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The absorption of a powerful light pulse in a gas is considered and the temperatures to which 
the gas is heated are estimated. Three possible mechanisms of transfer of the zone of light 
absorption (absorption and heating waves) are discussed; they are, respectively, a hydro­
dynamic mechanism, a "breakdown" mechanism, and a radiative mechanism. The corre­
sponding wave velocities are calculated. Heating and absorption waves are considered in a 
general form and a "shock adiabat" of the substance absorbing the light flux is constructed. 
A general relation between the wave velocity, which can be measured experimentally, and the 
heating temperature is derived. 

1. INTRODUCTION 

As experiments show, [ 1-B] breakdown occurs in 
gases under the action of a light pulse of sufficient 
intensity. If the flux greatly exceeds the threshold 
value for breakdown, the gas is very strongly ion­
ized and the resultant plasma absorbs the light 
completely, being heated to high temperatures. As 
the measurements carried out in C7J have shown, 
for an energy of the pulse of 2.5 Joules, duration 
40 nanoseconds, and a ray focused in a circle of 
radius r 0 ~ 10-2 em, atmospheric air at the focal 
point is heated to temperatures ~ 6 x 105 deg K 
( The threshold of breakdown in these experiments 
correspond to an energy of about 1 Joule.) 

Theoretical researches devoted to this phenom­
enon have touched mainly on the problem of the 
appearance and threshold of breakdown. [ 9-13 ] Only 
in the paper of Ramsden and Sa vic[ 14] is the ab­
sorption of the ray after breakdown considered; 
there, one of the possible mechanisms of occur­
rence of this process is noted ("detonation"). 
Certain fundamental questions, also related to this 
mechanism, were not touched upon, and some in­
correct expressions, which contradict the law of 
conservation of energy, are obtained for the tem­
perature to which the gas is heated. There are 
also very tentative estimates of the power neces­
sary for heating hydrogen to thermonuclear tem­
peratures. [ 15 ' 16 ] 

In the present work, the process of absorption 
of the light flux after the first breakdown at the 
focus is considered; possible mechanisms of the 
phenomenon are discussed and the temperatures 
achievable in this process are calculated. We 
shall be interested only in comparatively heavy 

gases, such as air, in which complete ionization 
of the atoms to the nucleus does not take place. 

2. "THE ABSORPTION WAVE" AND THE 
MECHANISM OF ITS PROPAGATION 

At temperatures of several tens and thousands 
of degrees, small light quanta are absorbed in the 
gas as the result of free-free transitions of elec­
trons in the ionic field. The absorption coefficient, 
corrected for the induced emission (with account 
of the fact that hv « kT), is equal to [ 17, 18] 

4 ( 2n )';, e6Z2n n+ 3 1·10-31Z3n2g 
x.v=3 3 (mkT)'~'cv2 g~ (~°K)'f,(hvev)2 [cm-1], 

l'3 ( 4kT \ ( 2.4 ·103 roK) 
g=-ln -z 2 'I)~ 0.55ln z•; 'I . n e ne', 'n' 

Here ne, n. and n are the numbers of electrons, 
ions, and original atoms per cm3. We introduce 
numerical values of the range l 11 = 1/K 11 for air of 
normal density and ruby quanta hv = 1.8 eV: 

1Q-5 T°K: 0.5 1 2.5 5 7 10 
Z: 1.35 2.7 5,0 5.2 5.7 6.6 

103 lY, em: 6.0 2.3 1:9 4.7 5,9 7.0 

The effective charge of the ions Z is taken under 
the assumption that the ionization is equilibrium. [ 17] 

We assume that at the focus, in a very small 
region of the light channel (see Fig. 1), where the 
light flux is maximal, breakdown has taken place 
and a very high degree of ionization and tempera­
ture have been achieved. The light is absorbed in 
a very thin layer of the order of the range of the 
quanta l 11 and heats the gas. One of the most 
noteworthy peculiarities of this process, which is 
quite evident physically and observable experi­
mentally, [ 5•7] consists in the shift of the absorp-
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------FIG. 1 

tion zone against the light flux. In fact, the light 
quanta are strongly absorbed in the highly ionized 
medium. As only the degree of ionization in front 
of the layer which is absorbing at the given instant 
achieves for one reason or another a rather high 
value, the ion layer becomes nontransparent and 
is transformed into an absorbing layer. Thus, "a 
wave of absorption and heating" is propagated 
along the light channel against the ray. This 
effect inhibits the release of all the energy of the 
pulse into a very small volume of the focus, where 
the breakdown takes place first, and limits the 
achievement of very high temperatures in a contin­
uous medium. 

