the 
final equation for the plasmon -number density 
Nz(k), in which account is taken of the nonlinear 
corrections which are both quadratic and cubic in 
the number of plasmons. Going over for conve
nience to dimensionless variables 

x = krv, 't = Woet, '¢ (x) = Nzw0erv-a / {2n) 3, 

where rf} = w0e lvTe• we can write it in the form 

~~='Ill{'\'+~ K(xx1)'¢(x1)dx1} + ~ P(xx1x2xa) 

X ['¢ (x1) '¢ (x2) '¢ (xa) + '¢ (x) '¢ (x2) '¢ {xa) 

- '¢ (x) '¢ (x1)'¢ (x2) - '¢ (x) '¢ (x1) '¢ (x3)] dx1 dx2 dxa, (18) 

where the first term on the right side corresponds 
to an account of only the linear terms ( y -the 
Landau damping decrement), the second corre
sponds to an account of second-order scattering 
effects, and the third, finally, to an account of 
four-plasmon decay effects. According to (12), 

P (xxlxaxa) = 1/a4 n{) (x + X1-Xa- Xa){) (x2 + X12- Xa2- x32) 
/'- /'- /'- /'-

X [cos xxa cos x1x3 + cos x1xa cos xx]2. (19) 

The concrete form of the kernel K(xx1 ) depends 
essentially on the region of wave numbers x of 
interest to us. In particular if we confine our
selves here to the case of sufficiently long-wave 
oscillations with k < (w0e/VTe)(meTi/miTe)112, 
when the decisive role is played by scattering by 
the ions, then, according to [1•2], the expression 
for K(xx1 ) can be represented in the form 5> 

S)see also[•]. 
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x2-x12 /'-.. 
K (xx1) = -8 I I cos2 xx1, 

X-·Xl 

3 Vi ( ei2miTi )'I• T.2 
8--- (20) 

- 4 V2 e.2m.T. (Ti + T.)2 • 

We now turn to the case when the initial distri
bution of the noise is isotropic and consequently 
1/J(x) = 1/J(x). Going over in (18) to a new unknown 
function cp (x) = 47rx21f;(x) and integrating (18) over 
the angles in x-space, we obtain 

dfP I -
d1: = '\'(jl + qJ .J K(xx1)([!(X!)dx1 

+ ~ P(xx1xzxs)[qJ(xi)fP(Xz)qJ(xs) +qJ(X)ffJ(Xz)qJ(xs) 

- qJ(X)qJ(xi)ffJ(Xz)- qJ(X)qJ(x!)qJ(xs)] dx1dx2dx3, (21) 

where 

( x for 

I 
F(xx1xzxs) = c ~ 

X< X!} 
, when XzXs > xx1 

x1 for x_ > x1 

I xz for xz < xs } 
, when XzXs < xx1 

x 3 for Xz > Xs 
(22) 

and c is some slow function of x, Xto x2, and x 3 

of the order of unity. 
A. As the first example we consider the inter

action between narrow wave packets. Thus, we as
sume that at the initial instant of time cp (x) 
= A(O)o(x-a) + B(O)o(x-b) where, say, a ::sb, 
and see to what effects an account of the four
plasmon decays will lead 6>. It is easy to verify 
that the four-plasmon interaction leads to the 
decay of any two given packets with x = a 1 and 
x = a 2 > at> generally speaking, into four packets, 
two of which have the same x = at> a2, while the 
two others (satellites) are located at the point 7> 

6 ) An account of only scattering leads, as can be readily 
seen, only to a complete transfer of energy from the packet with 
large k to a packet with small k, without exciting any waves 
with other values of k. 

7 )1£ 2a~ - a; < 0, then only a "violet" satellite is produced 
with x = (2a; - a~)'h. 

di= (2a~-a~) 1/2 and a2= (2a~-a~) 112 . 
If we confine ourselves to sufficiently short 

times, so long as the amplitudes of the satellites 
are still small, so that we can neglect the inter
action between the satellites themselves and be
tween the satellites and the main packets, then we 
obtain the following expressions for the amplitudes 
A'(t), A(t), B(t), and B'(t) where B' is the am
plitude of the "violet" satellite with x = ( 2b2 -a 2) 1/2 
and A' is the amplitude of the "red" satellite with 
x = (2a2- b2 )1/2: 

dA' dB' 
- = y(a')A' -+-k A2B - = y(b')B' + k AB2 
dl: ' 1 ' dr: ' 2 ' 

dA A A 

IIi= Y (a) A+ AB [q + k2B- 2k1A], 

~ A A 

1Ji = Y (b)B + AB [- q + k1A -2k28], (23) 

where 

a' = (2a2 - b2) '12, b' = (2b2- a2 ) •;,, 

k = __ Jt_ c (2a2 - b2)'i• A ____ Jt _ __!!__ 
1 12 Y2 a2b < k 2 - 12 V2 b2 • 

b2-a2 5b2 + 2a2 

q=8~ 5b3 

It follows hence that the most important role is 
played by the nonlinear effects only in the region 
of small x, where the linear damping decrement 
is small or is in general equal to zero, and that 
the four-plasmon interaction need be taken into 
account only for sufficiently close-lying wave 
packets, when 

_ A~ 1 
b a< b2 ""'/.lz· (24) 

In accordance with this, we analyze the solutions 
of the system (23) in the case when the linear 
damping and the scattering processes can be neg
lected, and when the evolution of the packets is 
determined only by the four-plasmon decays with 
characteristic time of the process T4 ~ w0J 
x ( krune T e /U )2, where U is the total energy of 
the plasmons in the packet. 

