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The topics considered are the application of the Green's-function method to the theory of the 
dispersion and absorption of electromagnetic radiation in semiconductors, and also to the 
theory of the shape of resonance lines. Expressions in closed form are derived for the op
tical constants and the line shape, by finding the energy spectrum of the photons. The method 
developed is applied to the theory of the line shape of magnetooptical resonance and to the 
theory of the absorption of radiation by free carriers. It is shown that in a quantizing mag
netic field resonance oscillations can occur in scattering both by optical phonons and by 
acoustical phonons. 

IN the treatment of the absorption and dispersion 
of electromagnetic radiation in matter by the 
methods of quantum mechanics the usual starting 
point is the quantum -mechanical expression for 
the current density, from which one determines 
the real and imaginary parts of the electric con
ductivity, after which one connects these quanti
ties with the absorption and dispersion. Here it 
is often unclear how some complicated mecha
nisms of absorption and dispersion can be re
duced to an electric conductivity. It is more con
venient to use the method of Green's functions in 
the second-quantization representation.[t, 2] The 
photon spectrum E is determined by the poles of 
the photon Green's function; the imaginary part r 
of the spectrum gives the damping of the photon
that is, the absorption of the electromagnetic 
radiation-and the real part E gives the disper-
sion: 

Re E I I k I = c I n, (1) 

where k is the momentum of the photon, c is the 
speed of light in vacuum, and n is the index of 
refraction. 

In our opinion an advantage of this method is 
that it allows us by means of a unified scheme to 
get a simple determination of the line shape in the 
case of resonance absorption, because the damp
ing of the quasiparticles which absorb the photon 
is also included in the imaginary part of the spec
trum according to a definite rule. The ordinary 
absorption coefficient per unit length, K, is con
nected with the imaginary part of the spectrum 
by the relation 

x = r 1 v, 

where v is the speed of light in the substance. 
1. When anharmonicity is not taken into ac

count, the Hamiltonian of the system of photons, 
phonons, and current carriers is of the form 

(2) 

H = Hp + Ht +He+ Hpe + Hte + HPt· (3) 

Here Hp is the Hamiltonian of the photons: 

Hp = ·~ ffiR.(~k+h + 1/z), (4) 
k 

and Wk = I k I is the frequency of the free photon; 
Pk• l3k are photon creation and annihilation oper
ators; 11 = c = 1. The expression (4) corresponds 
to the Coulomb gauge for the field and to the ex-
pans ion 

A(x)=~{ekFk~keikx+Herm. adj.}, (5) 
k 

for the vector potential, where ek is the polari
zation vector of a photon, the volume of the 
crystal is taken as unity, and Fk = (211"/wk )1/ 2• 

We write the Hamiltonian of the phonons by 
introducing creation operators Cq and annihila
tion operators cq of phonons of branch 11 with 
quasimomentum q and frequency Oq 11 : 

Ht = ~ Qqv (cq+Cq + 1/2). (6) 
qv 

Introducing creation operators ap and annihila
tion operators ap of electrons in the conduction 
band with quasimomentum p and energy E~, and 
also creation operators bp and annihilation op
erators bp of holes in the valence band with 
quasimomentum p and energy E~, we write the 
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Hamiltonian of the current carriers in the form 

H.=~ (8p0ap+ap + 8p" bp+bp). (7) 
p 

In the coordinate representation the second
quantized operator of the carriers is 

'ljl (x) = ~ {bp+'Pvp + aP'Pcp}. 
p 

(8) 

For the calculation of the matrix elements we 
use the functions of Luttinger and Kohn [3]: 

'Pmp = [ U mo + ~ Uio (Pm;V)/ffimi] Fp (x), (9) 
t . 

where Uio are the Bloch functions at the bottom 
of the bands, and F p ( x) is the solution of the 
Schrodinger equation with effective mass in an 
external field. We have 

H pe = ~ ekFk {Jc" ap,+ ~k ap, + Jc" bp, ~k ap, 
p,p,k 

where 

A 

J is the current operator (m, n = c, v), and 

Hte= ~ E"-qvGqv{ic"at,cqap,+i/bp,Cqap, 
p,p,qv 

+ i, cat. cq bp,+ + i.," bp, cq bp,+} + Herm. adj . , 

where 

Gq11 is the interaction constant, and eq11 is the 
polarization vector of a phonon of branch 11. 