One can point to three completely different and 
independent mechanisms which lead to the genera­
tion of the absorption wave. 

1. If the light flux at the focus appreciably ex­
ceeds the threshold or breakdown, then it expands 
within a certain region along a direction toward 
the light channel. Breakdown occurs also in these 
parts of the channel, but with a lag relative to the 
narrowest place. The larger the cross section of 
the channel and the smaller the current, the greater 
the lag. Thus the "breakdown wave" moves 
against the beam. 

2. The heated gas in the absorbing layer is 
propagated and sends a shock wave in all direc­
tions, including that along the light channel against 
the ray. In the shock wave, the gas is heated and 
ionized, so that the zone of light absorption and 
energy release in the gas is transported behind 
the shock front. This ("hydrodynamic") mecha­
nism is quite similar to detonations of explosive 
materials. 

3. The gas in front of the absorbing layer is 
ionized and acquires an ability to absorb light 
through absorption of thermal radiation emanating 
from the highly heated region of the gas ( due to 
the front of the absorption wave). 

Calculations show that the heating and ioniza­
tion in front of the absorbing layer, which are con­
nected with the electron conductivity and diffusion 
of electrons, play a small role. The effectiveness 
of each of the mechanisms is characterized by that 
velocity of displacement of the absorption wave 
which the mechanism gives to the wave, while the 

real wave naturally moves with the highest of pos­
sible velocities. 

Below we shall consider all the mentioned 
mechanisms ( and calculate the corresponding 
velocities). First of all, however, we shall inves­
tigate some laws which do not depend on the spec­
ific mechanism of propagation of the wave, and 
establish a general relation between the velocity 
of the wave and the temperature of the heated gas. 

3. THE ENERGY BALANCE AND THE "SHOCK 
ADIABAT" OF THE ABSORPTION WAVE 

In a time D.t during which the wave moves a 
distance of the order of its thickness D.x, the light 
flux and the velocity of the wave D = D.x/D.t are 
not appreciably changed ( D.x ~ l v :S 1 o-2 em, 
D ~ 100 km/ sec, D.t :S 1 nanosec). Therefore, the 
process is quasistationary in the system of coor­
dinates connected with the front of the wave. If 
we disregard the fact that the gas is set into mo­
tion when heated, the energy balance in the wave 
can be written down in elementary fashion. The 
light flux J 0dt incident in a time dt on a unit sur­
face of the front is consumed in heating the mass 
of gas p 0Ddt, which is trapped by the wave during 
this time. Consequently, 

poDe ( T) = lo, (3.1) 

where J 0 is the light flux (in erg/cm 2-sec), Po 
is the initial density of the gas, and E ( T) is the 
specific internal energy which the gas acquires as 
the result of absorption of the flux. 

Let us consider in detail an idealized plane wave 
whose width is much less than the radius of the 
surface of the front ( the radius of the light channel). 
In this case, one can neglect the lateral expansion 
of the gas inside the wave. We write down the gen­
eral equations for the conservation of flow of mass, 
momentum and energy in the wave, as is usually 
done in the theory of hydrodynamic discontinu-
ities: [17, 19] 

pu = poD, p + puz = polJ2, 

s + p/ p + 1/zu2 = 1/JJ2 + lo/ poD. (3.2) 

Here p, p, u are the pressure, density, and veloc­
ity of the gas (relative to the front) behind the 
wave. The pressure and the energy in front of the 
wave are considered small. 

We assume an equation of state in the form 

e =pI ('\'- 1) p, (3.3) 

where y is the effective exponent of the adiabat. 
Eliminating E, u, and D from (3.2) and (3.3), we 
get the equation of the "shock adiabat" of the gas, 
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in which the energy of the light flux is released: 1> 

[ ( 'V + 1 )-1 ]''• P= 2(1-rJ)'" 'V_ 1'Y)-1 lopo'f, , 'Y)= ~0 • (3.4) 

The equation of energy balance, which generalizes 
(3.1), has the form 

poDe(T, rJ) = lo~, ( 'V - 1 1 - 'YJ )-1 
~ = 1--2-~- ' (3.5) 

while the reciprocal of the compressibility TJ is 
connected with E and D by another equation 

8 
( V- 1) nz = 'YJ ( 1 -rJ), 

which allows us to eliminate it from (3.5). 