Neglecting in (23) the terms proportional to y 
and q, and recognizing that in this case the total 
energy and the total number of plasmons are first 
integrals, we obtain the relations 

A(oo) = B(oo) = 0, A'(oo) =' 1/ 3 (2A(O) +B(O)), 

B'(oo) = 1/s(2B(O) +A(O)) 

for 2a2 > b2, and 

A'(oo) =B(oo) =0, A(oo) = 1/z(B(O) +2A(O)), 

B'(oo) = 1/zB(O) 
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for 2a2 < b2, characterizing the redistribution of 
the energy over the spectrum 8>. 

We see thus that two wave packets decay into 
four (or three) wave packets with wave numbers 
lying outside the interval [ ab]. If we now take 
into account the interaction between the two pro
duced satellites, and the interactions between these 
satellites and the main packets, then we find that 
this leads to the occurrence, generally speaking, 
of three more red satellites with 

x = (5a2 - 4b2) '''• (3a2 - 2b2r'· 
and three "violet" ones with 

x = (3b2 - 2a2) '''• (4b2 - 3a2) '''• 

The latter, in turn, lead to the occurrence of nine 
more red and nine more violet satellites, etc. As 
a result, the entire region outside the interval [ ab], 
from x = Xmin = [ M(a2 - b2 ) + a2 ] 112, where M is 
the maximum integer at which the radicand is still 
positive (a < b! ), to x ~ 1, turns out to be filled 
with wave packets centered at the points 

x = (l (a2 - b2) + a2) ''', 

(l(b2- a2) + b2)''' (l = 0, 1, 2, ... ) 

and the initial spectrum, containing initially only 
two lines x = a, b, gradually spreads out and be
comes a line spectrum. 

B. We now turn to an investigation of the evolu
tion in time of one sufficiently narrow wave packet 9>. 
We first neglect the four-plasmon interaction, and 
take into account only scattering, after which we 
analyze the effects to which this interaction leads. 

Thus, we assume that the spectral distribution 
of the noise is in the form of a narrow wave packet 
with maximum at the point x = xn and with char
acteristic width Ax = Axn. In this case, as follows 
from (22), accurate to small quantities of order 
Axn I Xn, the kernel K( x, x1 ) can be approximated 
by a simpler expression and we can put to) 

(25) 

s) In actual fact, these relations are, of course, not exact, 
inasmuch as we have assumed in their derivation that A', 
B' «A, B; these equations characterize only the tendency of 
the process. 

9) An analogous problem under different assumptions was 
considered by Galeev et al. [s] 

1 O) As will be shown below, an account of the nonlinear in
teraction causes the initial distribution of the noise to shift 
towards smaller wave numbers k, and the characteristic width 
of the spectral distribution decreases rapidly with time, and 
the spectrum assumes the form of a narrow wave packet. 
Therefore the case considered here has in practice a suffi
ciently broad range of application. 

Then (21) takes the form 

(26) 

Hence 

"' "' 
cp(x,-r:') = cpo(x)exp [ y'-r:'- x ~ ad-r:' + ~ ~d·t' J, 

0 0 

(27) 

where cp 0 ( x ) is the initial noise distribution, and 
the quantities a and {3 are only functions of the 
time T' and are determined from the equations 

~~ 

a(•') = ~ cp(x, •')dx =expO ~d't' H dxcpo(x) 
0 

~~ 

X exp( y'-r:'- x ~ ad•'), 
0 ' 

~~ 

~(•')= ~ xcp(x,t')dx=expO ~d•') 
0 ' 

~, 

X ~ dxxcpo (x) exp ( y'•'- X ~ ad•' ). 
\ 0 

(28) 

Taking into account (28), we can eliminate com
pletely the function {3( T) and represent the solution 
in the form 

~, 

cp(x, •') = (Po(x)a(•')exp( y't'-x ~ ad•') 
0 

X[~ dxcpo(x)exp( y'•'-xr ad•'lr1 (29) 
0 ' 

where the unknown function a ( T) is determined 
from the equation 

da (' 
d't = J cp(x, •)y'(x)dx. (30) 

Thus, the problem has been reduced to a solution 
of Eq. (30) for the function a(T). 