(10) 

(11) 

(12) 

(13) 

In forming the Hamiltonian for the interaction 
of the photons with the phonons we use the follow
ing arguments. The vibrations of the atoms at the 
lattice sites give rise to a current (ionic polari
zation current in ionic crystals, polarization 
current of the electron shells in homopolar 
crystals). This current interacts with the elec
tromagnetic field. For example, for the displace
ment vector in an ionic crystal we have from [t,2] 

the expression 

u (x) = ~ [2dQqv(1•{eqvCq(t) eiqx + Herm. adj.}. (14) 

Using the fact that 

at Cq (t) =- iQqv Cq (t), 

we get for the current of the lattice vibrations 

Jp = Zeu = ~ eq. gqv cq (t) et~p + Herm. adj. 
qv 

The form of gq 11 depends on the nature of the 
crystal. 

(15) 

The Hamiltonian for the photon-phonon interac
tion will be of the form 

Hpt = ~ d3xJpA 

= ~ (ekeqv)Fkgq;~kcq+<l (k-q) + Herm. adj. (16) 
kqv 

2. For the determination of the energy spec
trum we introduce the retarded Green's function 
of the photon: 

Dkk' (~) = e (t) Sp {e-I'H ~k+ (t) ~k' (O)} = e (t) <~~<+ 1 ~k·), 

{ 1, t>O 
~k+ (t) = eiHt ~k+ (0) e-iHt, () (t) = O, t < O (17) 

and its Fourier transform with respect to time: 
+oo 

Dkk·(E)= ~ dteiEtDkk•(t). (18) 

The poles of D (E) in the lower half-plane of 
the variable E determine the spectrum of the 
photons. 

The equation for D ( t) can be obtained by 
differentiating (17) with respect to time: 

i~Dkk·(t) = Ui(t) <~lt+l ~It·>+ S(t)([~It+H] I ~It·>. (19) ot 
The right member of Eq. (19) contains new 

Green's functions which involve operators for 
phonons, electrons, and holes. By writing ana
logous equations for these functions, we get an 
infinite system of coupled equations. To the 
lowest order in the interaction constants we can 
truncate this system, using the approximations 

(ap,+~k+ ap.l ~k·) = l'lp,p,np,0 (~k+ I ~k') (20) 

and so on, where ~ for the electrons and np for 
the holes are given by the Boltzmann distribution. 

From the finite system of equations obtained 
in this way we find the real part 

RaE= -ffik +~(~~.)I gkv 12[Fk [2 
v Qkv- ffik 

+ ~ JFkl2 { [ekJ~I2 (np~c-np,c) 
P•P• 8p, - 8p, - ffik 

+I ekJc" 12 (1-np,"-np,0 ) +I ekJ,0 [2 (1-np,"- np,0 ) 

8p1° + 8p,"- ffik 8p,V + 8p1° + ffik 

(21) 

and the imaginary part 

r = n ~ (ekekv)2[ gkv 12/ Fk 12 <I (Qk•- ffik) 

+n ~JFk[2{jekJccJ2(np,c-np,c)I'\(P..,,c-8p,c_ ffi..,) 
P•P• 

+ I ~Jc" 12 < 1 - np,"- np,c) <~ < sp,c + sp,"- ffik) 

+I ekJ," J2 (np,"- np,") <I (sp,"- Bp,"- ffik)} 

of the spectrum. 