4. DETONATION AND SUPERDETONATION 
REGIMES 

The first two equations of (3.2) give 

(3.6) 

p = p0D2 ( 1 - TJ). The velocity of the wave is 
determined by the slope of the line drawn on the 
PTJ diagram (Fig. 2) from the origin 0 to the 
final state of the gas on the shock adiabat. As is 
seen in Fig. 2, for a given light flux J 0, there is a 
minimum velocity of propagation of the absorption 
wave, which corresponds, as in the case of the de­
tonation of an explosive to the Jouguet point J at 
which the velocity of the wave relative to the 
heated material behind it is identical with the 
local sound velocity u2 = c 2 = yp/ p. In the absence 
of other mechanisms of ionization ("ignition"), 
in addition to ionization of the shock wave, or else 
if the other mechanisms are less effective, this 
hydrodynamic ("detonation") regime is realized. 

l)It differs from the equation of the shock adiabat of ex­
plosive material with energy release per gram q: 

P = 2qp, I {[(y + 1) I (y -1)JYJ -1} 

for the reason that the energy release per gram J 0 / Po D in the 
case of the absorption wave depends on the velocity of the 
wave. 

The gas is compressed and heated by the shock 
wave to the state A; then, obtaining additional 
energy as the result of absorption of the light, it 
expands along the line AJ, reaching the Jouguet 
point at the moment of conclusion of energy 
release. 

The minimum velocity of the absorption wave 
is equal to 2> 

(4.1) 

Heating in the detonation regime has the maximum 
possible value and is equal to 

e= v nz= 2'':v (·!!!___ )"'.(4.2) 
(V2 - 1) (v + 1.) (v2 - 1) 1'(v+1) r·o , 

The coefficient (3 in Eq. (3.5) is equal to 
(3 = 2y/(y + 1). The compression behind the wave 
is 1/1) = (y + 1)/y. If we substitute in Eqs. (4.1) 
and (4.2) the numerical values 
J 0 = 2 x 1018 erg/cm 2-sec, Po= 1.3 x 10-3g/cm3, 

and y = 1.33, corresponding to experiment C7J 3> 

about which we spoke in the Introduction, we get 
D = 133 km/sec and E = 1.35 x 1014 erg/g. Such 
an energy at equilibrium corresponds to a tem­
perature T ::>:: 9.1 x 1050 K. (The experimental 
values are D ::>:: 110 km/ sec, T ::>:: 6 x 105 oK.) 4> 

Hydrodynamic regimes with shock-wave ioniza­
tion but with a velocity exceeding the "detonation" 
value (to which corresponds a compression in the 
shock wave to the state A' and subsequent expan­
sion to the final state B) do not exist. Motion be­
hind the absorption wave would in this case be sub­
sonic, and the expansion of the heated gas behind 
the wave would immediately weaken the wave, 
transforming it to a regime of ''normal detonation.'' 
If for a given light flux J 0 any of the ionization 

2)one can also obtain Eq. (4.1) from the formula for the ve­
locity of the detonation D = [2(y' - 1) q]'!,, if one substitutes 
q = J 0/ PoD in it. Ramsden and Sa vic proceeded in this fash­
ion[14) but they used in their formula, only as the result of an 
error made in the determination of the connection of q and J 0 , 

the density behind the front p in place of Po· 
3)Such is the effective exponent of the air adiabat for T 

T rv 5 x 105 _ 106 °K and density close to normal.(17] 

4 lin the work of Ramsden and Sa vic, [14 ] in which the results 
of Ramsden and Davis['] are interpreted, the velocity of the 
wave is correctly estimated from a formula of the type (4.1), 
which gives D = 100 km/sec, as also for the experiments of[']. 
However, these authors did not consider the existence of Eq. 
(4.2) and ascribed to the absorbing gas a temperature T = 

40000°K, which follows from the measured line width of the 
scattered light. This value has in fact nothing in common with 
temperature of the gas in the absorption zone, which is more 
than an order of magnitude larger (for more details on this, 
see['). 
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mechanisms, for example, the "breakdown" mech­
anism gives a velocity of propagation of the ab­
sorption wave exceeding the "detonation" velocity 
(4.1), then no shock wave is formed in the light 
channel. The gas, absorbing the light flux, trans­
forms from the initial state 0 in Fig. 2 to the 
final state C by means of a continuous compres­
sion along the line OC. The wave in this case is 
propagated along the heated gas remaining behind 
it, with supersonic velocity, so that no hydrody­
namic perturbations overtake it. The compression 
in the superdetonation regime is less than 
(y + 1)/y and the coefficient (3 in (3.5) is less 
than 2y/(y + 1). In the limit as D- oo, the gas 
is in general not set into motion and 71 - 1, (3 - I. 
The coefficient (3 is always very close to unity 
( 1 < (3~2y/(y + 1) f':j 1.14; y f':j 1.33), which evi­
dences an insignificant effect of motion and com­
pression on the energy balance. Therefore, within 
the framework of the assumption of the smallness 
of the width of the wave in comparison with the 
radius of its surface, the simple energy equation 
(3 .1) is valid with high accuracy for any mecha­
nism of wave propagation. 