By way of illustration, let us consider the case 
when the damping decrement does not depend on x, 
that is, y' = -Yo = canst, and the initial noise dis
tribution is of the form 

(' w0eNo(k) dk 
Ao = J 8 3n T = const. 

n e e (31) 

A0xn ( X ) cpo(x)=-1 +texp -- , 
n.xon Xo 

Substituting expression (31) in (29), we readily ob
tain 

xn [ J.t('t') Jn+i ( x \ cp(x,•')=A0 -- -- exp --J.t(•')-Yo'•' I, 
n! xo xo ! 

Aoxo 
J.t (•') = 1 + -, (1 - exp (- yo'•')]. (32) 

Yo 

The maximum value of the spectral density 
cpm ( T') is equal to 
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J.L ( ,;') nne-n 
cpm(,;') ~ Ao-- ~exp(- Yo',;') 

x0 n! 

and is reached at the point x = xn = nx0 I J.l.( T' ), 

while the width of the wave packet is Axn = x0 I J.l.( T' ) • 

The time variation of the total energy U of the 
wave packet is obviously determined by the ex
pression 

2 

U(,;')= r ooae[t+-~- k2vT•] N(k't) dk 
J 2 wae2 8n3 

= n.T.Ao [t + 32- (n + 1) (n + 2) Xo~ ]exp(- vo''t'), 
J.L('t) ~ 

where the second turn takes into account the so
called nonlinear damping. 

Thus, when T < y01 the nonlinear effects can 
be quite appreciable and can lead to a narrowing 
of the wave packet and to its displacement towards 
smaller wave numbers k. Subsequently, however, 
that is, when T > y01, the deformation of the packet 
practically ceases, and xn and Axn reach their 
stationary values, 

( ) nxovo 
Xn 00 = 

'Yo+ xoAo' 

and the packet attenuates without changing its 
shape, with a damping decrement given by the 
linear theory. In other words, when T » y01 the 
nonlinear effects turn out to be insignificant, and 
the evolution of the packet can be described within 
the framework of the linear theory. 

In the general case, when the damping decre
ment y depends on x, the form of the function 
a( T) depends essentially on the form of functions 
y(x) and cp 0(x), and Eq. (30) must be solved sep
arately in each concrete case. 

In the above study of the evolution of a narrow 
wave packet we have neglected completely the ef
fects of four-plasmon decays. We now consider 
the conditions under which this can be done, and 
analyze qualitatively the phenomena which occur 
when these conditions are violated. An analysis 
of Eq. (21) shows that the presence of four-plasmon 
decays leads to a broadening of the initial spec
trum, with the characteristic time of this broaden
ing being, in the case of spherical symmetry, prac
tically independent of the width of the spectrum. In 
particular, for a narrow wave packet of width Axn 
and with center at the point Xn, the characteristic 
spreading time T4 has, as can be readily seen 11>, 
an order of magnitude 

ll)H s Q.N.ak ere U = --- is the total energy of the wave 
{2n)1 

packet. 

(33) 

that is, it is determined, apart from the packet en
ergy, only by the coordinate kn of its center. 

On the other hand, as shown by the just per
formed investigation, the scattering processes 
lead to a narrowing of the wave packet and to a 
simultaneous shift of this packet to the region of 
small wave numbers k. The characteristic times 
of both these processes have the same order of 
magnitude and are equal to 

(34) 

It follows from (33) and (34) that decay pro
cesses can be neglected only when the coordinates 
of the center of the wave packet and its width sat
isfy the condition 

(35) 

Thus, if at the initial instant of time the wave 
packet satisfies condition (35), then its evolution 
is at first determined only by scattering pro
cesses (and in the case of strong damping-in 
general by the linear theory), and the packet 
narrows down gradually and moves into the re
gion of small wave numbers k until condition (35) 
is violated and four-plasmon decays come into play 
and prevent its further narrowing. 

The ultimately obtained width of the packet 
~~tat can be estimated with the aid of (33), if it 
is recognized that, as we have just seen, the quan
tity ~knlkn is practically independent of the time. 
Denoting by ~k0 the initial width of the packet and 
by k0 the initial coordinate of its center, we get 

L\kn stat L\kO 
--"'- (36) kn stat "' kO · 

C. In conclusion let us dwell briefly on the case 
of three-dimensional spectra. Since our aim here 
is not a more or less detailed analysis of (18) for 
the general case, we shall merely point out that, 
in analogy with the case of spherical symmetry, 
the scattering effects lead to a narrowing of three
dimensional wave packets and their displacement 
towards smaller k with a characteristic time 

(37) 

where ~kn is the width of the packet. On the other 
hand, four-plasmon decay processes limit this 
narrowing, leading to a spreading of the packet, a 
result of which is the establishment of a certain 
stationary width. 

The characteristic time of the four-plasmon in-
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teraction for a three-dimensional packet can be 
readily estimated from (18); its order of magnitude 
is 

(38) 

that is, unlike the spherically symmetrical case, 
the time is directly proportional to the square of 
the width of the packet. It follows therefore that 
for narrow wave packets with .6..kn « (U/ meTe )1/ 3 

an account of the processes of four-plasmon inter
action is essential and, in particular, makes it pos
sible to estimate the stationary width of the packet. 
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