(22) 
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The first sums in the expressions (21) and 
(22) describe the dispersion and resonance ab
sorption caused by the interaction of photon and 
phonon. The case of absorption has been con
sidered earlier, [4] and there the expression for 
the line width caused by anharmonicity was also 
derived. The first and last terms in the second 
sums describe the interaction of photons with 
free carriers. In the absence of external fields 
these terms do not lead to absorption owing to 
the impossibility of simultaneously satisfying the 
conservation laws for energy and momentum. 
When there is an external magnetic field these 
terms describe the absorption associated with the 
cyclotron resonance. The remaining terms de
scribe interband transitions. With an external 
magnetic field present they lead to expressions 
for the Faraday and Voight dispersion magneto
optical effects, [S] and also for magnetooscillatory 
effects. [G' T] 

3. Let us now consider the line width of the 
magnetooptical absorption owing to damping of 
the carrier states because of scattering by pho
nons. For this we must include in the chain of 
equations Green's functions containing operators 
of the electron-hole and phonon fields, and make 
the truncation in the next order of perturbation 
theory. For example, 

(ap,+ Cq/ cq,bp,+ I ~k') = flq,q, Nq, <ap,+ bp,+ I ~k' > (23) 

and so on, where 

Nq = [inq. + 1rt. 

When we find the Green's function that appears 
in the right member of (23) and substitute it in (19), 
the result is that the third sum in (21) is replaced 
by 

r- ~ I Fk 121 ekJcV 12 (1- np,v- np,c) r (24) 
- LJ ( ep,c + ep,v- rok)2 + y2 ' 

p,p, 

where the line width at the resonance is the 
quantity 

r = :n: 2] I eqv Gqv 12 {j ic" J2 [Nqfl (epG- ep,c- Qq) 
pq 

+I ivv-!2 [(1 + Nq) fJ (epv -ep,v- Qq) 

+ Nqfl (epv- ep,v + Qq) ]}. 

Let us consider the case of scattering by 
acoustical phonons at high temperatures. When 
we include the scattering of electrons by longi
tudinal phonons, we have 

(25) 

2 

i/ = fJ (piX- P~ + qx) fJ (plz- Pz + qz) J n.n. (iy~2)' 

where In1n2 is the generalized Laguerre poly
nomial with a weight factor, E0 is the constant in 
the deformation potential, s is the speed of sound, 
M is the mass of a cell, and /'~ = eH. We consider 
the case in which 

e~ =roo(n +'lz) +Pz2 12m0, Qq=slql, roo=eHim" 

(me is the effective mass of the carrier). As
suming that Qq « Ep, we get 

'V = EoZVo(~Ms28:n:)-1 ~ mi [Piz2 - 2vo(ni- n)]-'t.. (26) 
n; i=c, v 

It can be seen from the expression for '}' that 
resonance oscillations are possible, as in the 
case of scattering in a strong magnetic field. [a] 

For scattering by optical phonons the line width 
will contain an oscillating expression analogous 
to the magnetophonon resonance. 

3. Let us study the influence of a quantizing 
magnetic field on the absorption by carriers 
within the bands, with phonons participating. To 
find the absorption coefficient it is necessary to 
find the quantity ( ap1ap2 I fJk') which appears in 
the right member of (19), making use of the argu
ments that have been given. When we make an 
approximation of the type 

(27) 

and use the fact that 

Jc" = em-1[ez6n,n,Piz + (iey + ex)'Vo"J'n, I 26n., n,+l 

+(ex- iey)'Vo"J'(n! + 1) I 2 lln,n,-d llPtxP2x 6PtzP2z, 

after substituting these expressions in (19) and 
averaging over the polarizations of the photons and 
phonons we get for the main term 

(28) 

When for the optical phonons we substitute 

I Gqv 12 = 2:n:~~e2 ( __!_ - __!_) 
q Vo eco eo 

( V0 is the volume of the unit cell, (;0 is the static 
dielectric constant, E 00 = n2, and Q0 is the limit-
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ing frequency of the optical phonons), we get: 

It can be seen from the expression for r that for 

Wk = )'o2(n2- n1) /me± Qo 

there will be resonance oscillations of the type 
treated by V. Gurevich and Firsov [s] for Pz = 0. 
In addition to this, and in contrast with the results 
of L. Gurevich and Uritskil, [&] for the scattering 
by acoustical phonons there will also be a reso
nance absorption at Wk = rVmc (n2 - n 1 ). It is 
easy to see that the integration over Pz in (29) 
leads to a logarithmic divergence; that is, it does 
not remove the resonance character of the ab
sorption. Another important point is that the ef
fect can occur with the emission of an optical 
phonon, unlike the magnetophonon oscillations in 
the electric conductivity. 
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