5. LATERAL EXPANSION OF THE GAS 

As a consequence of the radial expansion of the 
heated gas, a shock wave moves out from the line 
of intersection of the surface of the front of the 
energy-release wave with the "surface" of the 
light channel, into the gas lying outside the channel. 
If the width .6.x of the wave of energy release is 
not much less than the radius of the channel R, 
but is comparable with this value, as is most fre­
quently the case under experimental conditions, 
then a significant fraction of the released energy 
is transferred to the layer of the gas surrounding 
the channel during the time of energy release. 
This leads to a lowering of the mean temperature 
over the cross section. ( Moreover, the surface of 
the front in the detonation regime is bent, as in the 
detonation of a cylindrical explosive charge with a 
diameter close to critical; see Fig. 3.) 

In the energy equation (3 .1), we introduce a 
correction which takes roughly into account the 
losses to lateral expansion. 5l The velocity of flow 
of the gas through the lateral "surface" of the 
channel is of the order of the sound velocity c 
( c = [y (y - 1) E ]11 2 ). Therefore, the energy bal­
ance in the wave zone can be written approximately 

S)We note that the energy loss to radiation is small. This is 
especially evident from an analysis of the transport of the wave 
by thermal radiation. 

FIG. 3 

in the form 

poDercil + poce · 2rcr~x = J0rci2, 

whence 

poDe = lofJ, {j = (1 + 2~xc I rD)-1. (5.1) 

We can also reason somewhat differently. 
During the time of energy release .6.t ~ .6.x/D the 
shock wave traverses in a radial direction a dis­
tance .6. r ~ c.6. t ~ c.6.x/D, so that the released 
energy J 01rr2.6. t goes into heating of the mass 
p 0D1r.6.t( r + .6.r) 2• For the mean energy of heating 
we have p 0DE = J 0 [ r/( r + .6.r) ]2, which reduces to 
( 5 . 1) if .6. r < r. 

In the detonation regime c f':j D/2 6 l and 
6 f':j 1/( 1 + .6.x/r). This coefficient can be intro­
duced directly in Eqs. (4.1) and (4.2) for estimate 
purposes, writing J 0o in them in place of J 0 . For 
example, for the experiments of [ 7] .6.x f':j lv, which 
is not much less than r ~ 10-2 em. If we set 
6 = 0.5, then in place of the values estimated in 
Sec. 4 we get D = 105 km/sec, E = 8.5 x 10 13 erg/g, 
and T ~ 7.2 x 105°K, which are closer to the 
measured values. 

Thanks to the radial expansion of the heated gas, 
within a certain time after the first breakdown the 
picture of the flow around the light channel becomes 
very similar to the picture of air flow in a super­
sonic motion of a body (the forward parts of the 
body correspond to the wave of energy release; 
see Fig. 3). The radial velocity of the shock wave 
at a given cross section x is somewhat smaller 
than the velocity of sound c ( E) even at the initial 
moment of separation of the wave from the surface 
of the light channel, that is, no more than half the 
velocity of propagation of the energy-release wave 
along the channel D. For large superdetonation 
velocities D it can be very much smaller than D. 
The radial velocity in the given section x de­
creases with passage of time, roughly speaking, 
like 1/R, where R is the radius of the shock 

6 )For very large superdetonation velocities of wave propaga­
tion, D » c and the losses on the lateral expansion are small 
even for 1'1x "'r. The lateral discharge in this case encompasses 
only the peripheral part of the gas in correspondence with the 
Mach angle. 
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front. Numerical estimates of the law of radial 
propagation of the shock wave and the shape of the 
surface of the front can be made with the help of 
the well-known formulas for a cylindrical explo­
sion, which must be applied to each cross section 
x, measuring the time from the moment of energy 
release in the cross section. In this case, the 
energy release per unit length of the channel is 
obviously equal to J 01rr2/D (erg/em). 

After a sufficient time following the end of the 
light pulse, when the shock wave moves off a dis­
tance large in comparison with the length of that 
part of the channel where the energy pulse is re­
leased, the motion of the gas acquires the charac­
ter of motion in a point explosion. More detailed 
consideration of the general picture of the flow of 
the gas outside the zone of energy release and for 
the explosion phenomena indicated lie beyond the 
framework of the present article. 

6. THE BREAKDOWN WAVE 

We now proceed to a consideration of the non­
hydrodynamic mechanisms of wave propagation. 

Under the action of the light pulse an electron 
cascade is developed in the cold gas. [ 9] The 
electron density increases with passage of time 
according to the law 

[ 
t dt l 

ne = neoexp ~ -8 . 
0 .I 

(6.1) 

For large light fluxes, the only ones in which the 
mechanism of breakdown plays any role, the value 
0 is determined fundamentally as the time which 
is necessary for the electrons to acquire the 
energy needed for ionization (or excitation) of the 
molecules and atoms. In this case the rate of de­
velopment of the cascade 1/0 is simply propor­
tional to the light flux: 1/0 = AJ0• We shall not 
define the coefficient A more precisely here; 
see [ 9]. 

We assume that the breakdown sets in when the 
density of electrons reaches some critical value 
nee (for which the absorption of light quanta be­
comes sufficiently intense). This means that the 
moment t of onset of breakdown in section x of 
the light channel is determined by the equation 

t & ~c 
~-=A ~ Io(x, t)dt = ln- = f.l. (6.2) 
0 8 0 lleo 

We shall assume the quantity J.L, which depends 
only logarithmically on nee and neo• to be approx­
imately constant. 

t 
FIG. 4 

We represent the light flux J 0 ( x, t) in the form 

w 
lo(x,t)= :n:r2<p(t), 

where W is the peak power of the generator, cp ( t) 
is a dimensionless function characterizing the 
shape of the pulse (a typical curve is shown in 
Fig. 4), and r is the radius of the channel at the 
section x. Substituting this expression in ( 6. 2), 
we get 

w' 
A---;2 ~ <p(t)dt = ll· 

:n: 0 
(6.3) 

If tc is the instant of first breakdown in the focus, 
then 

tc 

A w2 ~ <jl(t)dt = ~t. 
:n:ro 0 

(6.4) 

Noting that approximately r = r 0 + x tan a (see 
Fig. 1), we get from (6.3) and (6.4) an equation 
which determines the law of motion of the break­
down wave x ( t): 

tc 

~ qJ(t)dt n qJ(t)dt = ( 1 + ~tg a r 
o o ro 

(6.5)* 

For powers appreciably above threshold, the 
breakdown usually takes place even before the 
moment of onset of peak power. For convenience 
in estimating by means of (6.5), we approximate 
the curve cp ( t) in the region of power increase 
by a straight line as shown in Fig. 4 (we measure 
the time from the point of intersection of the 
straight line with the abscissa). Extrapolating the 
straight line to zero power, we get from (6.5) 

x=D(t-tc), 

D _ dx _ ro 
- dt- tctga · 

(6.6) 

In the region of power increase, the velocity of 
the wave is constant under the approximation made. 
Shortly before the instant of maximum power, it 

*tg =tan. 
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begins to fall off. For the experiment of [ 7J, about 
which we spoke in the Introduction, r 0 ~ 10-2 em, 
tc ~ 10 nanosec, tan a R:: 0.1 and the velocity of 
the breakdown wave D ~ 100 km/sec. It is very 
close to the hydrodynamic value (see above). In 
the experiments of Ramsden and Davis, [SJ r 0 

~ 4 x 10-3 em, tc ~ 7 nanosec, tan a ~ 1 (short 
focus lens ) ; the breakdown takes place almost at 
maximum power. The velocity of the breakdown 
wave D ~ 6 km/ sec is very small (the hydro­
dynamic velocity is D ~ 100 km/sec). We esti­
mate the dependence of the initial velocity on the 
generator peak power W on the length of the 
pulse ~t 1 and on the geometry. For the estimate, 
we set cp ( t) = const • t/ ~ t 1, and obtain according 
to Eq. (6.4) tc ~ ~tY 2 w-11 2r0 ; Eq. (6.6) in this case 
gives 

D ~ (TV I M1)'i, /tg a. (6. 7) 

In the case of short, powerful pulses and long­
focus lenses (small a), the initial velocity of the 
breakdown wave can be very large and can appre­
ciably exceed the hydrodynamic value. For exam­
ple, in the geometry of the experiments of [ 7] 

( r 0 = 10-2 em, tan a= 0.1), but with a peak power 
one order of magnitude larger ( W ~ 1000 MW) 
and a pulse length half as great (~t 1 ~ 20 nanosec), 
the velocity of the breakdown wave [ according to 
(6.6) and (6. 7)] amounts to about 500 km/sec, while 
the corresponding velocity of the "detonation" is 
equal to about 200 km/sec. 

7. RADIATIVE TRANSPORT OF THE WAVE 

For temperatures of the order of several hun­
dred thousand degrees, the range lv ~ 10-1 - 10 em 
of the thermal quanta with energies hv ~ kT, is 
much larger than the range of the light quanta 
Uv ~ lo-3 - 10-2 em), the thickness of the waves, 
and also the characteristic dimensions of the 
heated region. The heated gas is transparent for 
thermal radiation and the radiation comes from the 
whole volume. This radiation is absorbed in the 
much colder layers where ionization is small; the 
corresponding range in atmospheric air A. ~ 10-2 

- lo-t em (for hv R:: 20-200 eV). As soon as the 
ionization brought about by absorption of the 
thermal radiation reaches a sufficient value (and 
this takes place when T ~ ( 1.5 - 2) x 10-4 aK), a 
new ionized layer begins to absorb the light flux 
intensely. Inasmuch as the focused light flux is 
much greater than the flux of thermal radiation, 
the layer quickly heats up and the boundary of the 
zone of high temperature moves toward it. 

Let us consider a stationary regime in a sys-

]) 

FIG. 5 

tern of coordinates in which the wave is at rest; 
see Fig. 5 (as will be seen from what follows, the 
stationary regime is possible). We assume that 
the degree of ionization and the path length of the 
light quanta lv are approximately determined by 
the energy of the gas E. We call the front of the 
wave that point ( x = 0) where the rates of energy 
release in the gas as a result of absorption of the 
thermal radiation Q (in erg/cm3-sec) and of 
the light flux dJ I dx = J /l v are identical. In front 
of the wave front ( x > 0) the gas heats up and is 
ionized principally through the absorption of 
thermal radiation. Therefore, the energy of the 
gas on the front, Eo, is determined by the equation 

00 

poDeo = ~ Q(x)dx = S, (7 .1) 
0 

while the condition of the equality of energy re­
lease at the front has the form 

fo / lv, = Qo, 

Qo = Q(O), 

lv, = lv(eo), 

lo = J(oo). (7 .2) 

Behind the front ( x < 0 ), the role of thermal radia­
tion in the energy balance of the gas is small, and 
the variation of the temperature depends essentially 
on the absorption of the light flux. 7) The final 
energy of the gas Ef is given by Eq. (5.1): 

poDer =loB. (7.3) 

For an estimate of Q ( x), we assume that the 
radiating volume is a cylinder with a constant 
temperature, equal to the final temperature (see 
Fig. 6). Let this cylinder be separated from the 
plane of the front by a non-radiating layer (in 
which the temperature increases to a value close 

7)It is easy to find the energy distribution behind the fran t 
E(x) if one does not take into account the motion of the gas. 
Then we have 

de dl J 
poD-=--=--, poDe = lo-1, 

dx dx lv 

1 = poD(ar'- a), 

where p0D E ( = J 0 • From these equations, it follows that 

de er'- e 
--= 

dx Zv 
lxl = C Zv~a)da. 

J ef - e 
eo 
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to the final value). Attenuation of the flux of 
thermal radiation is small in this layer. Under 
these assumptions, the intensity of the radiation 
at the point x on the axis of the channel, I ( x, J) 
[erg/ em 2-sec-sr] is equal to (see Fig. 6 )* 

I (x 'it) = j_ exp (-_x_) 
' 4n A cos it 

Here j = 4uT~ /Z 1 [erg/ cm3 -sec I is the emissivity 
of the gas; l 1 ( Tc) is correspondingly the range 
averaged over the spectrum; [ 17] A is the mean 
free path for absorption in the cold gas. The rate 
of energy release Q is 

e, I 
Q (x) = ~ -- · 2n sin 'it d{}. 

o A 

On the wave front we have, at x = 0, 

jr 
Qo = 21/(tto, tt1), 

f = [tto- tt1 + ctg tto ln cos tto- ctg tt1ln cos ttl] ( 7. 4) t 

( f is at a maximum and is equal to rr/2 for d =co, 
b = 0). 

The integral 8> S = J Q ( x) dx can be computed 
0 

(by reversal of the order of integration) for the 
simpler case of a semi-infinite cylinder closely 
adjoining the front ( b = 0, d =co). As a result, a 
relation is obtained between S and Q0 which is 
approximately valid, according to the estimates, 
in the real range of values of b and d. Keeping 
this relation, we get 

*arc tg =tan-'. 
t ctg = cot. 

8 )The quantity S is approximately that part of the flux of 
thermal radiation escaping from the surface of the wave front 
which is absorbed in the limits of the light channel. 

S= QoA1jJ( {)=~jr¢( ~ )t(tto,tt!), 

¢(s) =n-1 [sEds) +2-s-1 +e-S(s-1 -1)] (7.5) 

(if! and f are slowly varying functions; if! (co) 
= 0.64, if!( 1) = 0.39, if!( 0.1) = 0.14; for d/r ~ 1 and 
b/r ~ 1, we have f ~ 1). 

Equations (7.1)-(7.5) make it possible to find 
the unknown D, Ef and E0• Actually, the situation 
reduces to the solution of the set 

Sf Zv,(so)6 
~=---

Eo A1jl 
(7.6) 

relative to Ef and E0• 

For high temperatures, ionization and excitation 
of the ions do not differ appreciably from equili­
brium. The range Z1 can then be estimated by the 
method described in [ 17]. For air of normal den­
sity, in the interval T R:< 2 X 105 - 106 °K, we have 
approximately, Z 1 ~::: 2 x (To/5 x 105 ) 3 em and 
j R:<7 x 1018 (To/5 x 105 ) erg/cm3-sec. The energy 
can be approximated by the formulas t: R:< 4.6 
X 10 13 ( T/5 X 105 )2/3 erg/g for T ~:::: 2 X 105 - 5 
x 105 oK and E R:< 4.5 x 10 13 (T/5 x 105 ) 714 erg/g 
for T R:< 5 x 105 - 106 oK. 

The ranges lvo in front of the wave front can 
also be estimated by starting out from the assump­
tion of thermodynamic equilibrium. 9> According 
to the Kramers-Unsold formula we have, for air 
in the vicinity of the first ionization and 
hv = 1.8[ 17], 

Xv = Zv-1 = 0.57 Te-165000/T (e21000/T- 1) [cm-1, r]. (7. 7) 

For a numerical example, we again consider the 
experiment cited above:C 7J J 0 = 2 x 10 18 erg/cm2-

sec, r = 10-2 em. We set A = 3 x 10-2 em, and here 
if!( Y'3 ) = 0.2; let d =rand b = r/4, then f = 0.6; we 
get o = 0.5. Equations (7.6) and (7.3) give: 

9)Here one can advance the following considerations. For 
air, one obtains E 0oo 16 eV per molecule, to which correspond 
the equilibrium T "' 15000°K and degree of ionization 0.1 
electron per molecule. The energies of the thermal quanta 
(hv rv SO - 100 e V) are initially transferred to photoelectrons, 
the primary number of which rv E0/hv is comparable with the 
equilibrium value. The electronic processes (excitation and 
deactivation of molecules, ionization) take place very quickly 
(the characteri~tic time of heating is ~'it rv,VD rv3 X 10-2/10 7 = 
3 x 10- 9 sec). Recombination requires times comparable with 
~'it. The transfer of energy from the electrons to the heavy 
particles through elastic collisions takes place slowly (T- 10-s 
sec), but in a molecular gas there is another fast transfer 
mechanism: electronic excitation of molecules is simultaneously 
accompanied by excitation of vibrations (in correspondence with 
the Franck-Condon principle), and sometimes dissociation of 
the molecules also takes place. 
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Eo~ 16 eV per molecule or 5.3 x 1111 erg/g; To 
= 15300°K, lvo = 1.9 em, Tc = 7.5 X 105 oK, Ef = 8.3 
x 1013 erg/g, D = 95 km/sec. The fact that the path 
length Zvo ( T 0 ) is very great on the front does not 
in any way give evidence as to the width of the 
wave. One can show that, thanks to the sharp expo­
nential dependence of lv ( T) for low temperatures, 
the width of the wave will always be of the order of 
lv(Tc). 

For an estimate of the dependence of the velocity 
D on the flux J 0 and other parameters, we note 
that as a consequence of the extraordinarily strong 
dependence of lvo on T 0 by Eq. ( 7. 7), the energy 
on the front E 0 is extremely stable; that is, one 
can assume approximately that Eo ~ 16 eV per 
molecule always. Then the first of Eqs. (7.6) gives 
the direct connection of Ef with J 0• Making use of 
(7 .5) and the interpolation formulas for E ( T) (for 
5 x 105 < T < 106 °K) and j ( T), we obtain the fol­
lowing estimated formulas for air: 

Tc= 1.9·10-2 (lo8/r¢f) 0·364 [deg], 

er = 4.15(/oiS/rtjl/) 0·636 [erg/g], 

D = 1.9 ·102 (/06) 0·364 (r¢/) 0·636 [em/ sec]. ( 7. 8) 

As is seen, the wave velocity and its dependence 
on the light flux are shown to be approximately the 
same as for the detonation regime. ( Of course, 
this coincidence must not be taken literally but 
only as an identity in order of magnitude; we note 
that the functions 6, lj!, f also depend on J 0 in the 
final analysis but not strongly.) 

If the regime is a detonation regime, the air in 
front of the shock wave is always a little heated by 
the thermal radiation; this heating is determined 
by the same Eq. (7.1). Together with this, a very 
thin layer in front of the shock wave is heated by 
the mechanism of electron conductivity, while in 
this layer the temperature is of the order of the 
final T c· The width of the layer 6xe is deter­
mined from the approximate consideration: 

Se ~ polhr ~ lo8, 

where Se is the thermal conduction flux from the 
front and 

Se ~ 'r}e(Tc)Tc/ ~Xe, 

where TJe = aT 512 is the coefficient of electron 
thermal conductivity. In air, for five fold ioniza­
tion ( Z = 5 ), we have a~ 5 x 10-7 erg/sec-cm2-

deg712. These equations give 6xe ~ 5 x 10-7T712/J0o. c 
For example, for Jo6 = 1018 erg/cm2-sec and Tc 
= 7 X 105 oK, we have 6Xe ~ 1.4 X 10-4 em and 
6xe « Z11 (Tc) ~ 6 x 10-3 em, that is, the layer is 
transparent for light flux, which also demonstrates 

the insignificant role of the electron conductivity. 
We note that diffusion of the electrons from the 
front also plays an equally small role. 

8. DISCUSSION OF THE RESULTS 

As calculations have shown, the dynamic and 
radiation mechanisms give approximately the 
same wave velocities. The velocities are not 
"additive," and under conditions in which the 
mechanism or breakdown plays a small role, the 
real wave moves with a velocity which is given by 
either of the first two mechanisms. There is some 
basis for assuming that the effectiveness of the 
radiation mechanism in the calculations is some­
what underestimated. In particular, this is asso­
ciated with the assumption that equilibrium is es­
tablished in front of the wave-front, which raises 
misgivings, for essentially there is no spare time 
for this purpose. The lack of equilibrium always 
is such as to produce a larger degree of ionization 
and excitation of the atoms, since initially all the 
energy of thermal radiation is transferred by the 
fast electrons. Therefore, the gas acquires the 
necessary ability to absorb the light flux at lower 
fluxes of heat radiation and at lower final temper­
atures, i.e., the radiation wave propagates more 
rapidly. However, the phenomena are so compli­
cated and the data on the ranges of the radiation 
are so incomplete that an increase in the accuracy 
of the calculations (which without doubt is possi­
ble) would hardly allow us to give any preference 
with assurance to the hydrodynamic or radiation 
mechanisms. 

Obviously this problem must be solved by ex­
periment. Even for similar velocities, the inter­
nal structure of the wave depends strongly on the 
transport method. In the hydrodynamic mechanism, 
there is a shock wave, that is, a steep front of com­
pression and heating, where in the first place the 
ions acquire energy and the ion temperature is ex­
tremely high, even higher than the final tempera­
tures. [ 17] In the other ( superdetonation) mech­
anisms, the heating takes place by degrees, the 
ion temperature is not higher and most likely is 
lower than the electron temperature, and there is 
apparently no compression at all because of the 
lateral divergence. 

For high powers and long focus lenses, a break­
down wave arises, but after some time, as the 
power in the pulse falls off, the breakdown wave 
slows down and the detonation wave or the radia­
tion wave must evidently overtake it. Even if the 
nature of the mechanism in any case remains un­
clear, one can always determine the temperature 
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of the heating by measuring the velocity of the 
wave, making use of the law of conservation of 
energy (3.1) and (5.1). 

The author thanks G. A. Askar'yan and S. L. 
Mandel'shtam for useful discussions. 
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